71 research outputs found

    Flexible Information-Flow Control

    Get PDF
    As more and more sensitive data is handled by software, its trustworthinessbecomes an increasingly important concern. This thesis presents work on ensuringthat information processed by computing systems is not disclosed to thirdparties without the user\u27s permission; i.e. to prevent unwanted flows ofinformation. While this problem is widely studied, proposed rigorousinformation-flow control approaches that enforce strong securityproperties like noninterference have yet to see widespread practical use.Conversely, lightweight techniques such as taint tracking are more prevalent inpractice, but lack formal underpinnings, making it unclear what guarantees theyprovide.This thesis aims to shrink the gap between heavyweight information-flow controlapproaches that have been proven sound and lightweight practical techniqueswithout formal guarantees such as taint tracking. This thesis attempts toreconcile these areas by (a) providing formal foundations to taint trackingapproaches, (b) extending information-flow control techniques to more realisticlanguages and settings, and (c) exploring security policies and mechanisms thatfall in between information-flow control and taint tracking and investigating whattrade-offs they incur

    Undermining User Privacy on Mobile Devices Using AI

    Full text link
    Over the past years, literature has shown that attacks exploiting the microarchitecture of modern processors pose a serious threat to the privacy of mobile phone users. This is because applications leave distinct footprints in the processor, which can be used by malware to infer user activities. In this work, we show that these inference attacks are considerably more practical when combined with advanced AI techniques. In particular, we focus on profiling the activity in the last-level cache (LLC) of ARM processors. We employ a simple Prime+Probe based monitoring technique to obtain cache traces, which we classify with Deep Learning methods including Convolutional Neural Networks. We demonstrate our approach on an off-the-shelf Android phone by launching a successful attack from an unprivileged, zeropermission App in well under a minute. The App thereby detects running applications with an accuracy of 98% and reveals opened websites and streaming videos by monitoring the LLC for at most 6 seconds. This is possible, since Deep Learning compensates measurement disturbances stemming from the inherently noisy LLC monitoring and unfavorable cache characteristics such as random line replacement policies. In summary, our results show that thanks to advanced AI techniques, inference attacks are becoming alarmingly easy to implement and execute in practice. This once more calls for countermeasures that confine microarchitectural leakage and protect mobile phone applications, especially those valuing the privacy of their users

    Stringer: measuring the importance of static data comparisons to detect backdoors and undocumented functionality

    Get PDF
    Finding undocumented functionality in commercial off-the-shelf (COTS) device firmware is an important and challenging task. This paper proposes a new static analysis method that measures the influence individual pieces of static data (such as strings) have upon the control flow of binaries in firmware. Our method automatically identifies static data comparison functions within binaries, then labels each function's basic blocks with the set of sequences of static data that must be matched against to reach them. Then using these sets, it assigns a score to each function, which measures the extent to which the function's branching is influenced by static data. Special keywords triggering backdoor functionality will have a large impact on the program flow. This allows usto identify three authentication backdoors - two of which previously un-documented. Moreover, we show our method is effective in aiding therecovery of both previously known and proprietary text-based protocols.We have developed a tool, Stringer which implements our technique; wedemonstrate the effectiveness of our approach as well as its applicabilityto lightweight analysis by running it on a data set of 2,451,532 binariesfrom 30 different COTS device vendors

    Certifying RSA public keys with an efficient NIZK

    Full text link
    In many applications, it is important to verify that an RSA public key ( N,e ) specifies a permutation, in order to prevent attacks due to adversarially-generated public keys. We design and implement a simple and efficient noninteractive zero-knowledge protocol (in the random oracle model) for this task. The key feature of our protocol is compatibility with existing RSA implementations and standards. The protocol works for any choice of e. Applications concerned about adversarial key generation can just append our proof to the RSA public key without any other modifications to existing code or cryptographic libraries. Users need only perform a one- time verification of the proof to ensure that raising to the power e is a permutation of the integers modulo N . For typical parameter settings, the proof consists of nine integers modulo N; generating the proof and verifying it both require about nine modular exponentiations.https://eprint.iacr.org/2018/057.pdfFirst author draf

    Cutting Through the Complexity of Reverse Engineering Embedded Devices

    Get PDF
    Performing security analysis of embedded devices is a challenging task. They present many difficulties not usually found when analyzing commodity systems: undocumented peripherals, esoteric instruction sets, and limited tool support. Thus, a significant amount of reverse engineering is almost always required to analyze such devices. In this paper, we present Incision, an architecture and operating-system agnostic reverse engineering framework. Incision tackles the problem of reducing the upfront effort to analyze complex end-user devices. It combines static and dynamic analyses in a feedback loop, enabling information from each to be used in tandem to improve our overall understanding of the firmware analyzed. We use Incision to analyze a variety of devices and firmware. Our evaluation spans firmware based on three RTOSes, an automotive ECU, and a 4G/LTE baseband. We demonstrate that Incision does not introduce significant complexity to the standard reverse engineering process and requires little manual effort to use. Moreover, its analyses produce correct results with high confidence and are robust across different OSes and ISAs
    • …
    corecore