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Göteborg, Sweden 2018



ABSTRACT

As more and more sensitive data is handled by software, its trustworthiness be-
comes an increasingly important concern. This thesis presents work on ensuring
that information processed by computing systems is not disclosed to third par-
ties without the user’s permission; i.e. to prevent unwanted flows of information.
While this problem is widely studied, proposed rigorous information-flow control
approaches that enforce strong security properties like noninterference have yet
to see widespread practical use. Conversely, lightweight techniques such as taint
tracking are more prevalent in practice, but lack formal underpinnings, making
it unclear what guarantees they provide.

This thesis aims to shrink the gap between heavyweight information-flow
control approaches that have been proven sound and lightweight practical tech-
niques without formal guarantees such as taint tracking. This thesis attempts
to reconcile these areas by (a) providing formal foundations to taint tracking
approaches, (b) extending information-flow control techniques to more realistic
languages and settings, and (c) exploring security policies and mechanisms that
fall in between information-flow control and taint tracking and investigating
what trade-offs they incur.
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CHAPTER
ZERO

INTRODUCTION

Developments in computer science have shaped many aspects of today’s society.
In fact, it is hard to find an area of modern life that is untouched by information
technology. A significant portion of our lives, our institutions, and our economy
is controlled by software. On a societal level, code determines how news is
disseminated, how the stock market is managed, how our healthcare systems
work, and sometimes we even rely on code to safeguard democratic elections.
On an individual level, software impacts what we read, how we communicate
with friends, express our thoughts, find our way in a city, manage our finances,
take pictures, watch movies, find out what to spend our free time on, to name
just a few examples.

In the process we make a large amount of sensitive data available to software,
including our location, search queries, private messages, pictures and videos,
hobbies, and political views. Yet — despite the role computing technology plays
— there is no practical way, not even for an expert, to ensure that all the software
in use is actually trustworthy. How can one be certain that an application does
not send sensitive data to a third party? A malicious application could leak
confidential files on the hard drive, passwords, private messages, and credit card
numbers.

Disclosing private data handled by applications can have severe consequences:
Companies may lose profits if internal data is leaked. If a credit card number is
stolen by a scammer, the victim will lose money. A stolen social security number
can give rise to identity theft. Revealing a person’s political views, private con-
versations, religious beliefs, or sexual orientation might cause them to lose their
job or impact their social life, or even cost them their lives in some countries.
Identity and location can be particularly sensitive information; in the case of
domestic abuse victims and dissidents living under an oppressive regime, their
disclosure can prove quite literally life-threatening.

This problem is exacerbated as more and more adversaries attempt to com-
promise people’s devices and the software that runs on them; attackers range
from ordinary criminals motivated by simple greed to government agencies seek-
ing to undermine the ideals of liberty and individual rights that underpin our
society. Ever since Edward Snowden’s revelations [4], we know that (even) West-
ern governments steal their citizen’s information on a large scale [10], ostensibly
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in an effort to combat terrorism, although evidence that mass surveillance is
helpful in that regard has yet to surface [2, 7]. While cryptography is essential in
defending against attackers who control the network, such protection still relies
on trustworthy software on the users’ devices to perform the encryption and
not leak the data in the process. Since one of the methods used for stealing data
is to spread malicious or backdoored software to the users’ devices [1, 8], this
illustrates the need for a way of reliably establishing whether a piece of code is
trustworthy.

The prevalent method to tackle this problem consists of testing and code re-
view to check the security of software; however, just like testing for functionality,
this can only show the presence of errors but never prove their absence. More-
over, new code is written at a pace that makes any manual verification process
hard to implement in the present and impossible to scale in the long run.

In response, a more rigorous approach to software security is needed; ideally,
one would ensure that software is secure by construction, with mathematical guar-
antees establishing that a program leaks no information, where these guarantees
are checked mechanically.

However, even though rigorous approaches to software security exist in the
academic community, they have yet to see widespread, practical use. This thesis
explores approaches to make mathematically rigorous techniques to preventing
information leaks more practical.

Section 0.1 provides a cursory look at the topic of language-based security, an
approach to software security that makes use of ideas from the programming
language community to enforce security properties. Section 0.2 gives a quick
overview of the area of information-flow control, which is concerned with formally
expressing what it means for programs to be secure, finding techniques that
guarantee the security of a program, and proving that they guarantee the de-
sired notion of security. Section 0.3 gives a brief summary of taint tracking and
contrasts the approach with information-flow control. Section 0.4 outlines the
challenges addressed in this thesis. Section 0.5 summarizes the contributions of
the papers comprising this thesis.

