61 research outputs found

    Learning-based depth and pose prediction for 3D scene reconstruction in endoscopy

    Get PDF
    Colorectal cancer is the third most common cancer worldwide. Early detection and treatment of pre-cancerous tissue during colonoscopy is critical to improving prognosis. However, navigating within the colon and inspecting the endoluminal tissue comprehensively are challenging, and success in both varies based on the endoscopist's skill and experience. Computer-assisted interventions in colonoscopy show much promise in improving navigation and inspection. For instance, 3D reconstruction of the colon during colonoscopy could promote more thorough examinations and increase adenoma detection rates which are associated with improved survival rates. Given the stakes, this thesis seeks to advance the state of research from feature-based traditional methods closer to a data-driven 3D reconstruction pipeline for colonoscopy. More specifically, this thesis explores different methods that improve subtasks of learning-based 3D reconstruction. The main tasks are depth prediction and camera pose estimation. As training data is unavailable, the author, together with her co-authors, proposes and publishes several synthetic datasets and promotes domain adaptation models to improve applicability to real data. We show, through extensive experiments, that our depth prediction methods produce more robust results than previous work. Our pose estimation network trained on our new synthetic data outperforms self-supervised methods on real sequences. Our box embeddings allow us to interpret the geometric relationship and scale difference between two images of the same surface without the need for feature matches that are often unobtainable in surgical scenes. Together, the methods introduced in this thesis help work towards a complete, data-driven 3D reconstruction pipeline for endoscopy

    Applications of Artificial Intelligence in Medicine Practice

    Get PDF
    This book focuses on a variety of interdisciplinary perspectives concerning the theory and application of artificial intelligence (AI) in medicine, medically oriented human biology, and healthcare. The list of topics includes the application of AI in biomedicine and clinical medicine, machine learning-based decision support, robotic surgery, data analytics and mining, laboratory information systems, and usage of AI in medical education. Special attention is given to the practical aspect of a study. Hence, the inclusion of a clinical assessment of the usefulness and potential impact of the submitted work is strongly highlighted

    Recent Progress in Transformer-based Medical Image Analysis

    Full text link
    The transformer is primarily used in the field of natural language processing. Recently, it has been adopted and shows promise in the computer vision (CV) field. Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from this state-of-the-art technique. In this review, we first recap the core component of the transformer, the attention mechanism, and the detailed structures of the transformer. After that, we depict the recent progress of the transformer in the field of MIA. We organize the applications in a sequence of different tasks, including classification, segmentation, captioning, registration, detection, enhancement, localization, and synthesis. The mainstream classification and segmentation tasks are further divided into eleven medical image modalities. A large number of experiments studied in this review illustrate that the transformer-based method outperforms existing methods through comparisons with multiple evaluation metrics. Finally, we discuss the open challenges and future opportunities in this field. This task-modality review with the latest contents, detailed information, and comprehensive comparison may greatly benefit the broad MIA community.Comment: Computers in Biology and Medicine Accepte

    From Fully-Supervised Single-Task to Semi-Supervised Multi-Task Deep Learning Architectures for Segmentation in Medical Imaging Applications

    Get PDF
    Medical imaging is routinely performed in clinics worldwide for the diagnosis and treatment of numerous medical conditions in children and adults. With the advent of these medical imaging modalities, radiologists can visualize both the structure of the body as well as the tissues within the body. However, analyzing these high-dimensional (2D/3D/4D) images demands a significant amount of time and effort from radiologists. Hence, there is an ever-growing need for medical image computing tools to extract relevant information from the image data to help radiologists perform efficiently. Image analysis based on machine learning has pivotal potential to improve the entire medical imaging pipeline, providing support for clinical decision-making and computer-aided diagnosis. To be effective in addressing challenging image analysis tasks such as classification, detection, registration, and segmentation, specifically for medical imaging applications, deep learning approaches have shown significant improvement in performance. While deep learning has shown its potential in a variety of medical image analysis problems including segmentation, motion estimation, etc., generalizability is still an unsolved problem and many of these successes are achieved at the cost of a large pool of datasets. For most practical applications, getting access to a copious dataset can be very difficult, often impossible. Annotation is tedious and time-consuming. This cost is further amplified when annotation must be done by a clinical expert in medical imaging applications. Additionally, the applications of deep learning in the real-world clinical setting are still limited due to the lack of reliability caused by the limited prediction capabilities of some deep learning models. Moreover, while using a CNN in an automated image analysis pipeline, it’s critical to understand which segmentation results are problematic and require further manual examination. To this extent, the estimation of uncertainty calibration in a semi-supervised setting for medical image segmentation is still rarely reported. This thesis focuses on developing and evaluating optimized machine learning models for a variety of medical imaging applications, ranging from fully-supervised, single-task learning to semi-supervised, multi-task learning that makes efficient use of annotated training data. The contributions of this dissertation are as follows: (1) developing a fully-supervised, single-task transfer learning for the surgical instrument segmentation from laparoscopic images; and (2) utilizing supervised, single-task, transfer learning for segmenting and digitally removing the surgical instruments from endoscopic/laparoscopic videos to allow the visualization of the anatomy being obscured by the tool. The tool removal algorithms use a tool segmentation mask and either instrument-free reference frames or previous instrument-containing frames to fill in (inpaint) the instrument segmentation mask; (3) developing fully-supervised, single-task learning via efficient weight pruning and learned group convolution for accurate left ventricle (LV), right ventricle (RV) blood pool and myocardium localization and segmentation from 4D cine cardiac MR images; (4) demonstrating the use of our fully-supervised memory-efficient model to generate dynamic patient-specific right ventricle (RV) models from cine cardiac MRI dataset via an unsupervised learning-based deformable registration field; and (5) integrating a Monte Carlo dropout into our fully-supervised memory-efficient model with inherent uncertainty estimation, with the overall goal to estimate the uncertainty associated with the obtained segmentation and error, as a means to flag regions that feature less than optimal segmentation results; (6) developing semi-supervised, single-task learning via self-training (through meta pseudo-labeling) in concert with a Teacher network that instructs the Student network by generating pseudo-labels given unlabeled input data; (7) proposing largely-unsupervised, multi-task learning to demonstrate the power of a simple combination of a disentanglement block, variational autoencoder (VAE), generative adversarial network (GAN), and a conditioning layer-based reconstructor for performing two of the foremost critical tasks in medical imaging — segmentation of cardiac structures and reconstruction of the cine cardiac MR images; (8) demonstrating the use of 3D semi-supervised, multi-task learning for jointly learning multiple tasks in a single backbone module – uncertainty estimation, geometric shape generation, and cardiac anatomical structure segmentation of the left atrial cavity from 3D Gadolinium-enhanced magnetic resonance (GE-MR) images. This dissertation summarizes the impact of the contributions of our work in terms of demonstrating the adaptation and use of deep learning architectures featuring different levels of supervision to build a variety of image segmentation tools and techniques that can be used across a wide spectrum of medical image computing applications centered on facilitating and promoting the wide-spread computer-integrated diagnosis and therapy data science

