
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Flexible Information-Flow Control

DANIEL SCHOEPE

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND GÖTEBORG UNIVERSITY

Göteborg, Sweden 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198049175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Flexible Information-Flow Control
DANIEL SCHOEPE
ISBN 978-91-7597-832-1

© 2018 Daniel Schoepe

Technical Report 165D
ISSN 0346-718X
Ny serie nr. 4513
Department of Computer Science and Engineering
Research group: Information Security

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY and GÖTEBORG UNIVERSITY
SE-412 96 Göteborg
Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers
Göteborg, Sweden 2018

ABSTRACT

As more and more sensitive data is handled by software, its trustworthiness be-
comes an increasingly important concern. This thesis presents work on ensuring
that information processed by computing systems is not disclosed to third par-
ties without the user’s permission; i.e. to prevent unwanted flows of information.
While this problem is widely studied, proposed rigorous information-flow control
approaches that enforce strong security properties like noninterference have yet
to see widespread practical use. Conversely, lightweight techniques such as taint
tracking are more prevalent in practice, but lack formal underpinnings, making
it unclear what guarantees they provide.

This thesis aims to shrink the gap between heavyweight information-flow
control approaches that have been proven sound and lightweight practical tech-
niques without formal guarantees such as taint tracking. This thesis attempts
to reconcile these areas by (a) providing formal foundations to taint tracking
approaches, (b) extending information-flow control techniques to more realistic
languages and settings, and (c) exploring security policies and mechanisms that
fall in between information-flow control and taint tracking and investigating
what trade-offs they incur.

LIST OF PUBLICATIONS

This thesis is based on work contained in the following papers, each presented
in a separate chapter. Chapters 1, 2, 4, 6, and 7 are published at peer-reviewed
conferences while the content of the other papers is currently under submission.

Chapter 1. Explicit Secrecy: A Policy for Taint Tracking. Daniel Schoepe, Musard
Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. In Proceedings of the 1st IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), pages 15–36. IEEE Computer
Society, 2016.

Chapter 2. Let’s Face It: Faceted Values for Taint Tracking. Daniel Schoepe,
Musard Balliu, Frank Piessens, and Andrei Sabelfeld. In Proceedings of the 21st Eu-
ropean Symposium on Research in Computer Security (ESORICS), pages 561–580.
Springer, 2016.

Chapter 3. VERONICA: Verified Concurrent Information-Flow Security Un-
leashed. Daniel Schoepe, Toby Murray, Andrei Sabelfeld. Under submission.

Chapter 4. JSLINQ: Building Secure Applications across Tiers. Musard Balliu,
Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld. In the Proceedings of the Sixth
ACM on Conference on Data and Application Security and Privacy (CODASPY), pages
307–318. ACM, 2016.

Chapter 5. Information-Flow Control for Database-Backed Applications. Marco
Guarnieri, Daniel Schoepe, Musard Balliu, David Basin, and Andrei Sabelfeld. Under
submission.

Chapter 6. Understanding and Enforcing Opacity. Daniel Schoepe and Andrei
Sabelfeld. In Proceedings of 28th IEEE Computer Security Foundations Symposium
(CSF), pages 539-553. IEEE Computer Security, 2015.

Chapter 7. We Are Family: Relating Information-Flow Trackers. Musard Balliu,
Daniel Schoepe, and Andrei Sabelfeld. In Proceedings of the 22nd European Symposium
on Research in Computer Security (ESORICS), pages 124-145. Springer, 2017.

Chapter 8. An Empirical Study of Information Flows in Real-World JavaScript.
Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and Andrei
Sabelfeld. Under submission.

ACKNOWLEDGMENTS

The past four and a half years have been a unique experience: often exciting,
sometimes frustrating, but always memorable. Spending so much time on a
single topic can be challenging and I owe a debt of gratitude to a many people
for helping me to successfully finish my PhD.

Firstly, I want to thank my advisor Andrei for years of great supervision and
advice and countless interesting discussions not just about research, but also
about food, drinks, politics, and the rest of life. He also provided me with lots of
exciting opportunities to work with other researchers and helped me organize
research visits and internships. I also owe a debt of gratitude to Musard, Dave,
and Wolfgang, for the many fruitful conversations and lots of helpful advice
during my PhD.

Next, I want to thank the many great people that make (or made) coming
to work each day feel not just like an obligation, but actually fun: Alejandro,
Alexander, Aljoscha, Daniel, Elena, Elisabet, Evgeny, Herbert, Hiva, Inari, Iu-
lia, Jeff, Katja, Marco, Mauricio, Max, Michal, Pablo, Per, Raul, Sandro, Simon,
Solrún, Steven, Thomas, Vı́ctor, and many others I doubtlessly forgot to mention
here.

Being caught up in research and teaching all day makes it all too easy to
forget that there’s also a life outside of work and I’m grateful to have found so
many friends over the years, so I want to thank Noémi, Eike, Nicole, Baldur,
Елена, Brian, Irene, Fotini, Marianna, Alla, Ari, Edit, Maria, Rhys, among many
others, for putting up with me over all these years. Lastly, I’m grateful to my
parents for supporting me throughout this endeavor and many other challenges
throughout my life.

At the end of this long road, I’m happy to have taken on this challenge, but
also to finally bring it to a conclusion in the form of this thesis.

CONTENTS

0 Introduction 1
0.1 Language-Based Security . 2
0.2 Information-Flow Control . 3
0.3 Taint Tracking . 4
0.4 Challenges . 5
0.5 Contributions . 6

0.5.1 Explicit Secrecy: A Policy for Taint Tracking 7
0.5.2 Let’s Face It: Faceted Values for Taint Tracking 8
0.5.3 VERONICA: Verified Concurrent Information-Flow Security Unleashed 9
0.5.4 JSLINQ: Building Secure Applications across Tiers 9
0.5.5 Information-Flow Control for Database-Backed Applications 10
0.5.6 Understanding and Enforcing Opacity 10
0.5.7 We Are Family: Relating Information-Flow Trackers 11
0.5.8 An Empirical Study of Information Flows in Real-World JavaScript . 12

1 Explicit Secrecy: A Policy for Taint Tracking 13
1.1 Introduction . 14
1.2 Specifying Explicit Flows . 17

1.2.1 Weak Secrecy . 17
1.2.2 Explicit Secrecy . 20
1.2.3 Declassification . 23
1.2.4 Instantiating Explicit Secrecy . 24
1.2.5 Explicit Secrecy in the Big Picture . 29

1.3 Enforcement . 31
1.3.1 Dynamic Tainting for Imperative Code 32
1.3.2 Dynamic Tainting for Machine Code 32
1.3.3 Static Analysis for Taint Tracking . 35

1.4 Related Work . 36
1.5 Conclusion . 39
Appendix 1.A Machine Code . 40

1.A.1 Syntax and Semantics . 40
Appendix 1.B Proofs . 40

1.B.1 Specifying Explicit Flows . 40
1.B.2 Enforcement . 43

Appendix 1.C Additional Developments . 47
1.C.1 Weak Secrecy for Machine Code . 47

2 Let’s Face It: Faceted Values for Taint Tracking 49
2.1 Introduction . 50
2.2 Faceted Values for Taint Tracking . 52

2.2.1 Language with Faceted Values . 52
2.2.2 Explicit Secrecy . 57
2.2.3 Attack Detection . 60
2.2.4 Inlining Faceted Values through Static Program Transformation . . . 61

2.3 General Framework . 62
2.4 Implementation . 64
2.5 Benchmarks . 66
2.6 Related Work . 68
2.7 Conclusion . 71

x CONTENTS

Appendix 2.A Proofs . 72
2.A.1 Theorems in Section 2.3: . 72

Appendix 2.B DroidBench Evaluation Results 76
2.B.1 Jimple . 76
2.B.2 DroidBench Results . 77

3 VERONICA: Verified Concurrent Information-Flow Security Unleashed 79
3.1 Introduction . 80
3.2 An Overview of VERONICA . 81

3.2.1 Decoupling Functional Correctness 81
3.2.2 Compositional Enforcement . 84
3.2.3 Proving a Concurrent Program Secure 85

3.3 Security Definition . 88
3.3.1 Semantic Model . 88
3.3.2 System Security Property and Threat Model 90
3.3.3 Occlusion . 93
3.3.4 Encoding Delimited Release Policies 94

3.4 Annotated Programs in VERONICA . 97
3.5 The VERONICA Logic . 98

3.5.1 Precise Reasoning with Annotations 98
3.5.2 Secret-Dependent Branching . 100
3.5.3 Soundness . 100

3.6 Further Examples . 101
3.6.1 The Example of Figure 3.1 . 101
3.6.2 Confirmed Declassification . 101
3.6.3 Running Average . 103

3.7 Related Work . 104
3.8 Conclusion . 105
Appendix 3.A Ancillary Definitions . 105

4 JSLINQ: Building Secure Applications across Tiers 109
4.1 Introduction . 110
4.2 Framework . 113

4.2.1 Language . 113
4.2.2 Operational Semantics . 116
4.2.3 Security Condition . 117
4.2.4 Security Type System . 119
4.2.5 Soundness . 124

4.3 JSLINQ . 124
4.4 Case Studies . 127

4.4.1 Library Policy . 127
4.4.2 Scenario Discussion . 128
4.4.3 Case Study Results . 130

4.5 Related Work . 131
4.6 Conclusion . 133
Appendix 4.A Appendix . 133

4.A.1 Operational Semantics . 133
4.A.2 Soundness Proof . 133

5 Information-Flow Control for Database-Backed Applications 143
5.1 Introduction . 144
5.2 Overview . 145
5.3 WHILESQL . 148