0.1 Language-Based Security

A common approach to security in practice involves testing and code review
to find security flaws; however, like testing for functionality, this approach can-
not prove the absence of security flaws. Language-based security on the other
hand is based on providing provable security guarantees by using the seman-
tics of the underlying language: Instead of trying to find security problems in
programs, techniques in this area focus on analyzing programs in order to prove
that a program is secure, or on automatically preventing insecurities at runtime.
Since untrusted programs are granted access to sensitive data, information-flow
policies are fine-grained, making language-based techniques an excellent fit for
information-flow control [266].

Broadly speaking, the approaches in language-based security fall into two
categories [260]: static techniques analyze a program before it is run and aim
to establish whether or not the program is secure for all inputs, while dynamic
approaches prevent information leaks as the program is executing. Additionally,
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hybrid mechanisms combine static analysis with dynamic techniques.
An example for static approaches are security type systems [320]. In a normal

type system, if a program is well-typed, then the program is proven to be free
of certain classes of bugs, such as trying to add integers to strings; this is often
summarized as “well-typed programs don’t go wrong” [224]. A security type
system on the other hand can be used to ensure that all well-typed programs
are secure with respect to a security property. Chapter 3 presents a security type
system to prevent illicit information flows in web applications.

Dynamic approaches typically modify the semantics of a program in order to
prevent leaks of information. For example, if a program sends secret data to the
internet, a simple dynamic information-flow enforcement might then terminate
the program before the sensitive information is sent out over the network.

0.2 Information-Flow Control

The key feature that makes software security relevant is the amount and type
of private information handled by computers today and the fact that they are
connected to the internet. However, many programs legitimately need access to
both private information and internet connectivity in order to perform their task.
As a result, simply not giving a program access to private data is not a viable
solution.

For example, a spreadsheet application may be used to manage one’s fi-
nances, but also requires internet access to look up stock prices and other live
data. If the program is malicious or buggy, it might instead leak one’s financial
situation to an attacker on the internet. Chat applications by their nature have
access to the messages the user sends and receives, and need internet access to
perform their function. However, if the application is malicious, the messages
may be sent to attackers in addition to their intended recipients or the application
may not encrypt messages correctly before they are transmitted.

The objective of information-flow control is to prevent information flows
from sensitive sources, such as local files, to public sinks, such as servers on the
internet. In this scenario we assume that the attacker controls public sources,
such as data received from the internet, and can observe outputs to public sinks.
Moreover, the attacker is assumed to know the code of the program being run,
but cannot observe sensitive sinks, such as writing to local files, and cannot
observe sensitive inputs to the program, such as user input or contents of local
files.

To reason about security of software in a way that provides confidence about
a program’s behavior, however we need to express the absence of unwanted in-
formation flows needs formally, in unambiguous mathematical terms. The policy
of not allowing information to flow from sensitive sources to public sinks is often
formalized as noninterference. In this setting, a program is treated as a mathemat-
ical object that maps inputs, some of which may be sensitive, to outputs, some
of which may be observable by attackers. A program is then considered secure
if and only if for two sets of inputs that only differ on their confidential parts,
the program always results in the same outputs to the attacker. Otherwise, an
attacker can derive information about sensitive inputs by observing the public
output of a program. Figure 1 illustrates this policy.
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A simple example setting to describe this policy is to model a program as
a function prog : IP × IS → OP × OH mapping a pair of public inputs from
the set IP and secret input from the set IS to a pair of public outputs in set
OP and secret outputs OS1. Such a program then satisfies noninterference if for
the same public input iP and any two secret inputs iS and i′S , we have that
π1(prog(iP , is)) = π1(prog(iP , i

′
S)) where π1 refers to the projection a tuple to its

first component.

public input public output

private input private output

program

Figure 1: Noninterference

As most interesting program properties, noninterference is undecidable for
non-trivial programs [255]. To make matters worse, noninterference is a property
about two runs of a program [222] making verification or enforcement more chal-
lenging than that of safety or liveness properties commonly considered when
verifying functional correctness of programs. As a result, approaches for enforc-
ing noninterference typically compromise on either soundness, i.e. that insecure
programs are classified as insecure, or precision, i.e. that secure programs are
classified as secure. To still provide meaningful security guarantees, most ap-
proaches prioritize soundness over precision at the expense of practicality, since
some secure programs can not be successfully verified.

