30 research outputs found

    Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss

    Full text link
    We devise a cascade GAN approach to generate talking face video, which is robust to different face shapes, view angles, facial characteristics, and noisy audio conditions. Instead of learning a direct mapping from audio to video frames, we propose first to transfer audio to high-level structure, i.e., the facial landmarks, and then to generate video frames conditioned on the landmarks. Compared to a direct audio-to-image approach, our cascade approach avoids fitting spurious correlations between audiovisual signals that are irrelevant to the speech content. We, humans, are sensitive to temporal discontinuities and subtle artifacts in video. To avoid those pixel jittering problems and to enforce the network to focus on audiovisual-correlated regions, we propose a novel dynamically adjustable pixel-wise loss with an attention mechanism. Furthermore, to generate a sharper image with well-synchronized facial movements, we propose a novel regression-based discriminator structure, which considers sequence-level information along with frame-level information. Thoughtful experiments on several datasets and real-world samples demonstrate significantly better results obtained by our method than the state-of-the-art methods in both quantitative and qualitative comparisons

    DocDeshadower: Frequency-aware Transformer for Document Shadow Removal

    Full text link
    The presence of shadows significantly impacts the visual quality of scanned documents. However, the existing traditional techniques and deep learning methods used for shadow removal have several limitations. These methods either rely heavily on heuristics, resulting in suboptimal performance, or require large datasets to learn shadow-related features. In this study, we propose the DocDeshadower, a multi-frequency Transformer-based model built on Laplacian Pyramid. DocDeshadower is designed to remove shadows at different frequencies in a coarse-to-fine manner. To achieve this, we decompose the shadow image into different frequency bands using Laplacian Pyramid. In addition, we introduce two novel components to this model: the Attention-Aggregation Network and the Gated Multi-scale Fusion Transformer. The Attention-Aggregation Network is designed to remove shadows in the low-frequency part of the image, whereas the Gated Multi-scale Fusion Transformer refines the entire image at a global scale with its large perceptive field. Our extensive experiments demonstrate that DocDeshadower outperforms the current state-of-the-art methods in both qualitative and quantitative terms

    Lip Reading for Low-resource Languages by Learning and Combining General Speech Knowledge and Language-specific Knowledge

    Full text link
    This paper proposes a novel lip reading framework, especially for low-resource languages, which has not been well addressed in the previous literature. Since low-resource languages do not have enough video-text paired data to train the model to have sufficient power to model lip movements and language, it is regarded as challenging to develop lip reading models for low-resource languages. In order to mitigate the challenge, we try to learn general speech knowledge, the ability to model lip movements, from a high-resource language through the prediction of speech units. It is known that different languages partially share common phonemes, thus general speech knowledge learned from one language can be extended to other languages. Then, we try to learn language-specific knowledge, the ability to model language, by proposing Language-specific Memory-augmented Decoder (LMDecoder). LMDecoder saves language-specific audio features into memory banks and can be trained on audio-text paired data which is more easily accessible than video-text paired data. Therefore, with LMDecoder, we can transform the input speech units into language-specific audio features and translate them into texts by utilizing the learned rich language knowledge. Finally, by combining general speech knowledge and language-specific knowledge, we can efficiently develop lip reading models even for low-resource languages. Through extensive experiments using five languages, English, Spanish, French, Italian, and Portuguese, the effectiveness of the proposed method is evaluated.Comment: Accepted at ICCV 202

    Efficient Region-Aware Neural Radiance Fields for High-Fidelity Talking Portrait Synthesis

    Full text link
    This paper presents ER-NeRF, a novel conditional Neural Radiance Fields (NeRF) based architecture for talking portrait synthesis that can concurrently achieve fast convergence, real-time rendering, and state-of-the-art performance with small model size. Our idea is to explicitly exploit the unequal contribution of spatial regions to guide talking portrait modeling. Specifically, to improve the accuracy of dynamic head reconstruction, a compact and expressive NeRF-based Tri-Plane Hash Representation is introduced by pruning empty spatial regions with three planar hash encoders. For speech audio, we propose a Region Attention Module to generate region-aware condition feature via an attention mechanism. Different from existing methods that utilize an MLP-based encoder to learn the cross-modal relation implicitly, the attention mechanism builds an explicit connection between audio features and spatial regions to capture the priors of local motions. Moreover, a direct and fast Adaptive Pose Encoding is introduced to optimize the head-torso separation problem by mapping the complex transformation of the head pose into spatial coordinates. Extensive experiments demonstrate that our method renders better high-fidelity and audio-lips synchronized talking portrait videos, with realistic details and high efficiency compared to previous methods.Comment: Accepted by ICCV 202