5.3.1 Notation . 148
5.3.2 Overview . 149
5.3.3 Local semantics . 150
5.3.4 Global semantics . 152

5.4 Security model . 152
5.4.1 Preliminaries . 152
5.4.2 Knowledge . 153

CONTENTS xi

5.4.3 Security condition . 153
5.5 Enforcement . 154

5.5.1 Preliminaries . 154
5.5.2 Security monitor . 155
5.5.3 Discussion . 159

5.6 Disclosure lattices in practice . 160
5.6.1 Approximating disclosure lattices 160
5.6.2 Symbolic tuples . 161

5.7 Implementation and case studies . 164
5.7.1 Securing SCALA programs . 164
5.7.2 Case studies . 165

5.8 Related work . 168
5.9 Conclusion . 171
Appendix 5.A Tracking dependencies between tuples and columns 171
Appendix 5.B Progress-sensitivity . 172
Appendix 5.C Relaxing NSU checks . 172
Appendix 5.D Social Networking example . 172

6 Understanding and Enforcing Opacity 177
6.1 Introduction . 178
6.2 Framework . 181

6.2.1 Opacity . 181
6.2.2 Noninterference . 183
6.2.3 Main Lemma . 183
6.2.4 Knowledge-based Characterization 184

6.3 Batch-job Programs . 185
6.4 I/O Programs . 186
6.5 Information Release vs. Information Hiding 187
6.6 Enforcement . 188

6.6.1 Example Language . 188
6.6.2 Dynamic Monitoring . 191
6.6.3 Sampling-based Enforcement . 194

6.7 Experiments . 195
6.7.1 Location Privacy . 195
6.7.2 Statistics Aggregation . 197
6.7.3 Discussion . 198

6.8 Related Work . 199
6.9 Conclusions . 201
Appendix 6.A Proofs . 202

6.A.1 Framework . 202
6.A.2 Enforcement . 204

7 We Are Family: Relating Information-Flow Trackers 211
7.1 Introduction . 212
7.2 Security Framework . 214

7.2.1 Language . 215
7.2.2 Semantics . 216
7.2.3 Defining Secrecy . 216
7.2.4 Security Conditions . 217

7.3 Enforcement Framework . 221
7.4 Staged Information-Flow Control . 225
7.5 Implementation and Evaluation . 226
7.6 Related Work . 228
7.7 Conclusion . 230
Appendix 7.A Semantics . 230

7.A.1 Operational Semantics of SIMPL . 230
7.A.2 Instrumented Semantics for Weak and Observable secrecy 231

Appendix 7.B Proofs for Enforcement Mechanisms 231
7.B.1 Proofs for Weak Tracking . 232

xii CONTENTS

7.B.2 Proofs for Observable Tracking . 234
7.B.3 Proofs for Full Tracking . 235

Appendix 7.C Staged Information-Flow Control 235
Appendix 7.D Proofs for Staged Analysis . 239

7.D.1 Leveraging Weak Tracking for Observable Secrecy 239
7.D.2 Leveraging Weak Tracking for Full Secrecy 239
7.D.3 Static Analysis and Weak Tracking for Full Secrecy 240

Appendix 7.E Advanced Features and Implementation 241
7.E.1 Language Extensions . 241
7.E.2 Declassification . 242
7.E.3 TaintDroid . 243
7.E.4 Intermediate Language . 244

8 An Empirical Study of Information Flows in Real-World JavaScript 245
8.1 Introduction . 246
8.2 Benchmarks and Security Policies . 249
8.3 Methodology . 251

8.3.1 Setting: Information Flow Analysis 252
8.3.2 Security Metrics . 254
8.3.3 Implementation . 257

8.4 Empirical Study . 258
8.4.1 Prevalence of Micro Flows . 258
8.4.2 Source-to-sink Flows . 259
8.4.3 Permissiveness . 260
8.4.4 Label Creep Ratio . 260
8.4.5 Runtime Overhead . 262
8.4.6 Threats to Validity . 263

8.5 Related Work . 263
8.6 Conclusions . 265
Appendix 8.A Formalization of Flows and Conditions 266
Appendix 8.B Security Definitions . 268
Appendix 8.C Soundness . 270
Appendix 8.D Proofs and Additional Definitions 270

CHAPTER
ZERO

INTRODUCTION

Developments in computer science have shaped many aspects of today’s society.
In fact, it is hard to find an area of modern life that is untouched by information
technology. A significant portion of our lives, our institutions, and our economy
is controlled by software. On a societal level, code determines how news is
disseminated, how the stock market is managed, how our healthcare systems
work, and sometimes we even rely on code to safeguard democratic elections.
On an individual level, software impacts what we read, how we communicate
with friends, express our thoughts, find our way in a city, manage our finances,
take pictures, watch movies, find out what to spend our free time on, to name
just a few examples.

In the process we make a large amount of sensitive data available to software,
including our location, search queries, private messages, pictures and videos,
hobbies, and political views. Yet — despite the role computing technology plays
— there is no practical way, not even for an expert, to ensure that all the software
in use is actually trustworthy. How can one be certain that an application does
not send sensitive data to a third party? A malicious application could leak
confidential files on the hard drive, passwords, private messages, and credit card
numbers.

Disclosing private data handled by applications can have severe consequences:
Companies may lose profits if internal data is leaked. If a credit card number is
stolen by a scammer, the victim will lose money. A stolen social security number
can give rise to identity theft. Revealing a person’s political views, private con-
versations, religious beliefs, or sexual orientation might cause them to lose their
job or impact their social life, or even cost them their lives in some countries.
Identity and location can be particularly sensitive information; in the case of
domestic abuse victims and dissidents living under an oppressive regime, their
disclosure can prove quite literally life-threatening.

This problem is exacerbated as more and more adversaries attempt to com-
promise people’s devices and the software that runs on them; attackers range
from ordinary criminals motivated by simple greed to government agencies seek-
ing to undermine the ideals of liberty and individual rights that underpin our
society. Ever since Edward Snowden’s revelations [4], we know that (even) West-
ern governments steal their citizen’s information on a large scale [10], ostensibly

2 CHAPTER 0. INTRODUCTION

in an effort to combat terrorism, although evidence that mass surveillance is
helpful in that regard has yet to surface [2, 7]. While cryptography is essential in
defending against attackers who control the network, such protection still relies
on trustworthy software on the users’ devices to perform the encryption and
not leak the data in the process. Since one of the methods used for stealing data
is to spread malicious or backdoored software to the users’ devices [1, 8], this
illustrates the need for a way of reliably establishing whether a piece of code is
trustworthy.

The prevalent method to tackle this problem consists of testing and code re-
view to check the security of software; however, just like testing for functionality,
this can only show the presence of errors but never prove their absence. More-
over, new code is written at a pace that makes any manual verification process
hard to implement in the present and impossible to scale in the long run.

In response, a more rigorous approach to software security is needed; ideally,
one would ensure that software is secure by construction, with mathematical guar-
antees establishing that a program leaks no information, where these guarantees
are checked mechanically.

However, even though rigorous approaches to software security exist in the
academic community, they have yet to see widespread, practical use. This thesis
explores approaches to make mathematically rigorous techniques to preventing
information leaks more practical.

Section 0.1 provides a cursory look at the topic of language-based security, an
approach to software security that makes use of ideas from the programming
language community to enforce security properties. Section 0.2 gives a quick
overview of the area of information-flow control, which is concerned with formally
expressing what it means for programs to be secure, finding techniques that
guarantee the security of a program, and proving that they guarantee the de-
sired notion of security. Section 0.3 gives a brief summary of taint tracking and
contrasts the approach with information-flow control. Section 0.4 outlines the
challenges addressed in this thesis. Section 0.5 summarizes the contributions of
the papers comprising this thesis.

0.1 Language-Based Security

A common approach to security in practice involves testing and code review
to find security flaws; however, like testing for functionality, this approach can-
not prove the absence of security flaws. Language-based security on the other
hand is based on providing provable security guarantees by using the seman-
tics of the underlying language: Instead of trying to find security problems in
programs, techniques in this area focus on analyzing programs in order to prove
that a program is secure, or on automatically preventing insecurities at runtime.
Since untrusted programs are granted access to sensitive data, information-flow
policies are fine-grained, making language-based techniques an excellent fit for
information-flow control [266].

Broadly speaking, the approaches in language-based security fall into two
categories [260]: static techniques analyze a program before it is run and aim
to establish whether or not the program is secure for all inputs, while dynamic
approaches prevent information leaks as the program is executing. Additionally,

0.2. INFORMATION-FLOW CONTROL 3

hybrid mechanisms combine static analysis with dynamic techniques.
An example for static approaches are security type systems [320]. In a normal

type system, if a program is well-typed, then the program is proven to be free
of certain classes of bugs, such as trying to add integers to strings; this is often
summarized as “well-typed programs don’t go wrong” [224]. A security type
system on the other hand can be used to ensure that all well-typed programs
are secure with respect to a security property. Chapter 3 presents a security type
system to prevent illicit information flows in web applications.

Dynamic approaches typically modify the semantics of a program in order to
prevent leaks of information. For example, if a program sends secret data to the
internet, a simple dynamic information-flow enforcement might then terminate
the program before the sensitive information is sent out over the network.

0.2 Information-Flow Control

The key feature that makes software security relevant is the amount and type
of private information handled by computers today and the fact that they are
connected to the internet. However, many programs legitimately need access to
both private information and internet connectivity in order to perform their task.
As a result, simply not giving a program access to private data is not a viable
solution.