Moreover, since noninterference requires that private information have no
influence over any public outputs at all, it is sometimes too restrictive. For exam-
ple, a program handling user logins will necessarily leak information about the
stored password, by behaving differently depending on whether or not the user
entered the correct password; i.e. it leaks whether the stored sensitive password
is equal to the user’s input.

0.3 Taint Tracking

Two important categories of information leaks that enforcement mechanisms
need to handle are explicit flows, which leak data by directly outputting secret
information to an attacker, and implicit flows, which leak information through the
control-flow structure of the program. For example, the program

outputTo(attacker , secret)

1This glosses over some details such as how to model non-terminating programs, but illustrates the
overall idea.
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directly sends the value of the secret input stored in variable secret to an attacker
through an explicit flow, whereas the program

if secret = 0 then outputTo(attacker , 1) else outputTo(attacker , 2)

leaks the whether the secret input is zero through an implicit flow relying on
how control-flow in the program is structured.

While both types of flows leak information, implicit flows are more challeng-
ing to track accurately throughout a program, since this involves comparing
what happens in two separate branches of a conditional. To avoid imprecision
introduced by tracking implicit flows, some approaches only track whether sen-
sitive data directly enters a public sink (such as the outputTo function in the
previous example). Such approaches are referred to as taint tracking. While they
do not enforce noninterference, such approaches are often more feasible to use in
practice. However, compared to noninterference-based approaches, techniques
based on taint tracking often lack formal underpinnings that allow to reason
about the guarantees that they provide.

0.4 Challenges

Flexible Policies While noninterference provides a solid baseline for reasoning
about the security of programs, it can be very restrictive. Many useful programs,
such as the login program example in Section 0.2, do not satisfy noninterference.
While noninterference policies can be relaxed by adding support for declassifying
sensitive data [271], declassification policies may be complicated to reason about
in practice. Hence, providing a natural and flexible way to specify security
policies remains an open problem.

Formal Guarantees Despite renewed interest and recent advances in informa-
tion-flow research [266], the results are largely unused outside of academia. On
the other hand, some approaches such as taint tracking have enjoyed consider-
able success in practice ranging from bug detection to ensuring confidentiality;
moreover the technique has been applied to high-level languages and machine
code.

However, the actual security policy enforced by practical approaches often
remains unclear; as a consequence, evaluating practical security mechanisms
in terms of soundness and precision is not possible in an unambiguous way.
Hence, providing formal justification and analysis of practical techniques is an
important avenue of research for bridging the gap between academic results and
industry practice.

Information-Flow Control for Complex Language Features Another stum-
bling block for information-flow control in practice is the gap between minimal
languages typically considered in research papers and programming language
features used in practice. Extending information-flow control techniques to ac-
commodate settings such as shared memory concurrency, modern databases, and
web application scenarios presents an opportunity to make security verification
more feasible in practice.
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1. IFC

2. Tainting

3. Combining IFC and Tainting

2015 2016 2017 2018

Opacity JSLinq DBIFC Concurrent IFC

Explicit Secrecy Facets

We are Family Flow Study

Figure 2: Overview of research tracks in the thesis

0.5 Contributions

This thesis consists of eight papers (Chapters 1-8). Five papers have been pub-
lished in peer-reviewed conferences while the remaining three are currently un-
der submission. This section outlines each paper’s contributions and connects
its topic to the challenges outlined in the previous sections. Broadly speaking,
the papers fall into three categories:

• Formally analyzing of the security guarantees provided by taint trackers,
and building more precise enforcement based on this formal characteriza-
tion.

• Extending information-flow control to challenging language features and
policies encountered in practical scenarios. In particular, we consider
shared memory concurrency, declassification policies, code interacting
with databases, and web applications.

• Bridging the gap between taint tracking and information-flow by investi-
gating intermediate security properties and what trade-offs they offer for
real-world code.

The structure of the research is summarized in Figure 2.