    PL-UNeXt: Per-stage Edge Detail and Line Feature Guided Segmentation for Power Line Detection

    Full text link
    Power line detection is a critical inspection task for electricity companies and is also useful in avoiding drone obstacles. Accurately separating power lines from the surrounding area in the aerial image is still challenging due to the intricate background and low pixel ratio. In order to properly capture the guidance of the spatial edge detail prior and line features, we offer PL-UNeXt, a power line segmentation model with a booster training strategy. We design edge detail heads computing the loss in edge space to guide the lower-level detail learning and line feature heads generating auxiliary segmentation masks to supervise higher-level line feature learning. Benefited from this design, our model can reach 70.6 F1 score (+1.9%) on TTPLA and 68.41 mIoU (+5.2%) on VITL (without utilizing IR images), while preserving a real-time performance due to few inference parameters.Comment: Accepted to IEEE ICIP 202

    An Implementation of Multimodal Fusion System for Intelligent Digital Human Generation

    Full text link
    With the rapid development of artificial intelligence (AI), digital humans have attracted more and more attention and are expected to achieve a wide range of applications in several industries. Then, most of the existing digital humans still rely on manual modeling by designers, which is a cumbersome process and has a long development cycle. Therefore, facing the rise of digital humans, there is an urgent need for a digital human generation system combined with AI to improve development efficiency. In this paper, an implementation scheme of an intelligent digital human generation system with multimodal fusion is proposed. Specifically, text, speech and image are taken as inputs, and interactive speech is synthesized using large language model (LLM), voiceprint extraction, and text-to-speech conversion techniques. Then the input image is age-transformed and a suitable image is selected as the driving image. Then, the modification and generation of digital human video content is realized by digital human driving, novel view synthesis, and intelligent dressing techniques. Finally, we enhance the user experience through style transfer, super-resolution, and quality evaluation. Experimental results show that the system can effectively realize digital human generation. The related code is released at https://github.com/zyj-2000/CUMT_2D_PhotoSpeaker

    SDR-GAIN: A High Real-Time Occluded Pedestrian Pose Completion Method for Autonomous Driving

    Full text link
    To mitigate the challenges arising from partial occlusion in human pose keypoint based pedestrian detection methods , we present a novel pedestrian pose keypoint completion method called the separation and dimensionality reduction-based generative adversarial imputation networks (SDR-GAIN) . Firstly, we utilize OpenPose to estimate pedestrian poses in images. Then, we isolate the head and torso keypoints of pedestrians with incomplete keypoints due to occlusion or other factors and perform dimensionality reduction to enhance features and further unify feature distribution. Finally, we introduce two generative models based on the generative adversarial networks (GAN) framework, which incorporate Huber loss, residual structure, and L1 regularization to generate missing parts of the incomplete head and torso pose keypoints of partially occluded pedestrians, resulting in pose completion. Our experiments on MS COCO and JAAD datasets demonstrate that SDR-GAIN outperforms basic GAIN framework, interpolation methods PCHIP and MAkima, machine learning methods k-NN and MissForest in terms of pose completion task. In addition, the runtime of SDR-GAIN is approximately 0.4ms, displaying high real-time performance and significant application value in the field of autonomous driving

    Deep Learning Model Implementation Using Convolutional Neural Network Algorithm for Default P2P Lending Prediction

    Get PDF
    Peer-to-peer (P2P) lending is one of the innovations in the field of fintech that offers microloan services through online channels without intermediaries. P2P  lending facilitates the lending and borrowing process between borrowers and lenders, but on the other hand, there is a threat that can harm lenders, namely default.  Defaults on  P2P  lending platforms result in significant losses for lenders and pose a threat to the overall efficiency of the peer-to-peer lending system. So it is essential to have an understanding of such risk management methods. However, designing feature extractors with very complicated information about borrowers and loan products takes a lot of work. In this study, we present a deep convolutional neural network (CNN) architecture for predicting default in P2P lending, with the goal of extracting features automatically and improving performance. CNN is a deep learning technique for classifying complex information that automatically extracts discriminative features from input data using convolutional operations. The dataset used is the Lending Club dataset from P2P lending platforms in America containing 9,578 data. The results of the model performance evaluation got an accuracy of 85.43%. This study shows reasonably decent results in predicting p2p lending based on CNN. This research is expected to contribute to the development of new methods of deep learning that are more complex and effective in predicting risks on P2P lending platforms
    corecore