For example, a spreadsheet application may be used to manage one’s fi-
nances, but also requires internet access to look up stock prices and other live
data. If the program is malicious or buggy, it might instead leak one’s financial
situation to an attacker on the internet. Chat applications by their nature have
access to the messages the user sends and receives, and need internet access to
perform their function. However, if the application is malicious, the messages
may be sent to attackers in addition to their intended recipients or the application
may not encrypt messages correctly before they are transmitted.

The objective of information-flow control is to prevent information flows
from sensitive sources, such as local files, to public sinks, such as servers on the
internet. In this scenario we assume that the attacker controls public sources,
such as data received from the internet, and can observe outputs to public sinks.
Moreover, the attacker is assumed to know the code of the program being run,
but cannot observe sensitive sinks, such as writing to local files, and cannot
observe sensitive inputs to the program, such as user input or contents of local
files.

To reason about security of software in a way that provides confidence about
a program’s behavior, however we need to express the absence of unwanted in-
formation flows needs formally, in unambiguous mathematical terms. The policy
of not allowing information to flow from sensitive sources to public sinks is often
formalized as noninterference. In this setting, a program is treated as a mathemat-
ical object that maps inputs, some of which may be sensitive, to outputs, some
of which may be observable by attackers. A program is then considered secure
if and only if for two sets of inputs that only differ on their confidential parts,
the program always results in the same outputs to the attacker. Otherwise, an
attacker can derive information about sensitive inputs by observing the public
output of a program. Figure 1 illustrates this policy.

4 CHAPTER 0. INTRODUCTION

A simple example setting to describe this policy is to model a program as
a function prog : IP × IS → OP × OH mapping a pair of public inputs from
the set IP and secret input from the set IS to a pair of public outputs in set
OP and secret outputs OS1. Such a program then satisfies noninterference if for
the same public input iP and any two secret inputs iS and i′S , we have that
π1(prog(iP , is)) = π1(prog(iP , i

′
S)) where π1 refers to the projection a tuple to its

first component.

public input public output

private input private output

program

Figure 1: Noninterference

As most interesting program properties, noninterference is undecidable for
non-trivial programs [255]. To make matters worse, noninterference is a property
about two runs of a program [222] making verification or enforcement more chal-
lenging than that of safety or liveness properties commonly considered when
verifying functional correctness of programs. As a result, approaches for enforc-
ing noninterference typically compromise on either soundness, i.e. that insecure
programs are classified as insecure, or precision, i.e. that secure programs are
classified as secure. To still provide meaningful security guarantees, most ap-
proaches prioritize soundness over precision at the expense of practicality, since
some secure programs can not be successfully verified.

Moreover, since noninterference requires that private information have no
influence over any public outputs at all, it is sometimes too restrictive. For exam-
ple, a program handling user logins will necessarily leak information about the
stored password, by behaving differently depending on whether or not the user
entered the correct password; i.e. it leaks whether the stored sensitive password
is equal to the user’s input.

0.3 Taint Tracking

Two important categories of information leaks that enforcement mechanisms
need to handle are explicit flows, which leak data by directly outputting secret
information to an attacker, and implicit flows, which leak information through the
control-flow structure of the program. For example, the program

outputTo(attacker , secret)

1This glosses over some details such as how to model non-terminating programs, but illustrates the
overall idea.

0.4. CHALLENGES 5

directly sends the value of the secret input stored in variable secret to an attacker
through an explicit flow, whereas the program

if secret = 0 then outputTo(attacker , 1) else outputTo(attacker , 2)

leaks the whether the secret input is zero through an implicit flow relying on
how control-flow in the program is structured.

While both types of flows leak information, implicit flows are more challeng-
ing to track accurately throughout a program, since this involves comparing
what happens in two separate branches of a conditional. To avoid imprecision
introduced by tracking implicit flows, some approaches only track whether sen-
sitive data directly enters a public sink (such as the outputTo function in the
previous example). Such approaches are referred to as taint tracking. While they
do not enforce noninterference, such approaches are often more feasible to use in
practice. However, compared to noninterference-based approaches, techniques
based on taint tracking often lack formal underpinnings that allow to reason
about the guarantees that they provide.

0.4 Challenges

Flexible Policies While noninterference provides a solid baseline for reasoning
about the security of programs, it can be very restrictive. Many useful programs,
such as the login program example in Section 0.2, do not satisfy noninterference.
While noninterference policies can be relaxed by adding support for declassifying
sensitive data [271], declassification policies may be complicated to reason about
in practice. Hence, providing a natural and flexible way to specify security
policies remains an open problem.

Formal Guarantees Despite renewed interest and recent advances in informa-
tion-flow research [266], the results are largely unused outside of academia. On
the other hand, some approaches such as taint tracking have enjoyed consider-
able success in practice ranging from bug detection to ensuring confidentiality;
moreover the technique has been applied to high-level languages and machine
code.

However, the actual security policy enforced by practical approaches often
remains unclear; as a consequence, evaluating practical security mechanisms
in terms of soundness and precision is not possible in an unambiguous way.
Hence, providing formal justification and analysis of practical techniques is an
important avenue of research for bridging the gap between academic results and
industry practice.

Information-Flow Control for Complex Language Features Another stum-
bling block for information-flow control in practice is the gap between minimal
languages typically considered in research papers and programming language
features used in practice. Extending information-flow control techniques to ac-
commodate settings such as shared memory concurrency, modern databases, and
web application scenarios presents an opportunity to make security verification
more feasible in practice.

6 CHAPTER 0. INTRODUCTION

1. IFC

2. Tainting

3. Combining IFC and Tainting

2015 2016 2017 2018

Opacity JSLinq DBIFC Concurrent IFC

Explicit Secrecy Facets

We are Family Flow Study

Figure 2: Overview of research tracks in the thesis

0.5 Contributions

This thesis consists of eight papers (Chapters 1-8). Five papers have been pub-
lished in peer-reviewed conferences while the remaining three are currently un-
der submission. This section outlines each paper’s contributions and connects
its topic to the challenges outlined in the previous sections. Broadly speaking,
the papers fall into three categories:

• Formally analyzing of the security guarantees provided by taint trackers,
and building more precise enforcement based on this formal characteriza-
tion.

• Extending information-flow control to challenging language features and
policies encountered in practical scenarios. In particular, we consider
shared memory concurrency, declassification policies, code interacting
with databases, and web applications.

• Bridging the gap between taint tracking and information-flow by investi-
gating intermediate security properties and what trade-offs they offer for
real-world code.

The structure of the research is summarized in Figure 2.

Chapters 1 and 2 aim to make security verification more feasible by exploring
a more permissive family of security mechanisms known as taint tracking that
allows for more practical enforcement mechanisms while nevertheless capturing
some realistic use cases:

• Chapter 1 presents a formal characterization of the security property en-
forced by taint tracking tools. In order to understand the guarantees and
ramifications of the taint tracking approach, we need to be able to charac-
terize the attacks that are prevented, or not, by such techniques. In this
chapter we present a general security condition capturing which informa-
tion flows are tracked, and which are ignored, by taint tracking.

0.5. CONTRIBUTIONS 7

• Chapter 2 leverages the security condition from Chapter 5 to construct a
general, and in some cases more precise, technique for taint tracking based
on the concept of faceted values.

In Chapters 3 through 6, we explore how to extend information-flow control
mechanisms to accommodate challenging language features often found in real
applications:

• Chapter 3 tackles the problem of information-flow security for programs
with shared-memory concurrency requiring expressive declassification poli-
cies. We provide a way to accommodate complex thread interaction and
controlled information release by decoupling reasoning about functional
correctness from information-flow reasoning.

• Chapter 4 investigates how to track information flows in multi-tiered web
application that combine databases with both client-side and server-side
code.

• Chapter 5 extends information-flow control conditions and enforcement
mechanisms to applications interacting with databases making use of ad-
vanced features such as triggers, as well as dynamic security policies that
change over time.

• Chapter 6 explores more alternative policies for specifying under what
circumstances information can be released by investigating opacity as an-
other property to specify information-flow policies and relating opacity to
noninterference.

Chapters 7 and 8 aim to bridge the gap between noninterference-based ap-
proaches to information-flow control and techniques such as taint tracking, that
are more easily enforceable:

• Chapter 7 presents a security condition that falls between noninterference
and definitions based on taint tracking by extending taint tracking to catch
another type of dangerous information flows, called observable implicit flows
without incurring the same number of false positives as noninterference-
based approaches.

• Chapter 8 studies the impact of different types of information flows in the
context of real-world JavaScript code to reason about the relative impor-
tance of accurately catching different types of information flows.

The rest of this section lists the abstracts of the individual chapters:

0.5.1 Explicit Secrecy: A Policy for Taint Tracking

Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld

Taint tracking is a popular security mechanism for tracking data-flow depen-
dencies, both in high-level languages and at the machine code level. But despite
the many taint trackers in practical use, the question of what, exactly, tainting
means—what security policy it embodies—remains largely unexplored.

8 CHAPTER 0. INTRODUCTION

We propose explicit secrecy, a generic framework capturing the essence of
explicit flows, i.e., the data flows tracked by tainting. The framework is semantic,
generalizing previous syntactic approaches to formulating soundness criteria of
tainting. We demonstrate the usefulness of the framework by instantiating it with
both a simple high-level imperative language and an idealized RISC machine. To
further understanding of what is achieved by taint tracking tools, both dynamic
and static, we obtain soundness results with respect to explicit secrecy for the
tainting engine cores of a collection of dynamic and static taint trackers.