Chapters 1 and 2 aim to make security verification more feasible by exploring
a more permissive family of security mechanisms known as taint tracking that
allows for more practical enforcement mechanisms while nevertheless capturing
some realistic use cases:

• Chapter 1 presents a formal characterization of the security property en-
forced by taint tracking tools. In order to understand the guarantees and
ramifications of the taint tracking approach, we need to be able to charac-
terize the attacks that are prevented, or not, by such techniques. In this
chapter we present a general security condition capturing which informa-
tion flows are tracked, and which are ignored, by taint tracking.
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• Chapter 2 leverages the security condition from Chapter 5 to construct a
general, and in some cases more precise, technique for taint tracking based
on the concept of faceted values.

In Chapters 3 through 6, we explore how to extend information-flow control
mechanisms to accommodate challenging language features often found in real
applications:

• Chapter 3 tackles the problem of information-flow security for programs
with shared-memory concurrency requiring expressive declassification poli-
cies. We provide a way to accommodate complex thread interaction and
controlled information release by decoupling reasoning about functional
correctness from information-flow reasoning.

• Chapter 4 investigates how to track information flows in multi-tiered web
application that combine databases with both client-side and server-side
code.

• Chapter 5 extends information-flow control conditions and enforcement
mechanisms to applications interacting with databases making use of ad-
vanced features such as triggers, as well as dynamic security policies that
change over time.

• Chapter 6 explores more alternative policies for specifying under what
circumstances information can be released by investigating opacity as an-
other property to specify information-flow policies and relating opacity to
noninterference.

Chapters 7 and 8 aim to bridge the gap between noninterference-based ap-
proaches to information-flow control and techniques such as taint tracking, that
are more easily enforceable:

• Chapter 7 presents a security condition that falls between noninterference
and definitions based on taint tracking by extending taint tracking to catch
another type of dangerous information flows, called observable implicit flows
without incurring the same number of false positives as noninterference-
based approaches.

• Chapter 8 studies the impact of different types of information flows in the
context of real-world JavaScript code to reason about the relative impor-
tance of accurately catching different types of information flows.

The rest of this section lists the abstracts of the individual chapters:

0.5.1 Explicit Secrecy: A Policy for Taint Tracking

Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld

Taint tracking is a popular security mechanism for tracking data-flow depen-
dencies, both in high-level languages and at the machine code level. But despite
the many taint trackers in practical use, the question of what, exactly, tainting
means—what security policy it embodies—remains largely unexplored.
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We propose explicit secrecy, a generic framework capturing the essence of
explicit flows, i.e., the data flows tracked by tainting. The framework is semantic,
generalizing previous syntactic approaches to formulating soundness criteria of
tainting. We demonstrate the usefulness of the framework by instantiating it with
both a simple high-level imperative language and an idealized RISC machine. To
further understanding of what is achieved by taint tracking tools, both dynamic
and static, we obtain soundness results with respect to explicit secrecy for the
tainting engine cores of a collection of dynamic and static taint trackers.

Statement of Contribution This paper was co-authored with Musard Balliu,
Benjamin C. Pierce, and Andrei Sabelfeld. Daniel contributed to the framework.
Daniel is responsible for formalizing and proving the results about the explicit
secrecy framework, and for formalizing the enforcement mechanisms as well as
the soundness proof of the static and dynamic enforcement mechanisms.

Appeared in: Proceedings of the IEEE European Symposium on Security and
Privacy (EuroS&P), Saarbrücken, Germany, March 2016

0.5.2 Let’s Face It: Faceted Values for Taint Tracking

Daniel Schoepe, Musard Balliu, Frank Piessens, and Andrei Sabelfeld

Taint tracking has been successfully deployed in a range of security applica-
tions to track data dependencies in hardware and machine-, binary-, and high-
level code. Precision of taint tracking is key for its success in practice: being a
vulnerability analysis, false positives must be low for the analysis to be practi-
cal. This paper presents an approach to taint tracking, which does not involve
tracking taints throughout computation. Instead, we include shadow memo-
ries in the execution context, so that a single run of a program has the effect of
computing on both tainted and untainted data. This mechanism is inspired by
the technique of secure multi-execution, while in contrast to the latter it does
not require running the entire program multiple times. We present a general
framework and establish its soundness with respect to explicit secrecy, a policy
for preventing insecure data leaks, and its precision showing that runs of secure
programs are never modified. We show that the technique can be used for attack
detection with no false positives. To evaluate the mechanism in practice, we
implement DroidFace, a source-to-source transform for an intermediate Java-like
language and benchmark its precision and performance with respect to represen-
tative static and dynamic taint trackers for Android. The results indicate that the
performance penalty is tolerable while achieving both soundness and no false
positives on the tested benchmarks. The key results of this paper have been
formalized in Isabelle/HOL.