    Computer-aided Visualization of Colonoscopy

    Get PDF
    Colonoscopy is the most widely used medical technique to examine the human large intestine (colon) and eliminate precancerous or malignant lesions, i.e., polyps. It uses a high-definition camera to examine the inner surface of the colon. Very often, a portion of the colon surface is not visualized during the procedure. Unsurveyed portions of the colon can harbor polyps that then progress to colorectal cancer. Unfortunately, it is hard for the endoscopist to realize there is unsurveyed surface from the video as it is formed. A system to alert endoscopists to missed surface area could thus more fully protect patients from colorectal cancer following colonoscopy. In this dissertation computer-aided visualization techniques were developed in order to solve this problem:1. A novel Simultaneous Localization and Mapping (SLAM) algorithm called RNNSLAM was proposed to address the difficulties of applying a traditional SLAM system on colonic images. I improved a standard SLAM system with a previously proposed Recurrent Neural Network for Depth and Pose Estimation (RNN-DP). The combination of SLAM’s optimization mechanism and RNN-DP’s prior knowledge achieved state-of-the-art performance on colonoscopy, especially addressing the drift problem in both SLAM and RNN-DP. A fusion module was added to this system to generate a dense 3D surface.2. I conducted exploration research on recognizing colonic places that have been visited based on video frames. This technique called image relocalization or retrieval is needed for helping the endoscopist to fully survey the previously unsurveyed regions. A benchmark testing dataset was created for colon image retrieval. Deep neural networks were successfully trained using Structure from Motion results on colonoscopy and achieved promising results.3. To visualize highly-curved portions of a colon or the whole colon, a generalized cylinder deformation algorithm was proposed to semi-flatten the geometry of the colon model for more succinct and global visualization.Doctor of Philosoph

    Development of deep learning methods for head and neck cancer detection in hyperspectral imaging and digital pathology for surgical guidance

    Get PDF
    Surgeons performing routine cancer resections utilize palpation and visual inspection, along with time-consuming microscopic tissue analysis, to ensure removal of cancer. Despite this, inadequate surgical cancer margins are reported for up to 10-20% of head and neck squamous cell carcinoma (SCC) operations. There exists a need for surgical guidance with optical imaging to ensure complete cancer resection in the operating room. The objective of this dissertation is to evaluate hyperspectral imaging (HSI) as a non-contact, label-free optical imaging modality to provide intraoperative diagnostic information. For comparison of different optical methods, autofluorescence, RGB composite images synthesized from HSI, and two fluorescent dyes are also acquired and investigated for head and neck cancer detection. A novel and comprehensive dataset was obtained of 585 excised tissue specimens from 204 patients undergoing routine head and neck cancer surgeries. The first aim was to use SCC tissue specimens to determine the potential of HSI for surgical guidance in the challenging task of head and neck SCC detection. It is hypothesized that HSI could reduce time and provide quantitative cancer predictions. State-of-the-art deep learning algorithms were developed for SCC detection in 102 patients and compared to other optical methods. HSI detected SCC with a median AUC score of 85%, and several anatomical locations demonstrated good SCC detection, such as the larynx, oropharynx, hypopharynx, and nasal cavity. To understand the ability of HSI for SCC detection, the most important spectral features were calculated and correlated with known cancer physiology signals, notably oxygenated and deoxygenated hemoglobin. The second aim was to evaluate HSI for tumor detection in thyroid and salivary glands, and RGB images were synthesized using the spectral response curves of the human eye for comparison. Using deep learning, HSI detected thyroid tumors with 86% average AUC score, which outperformed fluorescent dyes and autofluorescence, but HSI-synthesized RGB imagery performed with 90% AUC score. The last aim was to develop deep learning algorithms for head and neck cancer detection in hundreds of digitized histology slides. Slides containing SCC or thyroid carcinoma can be distinguished from normal slides with 94% and 99% AUC scores, respectively, and SCC and thyroid carcinoma can be localized within whole-slide images with 92% and 95% AUC scores, respectively. In conclusion, the outcomes of this thesis work demonstrate that HSI and deep learning methods could aid surgeons and pathologists in detecting head and neck cancers.Ph.D
    • …
    corecore