Statement of Contribution This paper was co-authored with Musard Balliu,
Benjamin C. Pierce, and Andrei Sabelfeld. Daniel contributed to the framework.
Daniel is responsible for formalizing and proving the results about the explicit
secrecy framework, and for formalizing the enforcement mechanisms as well as
the soundness proof of the static and dynamic enforcement mechanisms.

Appeared in: Proceedings of the IEEE European Symposium on Security and
Privacy (EuroS&P), Saarbrücken, Germany, March 2016

0.5.2 Let’s Face It: Faceted Values for Taint Tracking

Daniel Schoepe, Musard Balliu, Frank Piessens, and Andrei Sabelfeld

Taint tracking has been successfully deployed in a range of security applica-
tions to track data dependencies in hardware and machine-, binary-, and high-
level code. Precision of taint tracking is key for its success in practice: being a
vulnerability analysis, false positives must be low for the analysis to be practi-
cal. This paper presents an approach to taint tracking, which does not involve
tracking taints throughout computation. Instead, we include shadow memo-
ries in the execution context, so that a single run of a program has the effect of
computing on both tainted and untainted data. This mechanism is inspired by
the technique of secure multi-execution, while in contrast to the latter it does
not require running the entire program multiple times. We present a general
framework and establish its soundness with respect to explicit secrecy, a policy
for preventing insecure data leaks, and its precision showing that runs of secure
programs are never modified. We show that the technique can be used for attack
detection with no false positives. To evaluate the mechanism in practice, we
implement DroidFace, a source-to-source transform for an intermediate Java-like
language and benchmark its precision and performance with respect to represen-
tative static and dynamic taint trackers for Android. The results indicate that the
performance penalty is tolerable while achieving both soundness and no false
positives on the tested benchmarks. The key results of this paper have been
formalized in Isabelle/HOL.

Statement of Contribution This paper was co-authored with Musard Balliu,
Frank Piessens, and Andrei Sabelfeld. Daniel is responsible for formalizing and
proving soundness and precision of the results, as well as the prototype imple-
mentation. All authors contributed equally to the writing.

0.5. CONTRIBUTIONS 9

Appeared in: Proceedings of the 21st European Symposium on Research in Com-
puter Security (ESORICS), Heraklion, Greece, 2016

0.5.3 VERONICA: Verified Concurrent Information-Flow Security Un-
leashed

Daniel Schoepe, Toby Murray, Andrei Sabelfeld

Methods for proving that concurrent software does not leak its secrets has
remained an active topic of research for at least the past four decades. Despite
an impressive array of work, the present situation remains highly unsatisfac-
tory. With contemporary compositional proof methods one is forced to choose
between expressiveness (the ability to reason about a wide variety of security poli-
cies), on the one hand, and precision (the ability to reason about complex thread
interactions and program behaviours), on the other. Achieving both is essential
and, we argue, requires a new style of compositional program logic.

We present the first compositional program logic for proving concurrent pro-
grams information flow secure that supports high-precision reasoning about a
wide range of security policies and program behaviours (e.g. expressive declas-
sification, value-dependent classification, secret-dependent branching). Just as
importantly, our approach embodies a new way for engineering such logics that
can be re-used elsewhere, called decoupled functional correctness (DFC). DFC leads
to a substantially simpler logic, even while achieving this unprecedented combi-
nation of features. We demonstrate the virtues and versatility of our approach
by verifying a range of example programs, beyond the reach of prior methods.
All developments are formalized in Isabelle/HOL.

Statement of Contribution This paper was co-authored with Toby Murray,
and Andrei Sabelfeld. Daniel is responsible for developing the enforcement
framework, Isabelle formalization, soundness results, and case studies. All
authors contributed equally to the writing and overall development of the ap-
proach.

Under submission.

0.5.4 JSLINQ: Building Secure Applications across Tiers

Musard Balliu, Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld

This paper proposes JSLINQ, a framework for writing web applications with
end-to-end security guarantees. Modern web applications consist of several
tiers, often including server-side code, a database, and client-side JavaScript
code. In order to achieve end-to-end security, correct communication between
tiers must be ensured. JSLINQ leverages meta-programming facilities in F# and
the WebSharper framework to provide a unified language for securely writing
the entire web application. A security type system is then used to guarantee
noninterference for well-typed programs.

10 CHAPTER 0. INTRODUCTION

Aside from formal soundness results, we investigate the practicality of this
approach with several case studies, such as location-based services and a Battle-
ship browser game, indicating that JSLINQ can handle practical scenarios; this
work is therefore a step toward implementing information-flow control in practice.

Statement of Contribution This paper was co-authored with Musard Balliu,
Benjamin Liebe, and Andrei Sabelfeld. Daniel contributed to the type inference
engine, the language semantics, type system, and the case studies. All authors
contributed equally to the writing.

Appeared in: Proceedings of the ACM Conference on Data and Applications Secu-
rity and Privacy (CODASPY), New Orleans, LA, March 2016

0.5.5 Information-Flow Control for Database-Backed Applications

Marco Guarnieri, Daniel Schoepe, Musard Balliu, David Basin, and Andrei Sabelfeld

Securing database-backed applications requires tracking information across
the program and the database together, since securing each component in iso-
lation may still result in an overall insecure system. Current research extends
language-based techniques with models capturing the database’s behavior. Pre-
vious work, however, relies on simplistic database models, which ignore security-
relevant features that may leak sensitive information.

We propose a novel security monitor for database-backed applications. Our
monitor tracks fine-grained dependencies between variables and database tu-
ples by leveraging database theory concepts like disclosure lattices and query
determinacy. It also accounts for a realistic database model that supports security-
critical constructs like triggers and dynamic policies. The monitor automatically
synthesizes program-level code that replicates the behavior of database features
like triggers, thereby tracking information flows inside the database. We also
introduce symbolic tuples, an efficient approximation of dependency-tracking
over disclosure lattices. We implement our monitor for database-backed Scala
programs and demonstrate its effectiveness on four case studies.

Statement of Contribution This paper was co-authored with Marco Guarnieri,
Musard Balliu, David Basin, and Andrei Sabelfeld. Daniel contributed to the for-
malization and framework and is responsible for the prototype implementation.
All authors contributed equally to writing the paper.

Under submission.

0.5.6 Understanding and Enforcing Opacity

Daniel Schoepe and Andrei Sabelfeld

This paper explores opacity, a policy providing more flexible control over
what part of a system needs to be kept confidential. Concretely, instead of pro-
tecting pieces of data, opacity expresses that properties about the input need to
remain secret; for example, a user may not want to disclose whether he is located

0.5. CONTRIBUTIONS 11

in a sensitive area, but is okay with disclosing parts of his location otherwise.
Hence, this work falls under the challenge of flexible policies.

The paper provides a general framework for opacity, parametrized in the
power of the attacker, and connects opacity to noninterference. Moreover, we
explore two dynamic enforcement techniques and provide a proof-of-concept
implementation. All theoretical results are formalized using the Isabelle/HOL
proof assistant [244].

Statement of Contribution This paper was co-authored with Andrei Sabelfeld.
Daniel is responsible for the proofs of the theoretical results, implementation
work, and the Isabelle/HOL formalization. All authors contributed equally to
writing the paper.

Appeared in: Proceedings of the IEEE Computer Security Foundations Symposium
(CSF), Verona, Italy, July 2015

0.5.7 We Are Family: Relating Information-Flow Trackers

Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld

While information-flow security is a well-established area, there is an unset-
tling gap between heavyweight information-flow control, with formal guarantees
yet limited practical impact, and lightweight tainting techniques, useful for bug
finding yet lacking formal assurance. This paper proposes a framework for ex-
ploring the middle ground in the range of enforcement from tainting (tracking
data flows only) to fully-fledged information-flow control (tracking both data
and control flows). We formally illustrate the trade-offs between the soundness
and permissiveness that the framework allows to achieve. The framework is
deployed in a staged fashion, statically embedding a dynamic monitor, being
parametric in security policies, as they do not need to be fixed until the final
deployment. This flexibility facilitates a secure app store architecture, where
the static stage of verification is performed by the app store and the dynamic
stage is deployed on the client. To illustrate the practicality of the framework,
we implement our approach for a core of Java and evaluate it on a use case with
enforcing privacy policies in the Android setting. We also show how a state-of-
the-art dynamic monitor for JavaScript can be easily adapted to implement our
approach.

Statement of Contribution This paper was co-authored with Musard Balliu
and Andrei Sabelfeld. Daniel contributed to the security and enforcement def-
initions and is responsible for the prototype implementation. All authors con-
tributed equally to writing the paper.

Appeared in: Proceedings of the 22nd European Symposium on Research in Com-
puter Security (ESORICS), Oslo, Norway, 2017

12 CHAPTER 0. INTRODUCTION

0.5.8 An Empirical Study of Information Flows in Real-World JavaScript

Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and
Andrei Sabelfeld

Information flow analysis prevents secret or untrusted data from flowing
into public or trusted sinks. Existing mechanisms cover a wide array of options,
ranging from lightweight taint analysis to heavyweight information flow con-
trol that also considers implicit flows. Dynamic analysis, which is particularly
popular for languages such as JavaScript, faces the question whether to invest in
analyzing flows caused by not executing a particular branch, so-called hidden
implicit flows. This paper addresses the questions how common different kinds
of flows are in real-world programs, how important these flows are to enforce
security policies, and how costly it is to consider these flows. We address these
questions in an empirical study that analyzes 56 real-world JavaScript programs
that suffer from various security problems, such as code injection vulnerabilities,
denial of service vulnerabilities, memory leaks, and privacy leaks. The study
is based on a state-of-the-art dynamic information flow analysis and a formal-
ization of its core. We find that implicit flows are expensive to track in terms of
permissiveness, label creep, and runtime overhead. We find a lightweight taint
analysis to be sufficient for most of the studied security problems, while for some
privacy-related code, observable tracking is sometimes required. In contrast, we
do not find any evidence that tracking hidden implicit flows reveals otherwise
missed security problems. Our results help security analysts and analysis de-
signers to understand the cost-benefit tradeoffs of information flow analysis and
provide empirical evidence that analyzing implicit flows in a cost-effective way
is a relevant problem.