Statement of Contribution This paper was co-authored with Musard Balliu,
Frank Piessens, and Andrei Sabelfeld. Daniel is responsible for formalizing and
proving soundness and precision of the results, as well as the prototype imple-
mentation. All authors contributed equally to the writing.
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Appeared in: Proceedings of the 21st European Symposium on Research in Com-
puter Security (ESORICS), Heraklion, Greece, 2016

0.5.3 VERONICA: Verified Concurrent Information-Flow Security Un-
leashed

Daniel Schoepe, Toby Murray, Andrei Sabelfeld

Methods for proving that concurrent software does not leak its secrets has
remained an active topic of research for at least the past four decades. Despite
an impressive array of work, the present situation remains highly unsatisfac-
tory. With contemporary compositional proof methods one is forced to choose
between expressiveness (the ability to reason about a wide variety of security poli-
cies), on the one hand, and precision (the ability to reason about complex thread
interactions and program behaviours), on the other. Achieving both is essential
and, we argue, requires a new style of compositional program logic.

We present the first compositional program logic for proving concurrent pro-
grams information flow secure that supports high-precision reasoning about a
wide range of security policies and program behaviours (e.g. expressive declas-
sification, value-dependent classification, secret-dependent branching). Just as
importantly, our approach embodies a new way for engineering such logics that
can be re-used elsewhere, called decoupled functional correctness (DFC). DFC leads
to a substantially simpler logic, even while achieving this unprecedented combi-
nation of features. We demonstrate the virtues and versatility of our approach
by verifying a range of example programs, beyond the reach of prior methods.
All developments are formalized in Isabelle/HOL.

Statement of Contribution This paper was co-authored with Toby Murray,
and Andrei Sabelfeld. Daniel is responsible for developing the enforcement
framework, Isabelle formalization, soundness results, and case studies. All
authors contributed equally to the writing and overall development of the ap-
proach.

Under submission.

0.5.4 JSLINQ: Building Secure Applications across Tiers

Musard Balliu, Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld

This paper proposes JSLINQ, a framework for writing web applications with
end-to-end security guarantees. Modern web applications consist of several
tiers, often including server-side code, a database, and client-side JavaScript
code. In order to achieve end-to-end security, correct communication between
tiers must be ensured. JSLINQ leverages meta-programming facilities in F# and
the WebSharper framework to provide a unified language for securely writing
the entire web application. A security type system is then used to guarantee
noninterference for well-typed programs.
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Aside from formal soundness results, we investigate the practicality of this
approach with several case studies, such as location-based services and a Battle-
ship browser game, indicating that JSLINQ can handle practical scenarios; this
work is therefore a step toward implementing information-flow control in practice.

Statement of Contribution This paper was co-authored with Musard Balliu,
Benjamin Liebe, and Andrei Sabelfeld. Daniel contributed to the type inference
engine, the language semantics, type system, and the case studies. All authors
contributed equally to the writing.

Appeared in: Proceedings of the ACM Conference on Data and Applications Secu-
rity and Privacy (CODASPY), New Orleans, LA, March 2016

0.5.5 Information-Flow Control for Database-Backed Applications

Marco Guarnieri, Daniel Schoepe, Musard Balliu, David Basin, and Andrei Sabelfeld

Securing database-backed applications requires tracking information across
the program and the database together, since securing each component in iso-
lation may still result in an overall insecure system. Current research extends
language-based techniques with models capturing the database’s behavior. Pre-
vious work, however, relies on simplistic database models, which ignore security-
relevant features that may leak sensitive information.

We propose a novel security monitor for database-backed applications. Our
monitor tracks fine-grained dependencies between variables and database tu-
ples by leveraging database theory concepts like disclosure lattices and query
determinacy. It also accounts for a realistic database model that supports security-
critical constructs like triggers and dynamic policies. The monitor automatically
synthesizes program-level code that replicates the behavior of database features
like triggers, thereby tracking information flows inside the database. We also
introduce symbolic tuples, an efficient approximation of dependency-tracking
over disclosure lattices. We implement our monitor for database-backed Scala
programs and demonstrate its effectiveness on four case studies.

Statement of Contribution This paper was co-authored with Marco Guarnieri,
Musard Balliu, David Basin, and Andrei Sabelfeld. Daniel contributed to the for-
malization and framework and is responsible for the prototype implementation.
All authors contributed equally to writing the paper.

