78 research outputs found

    Project RISE: Recognizing Industrial Smoke Emissions

    Full text link
    Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for social good.Comment: Technical repor

    SRMAE: Masked Image Modeling for Scale-Invariant Deep Representations

    Full text link
    Due to the prevalence of scale variance in nature images, we propose to use image scale as a self-supervised signal for Masked Image Modeling (MIM). Our method involves selecting random patches from the input image and downsampling them to a low-resolution format. Our framework utilizes the latest advances in super-resolution (SR) to design the prediction head, which reconstructs the input from low-resolution clues and other patches. After 400 epochs of pre-training, our Super Resolution Masked Autoencoders (SRMAE) get an accuracy of 82.1% on the ImageNet-1K task. Image scale signal also allows our SRMAE to capture scale invariance representation. For the very low resolution (VLR) recognition task, our model achieves the best performance, surpassing DeriveNet by 1.3%. Our method also achieves an accuracy of 74.84% on the task of recognizing low-resolution facial expressions, surpassing the current state-of-the-art FMD by 9.48%

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Human Action Recognition with RGB-D Sensors

    Get PDF
    none3noHuman action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset.Cippitelli, Enea; Gambi, Ennio; Spinsante, SusannaCippitelli, Enea; Gambi, Ennio; Spinsante, Susann

    Human Action Recognition with RGB-D Sensors

    Get PDF
    Human action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset

    Quantum Annealing for Single Image Super-Resolution

    Full text link
    This paper proposes a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem. One of the well-known classical approaches for SISR relies on the well-established patch-wise sparse modeling of the problem. Yet, this field's current state of affairs is that deep neural networks (DNNs) have demonstrated far superior results than traditional approaches. Nevertheless, quantum computing is expected to become increasingly prominent for machine learning problems soon. As a result, in this work, we take the privilege to perform an early exploration of applying a quantum computing algorithm to this important image enhancement problem, i.e., SISR. Among the two paradigms of quantum computing, namely universal gate quantum computing and adiabatic quantum computing (AQC), the latter has been successfully applied to practical computer vision problems, in which quantum parallelism has been exploited to solve combinatorial optimization efficiently. This work demonstrates formulating quantum SISR as a sparse coding optimization problem, which is solved using quantum annealers accessed via the D-Wave Leap platform. The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.Comment: Accepted to IEEE/CVF CVPR 2023, NTIRE Challenge and Workshop. Draft info: 10 pages, 6 Figures, 2 Table
    corecore