Statement of Contribution This paper was co-authored with Cristian-Alexandru
Staicu, Musard Balliu, Michael Pradel, and Andrei Sabelfeld. Daniel contributed
to the formalization and framework and the soundness results. All authors con-
tributed equally to writing the paper.

Under submission.

BIBLIOGRAPHY

[1] Catalog Reveals NSA Has Back Doors for Numerous Devices - SPIEGEL
ONLINE. http://www.spiegel.de/international/world/
catalog-reveals-nsa-has-back-doors-for-numerous-
devices-a-940994.html. Accessed: 2016-2-19.

[2] Data Mining for Terrorists - Schneier on Security. https://www.
schneier.com/blog/archives/2006/03/data_mining_for.
html. Accessed: 2016-2-15.

[3] Dynamic instrumentation tool platform. http://www.dynamorio.
org/home.html.

[4] Edward Snowden, after months of NSA revelations, says his mis-
sion’s accomplished - The Washington Post. https://www.
washingtonpost.com/world/national-security/edward-
snowden-after-months-of-nsa-revelations-says-his-
missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-
a523-fe73f0ff6b8d_story.html. Accessed: 2016-2-15.

[5] IDS03-J. Do not log unsanitized user input - CERT Oracle Coding
Standard for Java - CERT Secure Coding Standards. https://www.
securecoding.cert.org/confluence/display/java/IDS03-
J.+Do+not+log+unsanitized+user+input. Accessed: 2015-8-5.

[6] Locking ruby in the safe. http://phrogz.net/programmingruby/
taint.html.

[7] Mass Surveillance Isn’t the Answer to Fighting Terrorism - The New York
Times. http://www.nytimes.com/2015/11/18/opinion/mass-
surveillance-isnt-the-answer-to-fighting-terrorism.
html?_r=0. Accessed: 2016-2-15.

[8] NSA slapped malware on 50,000+ networks, says report - CNET.
http://www.cnet.com/news/nsa-slapped-malware-on-50000-
networks-says-report/. Accessed: 2016-2-19.

[9] Perl security and taint mode. http://perldoc.perl.org/perlsec.
html.

[10] Timeline of NSA Domestic Spying — Electronic Frontier Foundation.
https://www.eff.org/nsa-spying/timeline. Accessed: 2016-2-
15.

[11] Valgrind. http://valgrind.org/.
[12] Apache Cordova. http://cordova.apache.org/, 2015. Accessed:

2015-09-11.
[13] Attribute-Based Mapping. https://msdn.microsoft.com/en-us/

library/bb386971.aspx, 2015. Accessed: 2015-09-11.
[14] Critical Security Controls. http://www.sans.org/critical-

security-controls/, 2015. Accessed: 2015-08-25.

http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
https://www.schneier.com/blog/archives/2006/03/data_mining_for.html
https://www.schneier.com/blog/archives/2006/03/data_mining_for.html
https://www.schneier.com/blog/archives/2006/03/data_mining_for.html
http://www.dynamorio.org/home.html
http://www.dynamorio.org/home.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.washingtonpost.com/world/national-security/edward-snowden-after-months-of-nsa-revelations-says-his-missions-accomplished/2013/12/23/49fc36de-6c1c-11e3-a523-fe73f0ff6b8d_story.html
https://www.securecoding.cert.org/confluence/display/java/IDS03-J.+Do+not+log+unsanitized+user+input
https://www.securecoding.cert.org/confluence/display/java/IDS03-J.+Do+not+log+unsanitized+user+input
https://www.securecoding.cert.org/confluence/display/java/IDS03-J.+Do+not+log+unsanitized+user+input
http://phrogz.net/programmingruby/taint.html
http://phrogz.net/programmingruby/taint.html
http://www.nytimes.com/2015/11/18/opinion/mass-surveillance-isnt-the-answer-to-fighting-terrorism.html?_r=0
http://www.nytimes.com/2015/11/18/opinion/mass-surveillance-isnt-the-answer-to-fighting-terrorism.html?_r=0
http://www.nytimes.com/2015/11/18/opinion/mass-surveillance-isnt-the-answer-to-fighting-terrorism.html?_r=0
http://www.cnet.com/news/nsa-slapped-malware-on-50000-networks-says-report/
http://www.cnet.com/news/nsa-slapped-malware-on-50000-networks-says-report/
http://perldoc.perl.org/perlsec.html
http://perldoc.perl.org/perlsec.html
https://www.eff.org/nsa-spying/timeline
http://valgrind.org/
http://cordova.apache.org/
https://msdn.microsoft.com/en-us/library/bb386971.aspx
https://msdn.microsoft.com/en-us/library/bb386971.aspx
http://www.sans.org/critical-security-controls/
http://www.sans.org/critical-security-controls/

276 8. Empirical Study of Information Flows

[15] F# Compiler Services. http://fsharp.github.io/FSharp.
Compiler.Service/, 2015. Accessed: 2015-09-11.

[16] FParsec. http://www.quanttec.com/fparsec/, 2015. Accessed:
2015-09-11.

[17] ’Mouse over’ security flaw causes Twitter trouble. http://edition.
cnn.com/2010/TECH/social.media/09/21/twitter.security.
flaw/, 2015. Accessed: 2015-08-25.

[18] OWASP Top 10 2013. https://www.owasp.org/index.php/Top_
10_2013-Top_10, 2015. Accessed: 2015-08-25.

[19] Sites hit in massive web attack. http://www.bbc.com/news/
technology-12933053, 2015. Accessed: 2015-08-25.

[20] WebSharper. http://websharper.com/, 2015. Accessed: 2015-08-25.
[21] Linq (language-integrate query), Microsoft MSDN Library, May 2016.
[22] Babel JavaScript compiler. https://babeljs.io, Accessed: 2018-02-08.
[23] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of

dependency. In POPL, 1999.
[24] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases,

volume 8. Addison-Wesley Reading, 1995.
[25] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez, Arvind

Narayanan, and Claudia Dı́az. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, November 3-
7, 2014, pages 674–689, 2014.

[26] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses,
Frank Piessens, and Bart Preneel. Fpdetective: dusting the web for finger-
printers. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 1129–1140. ACM, 2013.

[27] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for
information flow in object-oriented programs. In Proc. ACM Symp. on
Principles of Programming Languages, pages 91–102, 2006.

[28] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical
form. In Proc. Symp. on Static Analysis, pages 100–115, 2004.

[29] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.
Automated concolic testing of smartphone apps. In SIGSOFT FSE, page 59,
2012.

[30] Gregory R Andrews and Richard P Reitman. An axiomatic approach to
information flow in parallel programs. Technical report, Cornell University,
1978.

[31] Gregory R Andrews and Richard P Reitman. An axiomatic approach to
information flow in programs. ACM TOPLAS, 2(1):56–76, 1980.

[32] Anonymized. DAISY: DAtabase and Information-flow SecuritY. https:
//sites.google.com/site/databaseifc/, 2018.

[33] Anonymized. Information-Flow Control for Database-backed Appli-
cations – Technical Report. https://sites.google.com/site/
databaseifc/, 2018.

[34] Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authorization.
In CSF, 2015.

http://fsharp.github.io/FSharp.Compiler.Service/
http://fsharp.github.io/FSharp.Compiler.Service/
http://www.quanttec.com/fparsec/
http://edition.cnn.com/2010/TECH/social.media/09/21/twitter.security.flaw/
http://edition.cnn.com/2010/TECH/social.media/09/21/twitter.security.flaw/
http://edition.cnn.com/2010/TECH/social.media/09/21/twitter.security.flaw/
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.bbc.com/news/technology-12933053
http://www.bbc.com/news/technology-12933053
http://websharper.com/
https://babeljs.io
https://sites.google.com/site/databaseifc/
https://sites.google.com/site/databaseifc/
https://sites.google.com/site/databaseifc/
https://sites.google.com/site/databaseifc/

BIBLIOGRAPHY 277

[35] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps. In PLDI, 2014.

[36] A. Askarov and S. Chong. Learning is change in knowledge: Knowledge-
based security for dynamic policies. In CSF, pages 308–322, 2012.

[37] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In ESORICS, 2008.

[38] A. Askarov and A. Myers. A semantic framework for declassification and
endorsement. In ESOP, 2010.

[39] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification,
encryption and key release policies. In S&P, 2007.

[40] Aslan Askarov and Andrei Sabelfeld. Tight enforcement of information-
release policies for dynamic languages. In CSF, 2009.

[41] T. H. Austin and C. Flanagan. Multiple facets for dynamic information
flow. In POPL, POPL ’12, pages 165–178, 2012.

[42] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic infor-
mation flow analysis. PLAS, 2009.

[43] Thomas H. Austin and Cormac Flanagan. Permissive dynamic information
flow analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Program-
ming Languages and Analysis for Security, PLAS ’10, pages 3:1–3:12, 2010.