Under submission.

0.5.6 Understanding and Enforcing Opacity

Daniel Schoepe and Andrei Sabelfeld

This paper explores opacity, a policy providing more flexible control over
what part of a system needs to be kept confidential. Concretely, instead of pro-
tecting pieces of data, opacity expresses that properties about the input need to
remain secret; for example, a user may not want to disclose whether he is located
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in a sensitive area, but is okay with disclosing parts of his location otherwise.
Hence, this work falls under the challenge of flexible policies.

The paper provides a general framework for opacity, parametrized in the
power of the attacker, and connects opacity to noninterference. Moreover, we
explore two dynamic enforcement techniques and provide a proof-of-concept
implementation. All theoretical results are formalized using the Isabelle/HOL
proof assistant [244].

Statement of Contribution This paper was co-authored with Andrei Sabelfeld.
Daniel is responsible for the proofs of the theoretical results, implementation
work, and the Isabelle/HOL formalization. All authors contributed equally to
writing the paper.

Appeared in: Proceedings of the IEEE Computer Security Foundations Symposium
(CSF), Verona, Italy, July 2015

0.5.7 We Are Family: Relating Information-Flow Trackers

Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld

While information-flow security is a well-established area, there is an unset-
tling gap between heavyweight information-flow control, with formal guarantees
yet limited practical impact, and lightweight tainting techniques, useful for bug
finding yet lacking formal assurance. This paper proposes a framework for ex-
ploring the middle ground in the range of enforcement from tainting (tracking
data flows only) to fully-fledged information-flow control (tracking both data
and control flows). We formally illustrate the trade-offs between the soundness
and permissiveness that the framework allows to achieve. The framework is
deployed in a staged fashion, statically embedding a dynamic monitor, being
parametric in security policies, as they do not need to be fixed until the final
deployment. This flexibility facilitates a secure app store architecture, where
the static stage of verification is performed by the app store and the dynamic
stage is deployed on the client. To illustrate the practicality of the framework,
we implement our approach for a core of Java and evaluate it on a use case with
enforcing privacy policies in the Android setting. We also show how a state-of-
the-art dynamic monitor for JavaScript can be easily adapted to implement our
approach.

Statement of Contribution This paper was co-authored with Musard Balliu
and Andrei Sabelfeld. Daniel contributed to the security and enforcement def-
initions and is responsible for the prototype implementation. All authors con-
tributed equally to writing the paper.

Appeared in: Proceedings of the 22nd European Symposium on Research in Com-
puter Security (ESORICS), Oslo, Norway, 2017
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0.5.8 An Empirical Study of Information Flows in Real-World JavaScript

Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and
Andrei Sabelfeld

Information flow analysis prevents secret or untrusted data from flowing
into public or trusted sinks. Existing mechanisms cover a wide array of options,
ranging from lightweight taint analysis to heavyweight information flow con-
trol that also considers implicit flows. Dynamic analysis, which is particularly
popular for languages such as JavaScript, faces the question whether to invest in
analyzing flows caused by not executing a particular branch, so-called hidden
implicit flows. This paper addresses the questions how common different kinds
of flows are in real-world programs, how important these flows are to enforce
security policies, and how costly it is to consider these flows. We address these
questions in an empirical study that analyzes 56 real-world JavaScript programs
that suffer from various security problems, such as code injection vulnerabilities,
denial of service vulnerabilities, memory leaks, and privacy leaks. The study
is based on a state-of-the-art dynamic information flow analysis and a formal-
ization of its core. We find that implicit flows are expensive to track in terms of
permissiveness, label creep, and runtime overhead. We find a lightweight taint
analysis to be sufficient for most of the studied security problems, while for some
privacy-related code, observable tracking is sometimes required. In contrast, we
do not find any evidence that tracking hidden implicit flows reveals otherwise
missed security problems. Our results help security analysts and analysis de-
signers to understand the cost-benefit tradeoffs of information flow analysis and
provide empirical evidence that analyzing implicit flows in a cost-effective way
is a relevant problem.

Statement of Contribution This paper was co-authored with Cristian-Alexandru
Staicu, Musard Balliu, Michael Pradel, and Andrei Sabelfeld. Daniel contributed
to the formalization and framework and the soundness results. All authors con-
tributed equally to writing the paper.

Under submission.
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