140,249 research outputs found

    Evaluating groupware support for software engineering students

    Get PDF
    Software engineering tasks, during both development and maintenance, typically involve teamwork using computers. Team members rarely work on isolated computers. An underlying assumption of our research is that software engineering teams will work more effectively if adequately supported by network-based groupware technology. Experience of working with groupware and evaluating groupware systems will also give software engineering students a direct appreciation of the requirements of engineering such systems. This research is investigating the provision of such network-based support for software engineering students and the impact these tools have on their groupwork. We will first describe our experiences gained through the introduction of an asynchronous virtual environment ­ SEGWorld to support groupwork during the Software Engineering Group (SEG) project undertaken by all second year undergraduates within the Department of Computer Science. Secondly we will describe our Computer Supported Cooperative Work (CSCW) module which has been introduced into the students' final year of study as a direct result of our experience with SEG, and in particular its role within Software Engineering. Within this CSCW module the students have had the opportunity to evaluate various groupware tools. This has enabled them to take a retrospective view of their experience of SEGWorld and its underlying system, BSCW, one year on. We report our findings for SEG in the form of a discussion of the hypotheses we formulated on how the SEGs would use SEGWorld, and present an initial qualitative assessment of student feedback from the CSCW module

    Strong and Weak Programming in Information Technology

    Get PDF
    This paper explores strong and weak thinking in computer programming and information technology. Strong thinking, which has enjoyed a high status in Western knowledge and science since the Enlightenment, emphasizes thing, outcome, and being. Weak thinking is concerned with process, action and becoming. In information technology, strong thinking has been a dominant framework; for instance, software engineering and structured programming. By contrast, weak aspects of programming can be seen in approaches such as computer supported cooperative work (CSCW) and networking

    Two Case Studies of Subsystem Design for General-Purpose CSCW Software Architectures

    Get PDF
    This paper discusses subsystem design guidelines for the software architecture of general-purpose computer supported cooperative work systems, i.e., systems that are designed to be applicable in various application areas requiring explicit collaboration support. In our opinion, guidelines for subsystem level design are rarely given most guidelines currently given apply to the programming language level. We extract guidelines from a case study of the redesign and extension of an advanced commercial workflow management system and place them into the context of existing software engineering research. The guidelines are then validated against the design decisions made in the construction of a widely used web-based groupware system. Our approach is based on the well-known distinction between essential (logical) and physical architectures. We show how essential architecture design can be based on a direct mapping of abstract functional concepts as found in general-purpose systems to modules in the essential architecture. The essential architecture is next mapped to a physical architecture by applying software clustering and replication to achieve the required distribution and performance characteristics

    THE AWARENESS NETWORK OF MONITORING AND DISPLAYING ACTIONS OF SOCIAL NETWORKS

    Get PDF
    The concept of awareness plays a pivotal role in research in Computer-Supported Cooperative Work. Recently, Software Engineering researchers interested in the collaborative nature of software development have explored the implications of this concept in the design of software development tools. A critical aspect of awareness is the associated coordinative work practices of displaying and monitoring actions. This aspect concerns how colleagues monitor one another’s actions to understand how these actions impact their own work and how they display their actions in such a way that others can easily monitor them while doing their own work. we focus on an additional aspect of awareness: the identification of the social actors who should be monitored and the actors to whom their actions should be displayed. We address this aspect by presenting software developers’ work practices based on ethnographic data from three different software development teams. In addition, we illustrate how these work practices are influenced by different factors, including the organizational setting, the age of the project, and the software architecture. We discuss how our results are relevant for both CSCW and Software Engineering researchers

    An investigation into computer support for cooperative work in software engineering groups

    Get PDF
    The research of this thesis relates to Computer Supported Cooperative Work (CSCW) in the context of software engineering, and in particular software engineering education. Whilst research into group working has tended to be directed towards CSCW, very little research has been undertaken on group working within software engineering. Linked with CSCW is groupware, which is the class of tools that supports and augments groupwork. This thesis represents an attempt to contribute to the understanding of the groupware needs of software engineers, and to identify and trial groupware that supports software engineering activities. An infrastructure has been developed providing virtual environments, for use by both collocated and geographically distributed software engineering students, to support their groupwork. This infrastructure comprises of synchronous and asynchronous groupware, in the form of desktop video conferencing, and a shared information workspace. This shared workspace has been tailored from the groupware tool, Basic Support for Cooperative Work (BSCW).Within this thesis, hypotheses have been formulated as to the student use of these virtual environments. These hypotheses concentrate on the areas of: organisation and coordination of tasks, the level of cooperation that occurs within the phases of the software lifecycle, the usage of the functions within a shared workspace, and what importance is placed on the role of synchronous communication within software engineering student groupwork. Through a series of case studies it was possible to determine the outcome of these hypotheses using various data collection methods. These methods include questionnaires, focus group meetings, observations, and automatic monitoring of workspace activities. The outcomes of this thesis are that the hypotheses regarding organisation and coordination, and, the role of synchronous communication within software engineering, have been proved. Whilst the determination of the level of cooperation during the phases of the software lifecycle has not been proved, the use of functions within the shared workspace has been partly proved

    Evaluating Groupware Support for Software Engineering Students

    Get PDF
    Software engineering tasks, during both development and maintenance, typically involve teamwork using computers. Team members rarely work on isolated computers. An underlying assumption of our research is that software engineering teams will work more effectively if adequately supported by network-based groupware technology. Experience of working with groupware and evaluating groupware systems will also give software engineering students a direct appreciation of the requirements of engineering such systems. This research is investigating the provision of such network-based support for software engineering students and the impact these tools have on their groupwork. We will first describe our experiences gained through the introduction of an asynchronous virtual environment – SEGWorld to support groupwork during the Software Engineering Group (SEG) project undertaken by all second year undergraduates within the Department of Computer Science. Secondly we will describe our Computer Supported Cooperative Work (CSCW) module which has been introduced into the students’ final year of study as a direct result of our experience with SEG, and in particular its role within Software Engineering. Within this CSCW module the students have had the opportunity to evaluate various groupware tools. This has enabled them to take a retrospective view of their experience of SEGWorld and its underlying system, BSCW, one year on. We report our findings for SEG in the form of a discussion of the hypotheses we formulated on how the SEGs would use SEGWorld, and present an initial qualitative assessment of student feedback from the CSCW module

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    Web-based Collaborative Engineering Support System: Applications in Mechanical Design and Structural Analysis

    Get PDF
    The diversity in software used to support collaborative design and concurrent engineering requires the implementation of new technologies in order to ensure the integration between the various activities of the product development process. Most of the time, companies can not afford to spend the time and the funds required to enhance their IT and software resources. This is often the case of small and medium companies. Nowadays, in mechanical design, the needs for product data sharing between Computer Aided Design (CAD) and finite element analysis (FEA) activities have been fairly increased even for small companies. This article aims at presenting Teamproject software, an asynchronous Web Computer Supported Cooperative Work (CSCW) oriented toward the sharing and viewing of 3D data (CAD and FEA) based on Virtual Reality Modeling Language (VRML). Regarding the collaborative design and concurrent engineering approaches, this software increases the information access and its availability to expert and non-expert users in a remote mode
    • …
    corecore