[44] Thomas H. Austin and Cormac Flanagan. Permissive dynamic informa-
tion flow analysis. In Workshop on Programming Languages and Analysis for
Security (PLAS 2010), page 3. ACM, 2010.

[45] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-
Lezama. Faceted execution of policy-agnostic programs. In PLAS, 2013.

[46] M. Balliu, M. Dam, and R. Guanciale. Automating information flow analy-
sis of low level code. In CCS, 2014.

[47] M. Balliu, B. Liebe, D. Schoepe, and A. Sabelfeld. JSLINQ: Building Se-
cure Applications across Tiers. https://sites.google.com/site/
jslinqcodaspy16/, September 2015. Software and Extended Version.

[48] Musard Balliu. A logic for information flow analysis of distributed pro-
grams. In NordSec, 2013.

[49] Musard Balliu, Mads Dam, and Gurvan Le Guernic. Epistemic temporal
logic for information flow security. In PLAS, 2011.

[50] Musard Balliu, Mads Dam, and Gurvan Le Guernic. ENCoVer: Symbolic
Exploration for Information Flow Security. In Proceedings of the IEEE Com-
puter Security Foundations Symposium, pages 30–44, june 2012.

[51] Musard Balliu, Benjamin Liebe, Daniel Schoepe, and Andrei Sabelfeld.
Jslinq: Building secure applications across tiers. In CODASPY, 2016.

[52] Musard Balliu, Daniel Schoepe, and Andrei Sabelfeld. We are family: Re-
lating information-flow trackers. In Computer Security - ESORICS 2017 -
22nd European Symposium on Research in Computer Security, Oslo, Norway,
September 11-15, 2017, Proceedings, Part I, pages 124–145, 2017.

[53] Ioannis G. Baltopoulos and Andrew D. Gordon. Secure compilation of a
multi-tier web language. In TLDI, 2009.

[54] Anindya Banerjee, David A Naumann, and Stan Rosenberg. Expressive
declassification policies and modular static enforcement. In Security &
Privacy, pages 339–353. IEEE Computer Society, 2008.

https://sites.google.com/site/jslinqcodaspy16/
https://sites.google.com/site/jslinqcodaspy16/

278 8. Empirical Study of Information Flows

[55] Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu.
Strict control dependence and its effect on dynamic information flow anal-
yses. In Proceedings of the 19th International Symposium on Software Testing
and Analysis, ISSTA ’10, pages 13–24. ACM, 2010.

[56] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4.
In CAV, 2011.

[57] G. Barthe, G. Betarte, J. D. Campo, C. D. Luna, and D. Pichardie. System-
level non-interference for constant-time cryptography. In CCS, 2014.

[58] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Secure multi-
execution through static program transformation. In FMOODS/FORTE,
2012.

[59] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information
flow by self-composition. MSCS, 2011.

[60] Iulia Bastys, Frank Piessens, and Andrei Sabelfeld. Prudent design princi-
ples for information flow control. In PLAS, October 2018.

[61] Iulia Bastys, Frank Piessens, and Andrei Sabelfeld. Tracking information
flow via delayed output. In NordSec 2018, 2018.

[62] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken,
and Yuan Tian. Run-time monitoring and formal analysis of information
flows in chromium. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2014. The
Internet Society, 2015.

[63] Thomas Bauereiß, Armando Pesenti Gritti, Andrei Popescu, and Franco
Raimondi. CoSMeDis: a distributed social media platform with formally
verified confidentiality guarantees. In Security & Privacy, pages 729–748,
2017.

[64] Let’s face it: Faceted values for taint tracking. Full version and im-
plementation. http://www.cse.chalmers.se/research/group/
security/facets.

[65] Mark Beaumont, Jim McCarthy, and Toby Murray. The cross domain desk-
top compositor: using hardware-based video compositing for a multi-level
secure user interface. In Proc. Annual Computer Security Applications Confer-
ence, pages 533–545. ACM, 2016.

[66] D. Elliott Bell and Leonard J. La Padula. Secure computer system: Unified
exposition and Multics interpretation. Technical Report MTR-2997, MITRE
Corp., March 1976.

[67] Gabriel Bender, Lucja Kot, and Johannes Gehrke. Explainable security for
relational databases. In SIGMOD, 2014.

[68] Gabriel Bender, Lucja Kot, Johannes Gehrke, and Christoph Koch. Fine-
grained disclosure control for app ecosystems. In SIGMOD, 2013.

[69] Béatrice Bérard, John Mullins, and Mathieu Sassolas. Quantifying opacity.
In QEST, 2010.

[70] Lennart Beringer. Relational decomposition. In Interactive Theorem Proving
- Second International Conference, ITP 2011, Berg en Dal, The Netherlands,
August 22-25, 2011. Proceedings, pages 39–54, 2011.

[71] Lennart Beringer. End-to-end multilevel hybrid information flow control.
In Ranjit Jhala and Atsushi Igarashi, editors, APLAS, 2012.

http://www.cse.chalmers.se/research/group/security/facets
http://www.cse.chalmers.se/research/group/security/facets

BIBLIOGRAPHY 279

[72] Lennart Beringer and Martin Hofmann. Secure information flow and pro-
gram logics. In Proc. IEEE CSF, pages 233–248, 2007.

[73] K. J. Biba. Integrity considerations for secure computer systems. Technical
report, MITRE Corp., 04 1977.

[74] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer.
Information flow control in WebKit’s JavaScript bytecode. In Principles
of Security and Trust (POST 2014), volume 8414 of LNCS, pages 159–178.
Springer, 2014.

[75] Abhishek Bichhawat, Vineet Rajani, Jinank Jain, Deepak Garg, and Chris-
tian Hammer. Webpol: Fine-grained information flow policies for web
browsers. In Computer Security - ESORICS 2017 - 22nd European Symposium
on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Pro-
ceedings, Part I, pages 242–259, 2017.

[76] N. Bielova and T. Rezk. A taxonomy of information flow monitors. In
POST, 2016.

[77] Nataliia Bielova. Survey on JavaScript security policies and their enforce-
ment mechanisms in a web browser. JLAP, 2013.

[78] Arnar Birgisson, Daniel Hedin, and Andrei Sabelfeld. Boosting the per-
missiveness of dynamic information-flow tracking by testing. In European
Symposium on Research in Computer Security (ESORICS 2012), volume 7459
of LNCS, pages 55–72. Springer, 2012.

[79] Arnar Birgisson, Alejandro Russo, and Andrei Sabelfeld. Unifying facets
of information integrity. In ICISS, 2010.

[80] BNF Converter. http://bnfc.digitalgrammars.com/, 2014.
[81] M. Bodin, T. Jensen, and A. Schmitt. Pretty-big-step-semantics-based cer-

tified abstract interpretation (preliminary version). In Semantics, Abstract
Interpretation, and Reasoning about Programs: Essays Dedicated to David A.
Schmidt on the Occasion of his Sixtieth Birthday, 2013.

[82] A. Bohannon, B. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic. Reactive
Noninterference. In ACM CCS, November 2009.

[83] Alexandre Boisseau. Abstractions pour la vérification de propriétés de sécurité
de protocoles cryptographiques. PhD thesis, École Normale Supérieure de
Cachan, September 2003.

[84] I. Boloşteanu and D. Garg. Asymmetric secure multi-execution with de-
classification. In POST, 2016.

[85] Annalisa Bossi, Carla Piazza, and Sabina Rossi. Compositional information
flow security for concurrent programs. J. Computer Security, 15(3):373–416,
2007.

[86] Niklas Broberg and David Sands. Flow-sensitive semantics for dynamic
information flow policies. In Programming Languages and Analysis for Secu-
rity, pages 101–112, 2009.

[87] Niklas Broberg and David Sands. Paralocks: role-based information flow
control and beyond. In Proc. ACM Symp. on Principles of Programming
Languages, volume 45, pages 431–444, 2010.

[88] Niklas Broberg, Bart van Delft, and David Sands. The anatomy and facets
of dynamic policies. In IEEE 28th Computer Security Foundations Symposium,
CSF 2015, Verona, Italy, 13-17 July, 2015, pages 122–136, 2015.

[89] K. Browder and M.A. Davidson. The virtual private database in Ora-
cle9iR2. Oracle Technical White Paper, Oracle Corporation, 500, 2002.

http://bnfc.digitalgrammars.com/

280 8. Empirical Study of Information Flows

[90] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A binary
analysis platform. In CAV, 2011.

[91] Jeremy Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan.
Opacity Generalised to Transition Systems. In FAST, 2005.

[92] Jeremy Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A. Ryan.
Opacity generalised to transition systems. Int. J. Inf. Sec., 2008.

[93] Jeremy Bryans, Maciej Koutny, and Peter Y. A. Ryan. Modelling opacity
using petri nets. Electr. Notes Theor. Comput. Sci., 2005.

[94] Eugene Burmako. Scala macros: let our powers combine!: on how rich
syntax and static types work with metaprogramming. In SCALA@ECOOP,
2013.

[95] Caffeinemark. http://www.benchmarkhq.ru/cm30/.
[96] Caffeinemark for android. https://play.google.com/store/

apps/details?id=com.android.cm3.
[97] Stefano Calzavara, Ilya Grishchenko, and Matteo Maffei. Horndroid: Prac-

tical and sound security static analysis of android applications by smt solv-
ing. In EuroS&P, 2016.

[98] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad
Sistla. Preventing information leaks through shadow executions. In AC-
SAC, 2008.

[99] Ethan Cecchetti, Andrew C Myers, and Owen Arden. Nonmalleable infor-
mation flow control. In ACM CCS, pages 1875–1891, 2017.

[100] Deepak Chandra and Michael Franz. Fine-grained information flow anal-
ysis and enforcement in a java virtual machine. In 23rd Annual Computer
Security Applications Conference (ACSAC 2007), December 10-14, 2007, Miami
Beach, Florida, USA, pages 463–475. IEEE, 2007.

[101] W. Chang, B. Streiff, and C. Lin. Efficient and extensible security enforce-
ment using dynamic data flow analysis. In CCS, 2008.

[102] A. Chaudhuri, P. Naldurg, and S. K. Rajamani. A type system for data-
flow integrity on windows vista. SIGPLAN Notices, 2008.

[103] James Cheney. A formal framework for provenance security. In CSF, 2011.
[104] James Cheney, Sam Lindley, and Philip Wadler. A practical theory of

language-integrated query. In ICFP, 2013.
[105] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Efficient flow

tracing with dynamic binary rewriting. In ISCC, 2006.
[106] Adam Chlipala. Static Checking of Dynamically-Varying Security Policies

in Database-Backed Applications. In OSDI, 2010.
[107] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing Confidentiality and

Integrity in Web Applications. In USENIX Security, 2007.
[108] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian

Zheng, and Xin Zheng. Secure web applications via automatic partitioning.
Comm. of the ACM, 2009.

[109] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum. Under-
standing data lifetime via whole system simulation. In USENIX Security
Symposium, 2004.

[110] Andrey Chudnov and David A. Naumann. Information flow monitor
inlining. In CSF, 2010.

http://www.benchmarkhq.ru/cm30/
https://play.google.com/store/apps/details?id=com.android.cm3
https://play.google.com/store/apps/details?id=com.android.cm3

BIBLIOGRAPHY 281

[111] Andrey Chudnov and David A. Naumann. Inlined information flow mon-
itoring for JavaScript. In ACM Conference on Computer and Communications
Security (CCS 2015), pages 629–643. ACM, 2015.

[112] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for javascript. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09,
pages 50–62, 2009.

[113] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for ran-
dom testing of haskell programs. Acm sigplan notices, 46(4), 2011.

[114] D. Clark and S. Hunt. Non-interference for deterministic interactive pro-
grams. In Workshop on Formal Aspects in Security and Trust (FAST’08), Octo-
ber 2008.

[115] M. R. Clarkson and F. B. Schneider. Hyperproperties. JCS, 2010.
[116] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.

Micinski, Markus N. Rabe, and César Sánchez. Temporal logics for hyper-
properties. In POST, 2014.

[117] J. A. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis
framework. In ISSTA, pages 196–206. ACM, 2007.

[118] E. S. Cohen. Information transmission in sequential programs. In FSC.
Academic Press, 1978.

[119] J. J. Conti and A. Russo. A taint mode for Python via a library. In NordSec,
2010.

[120] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter. Practical
mitigations for timing-based side-channel attacks on modern x86 proces-
sors. In S&P, 2009.

[121] Brian J. Corcoran, Nikhil Swamy, and Michael W. Hicks. Cross-tier, label-
based security enforcement for web applications. In SIGMOD, 2009.

[122] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In MICRO, 2004.

[123] M. Dam, G. Le Guernic, and A. Lundblad. Treedroid: a tree automaton
based approach to enforcing data processing policies. In CCS, 2012.

[124] Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving ap-
proach to analysis of secure information flow. In International Conference on
Security in Pervasive Computing, SPC’05, pages 193–209. Springer, 2005.

[125] Brian A Davey and Hilary A Priestley. Introduction to lattices and order.
Cambridge university press, 2002.

[126] Benjamin Davis and Hao Chen. DBTaint: cross-application information
flow tracking via databases. In WebApps, 2010.

[127] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank
Piessens. Flowfox: A web browser with flexible and precise information
flow control. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 748–759, 2012.

[128] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-
Verlag.

[129] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, 1977.

282 8. Empirical Study of Information Flows

[130] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, 1976.

[131] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
Boston, MA, USA, 1982.

[132] Dorothy E Denning and Teresa F Lunt. A multilevel relational data model.
In S&P, 1987.

[133] Dominique Devriese and Frank Piessens. Noninterference through secure
multi-execution. In S&P, 2010.

[134] Mohan Dhawan and Vinod Ganapathy. Analyzing information flow in
JavaScript-based browser extensions. In Annual Computer Security Applica-
tions Conference (ACSAC 2009), pages 382–391. IEEE, 2009.

[135] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith, T. F. Knight,
B. C. Pierce, and A. DeHon. PUMP – A programmable unit for metadata
processing. In HASP, 2014.

[136] C. Dima, C. Enea, and R. Gramatovici. Nondeterministic noninterference
and deducible information flow. Technical Report 2006-01, University of
Paris 12, LACL, 2006.

[137] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N. Rabe, and
Helmut Seidl. Model checking information flow in reactive systems. In
VMCAI, pages 169–185, 2012.

[138] Droidbench: A micro-benchmark suite to assess the stability of taint-
analysis tools for android. https://github.com/secure-software-
engineering/DroidBench.

[139] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman,
Michael Bailey, Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beek-
man, Mathias Payer, and Vern Paxson. The matter of heartbleed. In Inter-
net Measurement Conference (IMC), pages 475–488, 2014.

[140] Sebastian Eggert and Ron van der Meyden. Dynamic intransitive nonin-
terference revisited. 29(6):1087–1120, 2017.

[141] W. Enck, P. Gilbert, S. Han, V. Tendulkar, Byung-Gon Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones. ACM
Trans. Comput. Syst., 2014.

[142] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pern-
steiner, Franziska Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bho-
raskar, Seungyeop Han, Paul Vines, and Edward X. Wu. Collaborative ver-
ification of information flow for a high-assurance app store. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’14, pages 1092–1104, 2014.

[143] Csilla Farkas and Sushil Jajodia. The inference problem: A survey. SIGKDD
Explorations, 2002.

[144] J. S. Fenton. Memoryless subsystems. Comput. J., 17(2):143–147, 1974.
[145] Andrew Ferraiuolo, Weizhe Hua, Andrew C Myers, and G Edward Suh.

Secure information flow verification with mutable dependent types. In
Proceedings of the 54th Annual Design Automation Conference 2017, page 6,
2017.

[146] Flickr. Flickr geoprivacy settings. http://www.flickr.com/
account/geo/privacy/, 2011.

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
http://www.flickr.com/account/geo/privacy/
http://www.flickr.com/account/geo/privacy/

BIBLIOGRAPHY 283

[147] Robert W. Floyd. Assigning meanings to programs. Mathematical Aspects
of Computer Science, 19:19–32, 1967.

[148] Riccardo Focardi and Roberto Gorrieri. Classification of security properties
(part i: Information flow). In FOSAD, 2000.

[149] Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-
Yves Strub, and Benjamin Livshits. Fully abstract compilation to javascript.
In POPL ’13, 2013.

[150] Dario Freni, Carmen Ruiz Vicente, Sergio Mascetti, Claudio Bettini, and
Christian S. Jensen. Preserving location and absence privacy in geo-social
networks. In CIKM, 2010.

[151] R. Giacobazzi and I. Mastroeni. Abstract Non-Interference: Parameteriz-
ing Non-Interference by Abstract Interpretation. In Proc. Principles of Pro-
gramming Languages, pages 186–197, New York, January 2004. ACM-Press.

[152] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
John C. Mitchell, and Alejandro Russo. Hails: Protecting data privacy in
untrusted web applications. In OSDI, 2012.

[153] J. A. Goguen and J. Meseguer. Security policies and security models. In
S&P, pages 11–20, Apr 1982.

[154] J. A. Goguen and J. Meseguer. Unwinding and inference control. In IEEE
SP, 1984.

[155] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard. Information flow analysis of android applications in droidsafe. In
NDSS, 2015.

[156] M. Graa, N. Cuppens-Boulahia, F. Cuppens, and A. R. Cavalli. Detecting
control flow in smarphones: Combining static and dynamic analyses. In
CSS, 2012.

[157] Adam Granicz. Functional web and mobile development in F#. In CEFP,
2013.

[158] Eric Griffis, Jeffrey A Vaughan, and Todd Millstein. A platform for expres-
sive and secure data sharing with untrusted third parties. Technical Re-
port 120017, University of California, Los Angeles, 2011.

[159] Damas P. Gruska. Observation based system security. Fundam. Inform.,
2007.

[160] Damas P. Gruska. Informational analysis of security and integrity. Fundam.
Inform., 2012.

[161] Marco Guarnieri and David Basin. Optimal security-aware query process-
ing. In VLDB, 2014.

[162] Marco Guarnieri, Srdjan Marinovic, and David Basin. Strong and provably
secure database access control. In EuroS&P, 2016.

[163] G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow
Analyses. PhD thesis, Kansas State University, 2007.

[164] Joshua D. Guttman and Mark E. Nadel. What needs securing. In CSFW,
1988.

[165] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for Java.
In ACSAC, 2005.

[166] Daniel Hedin, Luciano Bello, and Andrei Sabelfeld. Value-sensitive hybrid
information flow control for a javascript-like language. In CSF, pages 351–
365. IEEE, 2015.

284 8. Empirical Study of Information Flows

[167] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. JS-
Flow: tracking information flow in JavaScript and its APIs. In SAC, pages
1663–1671. ACM, 2014.

[168] Daniel Hedin and Andrei Sabelfeld. Information-flow security for a core
of javascript. In CSF, pages 3–18. IEEE, 2012.

[169] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow
control. In Software Safety and Security - Tools for Analysis and Verification,
pages 319–347. 2012.

[170] Nevin Heintze and Jon G. Riecke. The SLam Calculus: Programming with
Secrecy and Integrity. In POPL, 1998.

[171] Hewlett-Packard. Data execution prevention.
http://h10032.www1.hp.com/ctg/Manual/c00387685.pdf, 2018. Ac-
cessed: 2018-11-12.

[172] Jaakko Hintikka. Knowledge and belief. Cornell University Press, 1962.
[173] Charles Antony Richard Hoare. An axiomatic basis for computer program-

ming. Communications of the ACM, 12(10):576–580, 1969.
[174] Charles Antony Richard Hoare. Communicating sequential processes. Pren-

tice Hall, 1985.
[175] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t

the droids you’re looking for: Retrofitting android to protect data from
imperious applications. In CCS, 2011.

[176] Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky,
Dimitrios Vytiniotis, Arthur Azevedo de Amorim, and Leonidas Lam-
propoulos. Testing noninterference, quickly. In ICFP, 2013.

[177] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai
Lee, and Sy-Yen Kuo. Securing web application code by static analysis and
runtime protection. In WWW, 2004.

[178] Dominic J. D. Hughes and Vitaly Shmatikov. Information hiding,
anonymity and privacy: a modular approach. JCS, 2004.

[179] Sebastian Hunt and Isabella Mastroeni. The per model of abstract non-
interference. In SAS, pages 171–185, 2005.

[180] Sebastian Hunt and David Sands. On flow-sensitive security types. In
POPL, POPL ’06, pages 79–90, New York, NY, USA, 2006. ACM.

[181] Sushil Jajodia and Ravi Sandhu. Polyinstantiation integrity in multilevel
relations. In S&P, 1990.

[182] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of privacy-
violating information flows in JavaScript web applications. In CCS, pages
270–283. ACM, 2010.

[183] Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. Run-time
enforcement of information-flow properties on android - (extended ab-
stract). In ESORICS, 2013.

[184] Martin Johns. On javascript malware and related threats. Journal in Com-
puter Virology, 4(3):161–178, 2008.

[185] Cliff B. Jones. Development Methods for Computer Programs including a Notion
of Interference. D.Phil. thesis, University of Oxford, June 1981.

[186] R. Joshi and K. R. M. Leino. A semantic approach to secure information
flow. Science of Computer Programming, 37(1–3), 2000.

BIBLIOGRAPHY 285

[187] N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting taint-
style vulnerabilities in web applications. JCS, 2010.

[188] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algo-
rithms. J. ACM, 1976.

[189] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn
Song. DTA++: dynamic taint analysis with targeted control-flow propa-
gation. In Proceedings of the Network and Distributed System Security Sym-
posium, NDSS 2011, San Diego, California, USA, 6th February - 9th February
2011, 2011.

[190] Aleksandr Karbyshev, Kasper Svendsen, Aslan Askarov, and Lars Birkedal.
Compositional non-interference for concurrent programs via separation
and framing. 2018.

[191] Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. Timing- and
termination-sensitive secure information flow: Exploring a new approach.
In S&P, 2011.

[192] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler,
and Michael Franz. Crowdflow: Efficient information flow security. In ISC,
volume 7807 of Lecture Notes in Computer Science, pages 321–337. Springer,
2013.

[193] Narges Khakpour, Oliver Schwarz, and Mads Dam. Machine assisted
proof of armv7 instruction level isolation properties. pages 276–291, 2013.

[194] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows:
Can’t live with ’em, can’t live without ’em. In International Conference on
Information Systems Security (ICISS 2008), volume 5352 of LNCS, pages 56–
70. Springer, 2008.

[195] John Krumm. A survey of computational location privacy. PUC, 2009.
[196] Lap-Chung Lam and Tzi-cker Chiueh. A general dynamic information

flow tracking framework for security applications. In ACSAC, 2006.
[197] Gurvan Le Guernic. Confidentiality Enforcement Using Dynamic Information

Flow Analyses. PhD thesis, Kansas State University, 2007.
[198] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: large-

scale detection of DOM-based XSS. In ACM Conference on Computer and
Communications Security (CCS 2013), pages 1193–1204. ACM, 2013.

[199] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le
Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and
Patrick McDaniel. Iccta: Detecting inter-component privacy leaks in an-
droid apps. In ICSE (1). IEEE, 2015.

[200] Peixuan Li and Danfeng Zhang. Towards a flow-and path-sensitive infor-
mation flow analysis. In Proc. IEEE CSF, pages 53–67, 2017.

[201] Peng Li and Steve Zdancewic. Downgrading policies and relaxed nonin-
terference. In POPL, 2005.

[202] Peng Li and Steve Zdancewic. Practical information flow control in web-
based information systems. In CSF, 2005.

[203] Xiaowei Li and Yuan Xue. A survey on server-side approaches to securing
web applications. ACM Surv., 2014.

[204] Ximeng Li, Heiko Mantel, and Markus Tasch. Taming message-passing
communication in compositional reasoning about confidentiality. In Asian
Symposium on Programming Languages and Systems (APLAS), pages 45–66,
2017.

286 8. Empirical Study of Information Flows

[205] B. Livshits. Dynamic taint tracking in managed runtimes. Technical Report
MSR-TR-2012-114, Microsoft, November 2012.

[206] B. Livshits and S. Chong. Towards fully automatic placement of security
sanitizers and declassifiers. In POPL, 2013.

[207] V. Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya
Banerjee. Merlin: specification inference for explicit information flow prob-
lems. In PLDI, 2009.

[208] Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider,
and Alexandra Weber. Cassandra: Towards a Certifying App Store for
Android. In SPSM, 2014.

[209] Luı́sa Lourenço and Luı́s Caires. Dependent information flow types. In
Proc. ACM Symp. on Principles of Programming Languages, pages 317–328,
Mumbai, India, January 2015.

[210] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley.
The seaview security model. TSE, 16(6), 1990.

[211] Alexander Lux, Heiko Mantel, and Matthias Perner. Scheduler-
independent declassification. In International Conference on Mathematics of
Program Construction, pages 25–47, 2012.

[212] Jonas Magazinius, Alejandro Russo, and Andrei Sabelfeld. On-the-fly
inlining of dynamic security monitors. pages 173–186. Springer Berlin
Heidelberg, 2010.

[213] Heiko Mantel. Possibilistic definitions of security - an assembly kit. In
CSFW, 2000.

[214] Heiko Mantel. On the composition of secure systems. In Security & Privacy,
pages 88–101, 2002.

[215] Heiko Mantel and Alexander Reinhard. Controlling the What and Where
of declassification in language-based security. In Proc. European Symp. on
Programming, pages 141–156, 2007.

[216] Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions and
guarantees for compositional noninterference. In Proc. IEEE CSF, pages
218–232, Cernay-la-Ville, France, Jun 2011.

[217] Wes Masri and Andy Podgurski. Measuring the strength of information
flows in programs. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 19(2), 2009.

[218] Isabella Mastroeni. Abstract interpretation-based approaches to security -
a survey on abstract non-interference and its challenging applications. In
Festschrift for Dave Schmidt, pages 41–65, 2013.

[219] Daniel Matichuk, Toby Murray, and Makarius Wenzel. Eisbach: A proof
method language for Isabelle. Journal of Automated Reasoning, 56(3):261–
282, 2016.

[220] Laurent Mazaré. Using unification for opacity properties. In WITS, 2004.
[221] Daryl McCullough. Specifications for multi-level security and a hook-up.

In Security & Privacy, pages 161–161, 1987.
[222] John McLean. A general theory of composition for trace sets closed under

selective interleaving functions. In 1994 IEEE Computer Society Symposium
on Research in Security and Privacy, Oakland, CA, USA, May 16-18, 1994,
pages 79–93. IEEE Computer Society, 1994.

[223] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin
Jia. Riding out DOMsday: Toward detecting and preventing DOM cross-

BIBLIOGRAPHY 287

site scripting. In Proceedings of the 25th Network and Distributed System
Security Symposium, 2018. To appear.

[224] Robin Milner. A theory of type polymorphism in programming. J. Comput.
Syst. Sci., 17(3):348–375, 1978.

[225] Robin Milner. Communication and concurrency. Prentice Hall, 1989.
[226] Scott Moore and Stephen Chong. Static analysis for efficient hybrid

information-flow control. In Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011,
pages 146–160, 2011.

[227] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4:
from general purpose to a proof of information flow enforcement. In Secu-
rity & Privacy, pages 415–429, May 2013.

[228] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Ger-
win Klein. Noninterference for operating system kernels. pages 126–142,
December 2012.

[229] Toby Murray, Robert Sison, and Kai Engelhardt. COVERN: A logic for
compositional verification of information flow control. London, United
Kingdom, April 2018.

[230] Toby Murray, Robert Sison, Edward Pierzchalski, and Christine Rizkallah.
Compositional verification and refinement of concurrent value-dependent
noninterference. In Proc. IEEE CSF, pages 417–431, June 2016.

[231] Toby Murray and Paul C. van Oorschot. BP: Formal proofs, the fine print
and side effects. In IEEE Cybersecurity Development Conference (SecDev),
2018. To appear.

[232] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java
Information Flow. Software release. http://www.cs.cornell.edu/
jif, 2001.

[233] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decen-
tralized label model. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 9(4):410–442, 2000.

[234] Jasvir Nagra and Christian Collberg. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Pearson Education,
2009.

[235] A. Nanevski, A. Banerjee, and D. Garg. Verification of information flow
and access control policies with dependent types. In Security & Privacy,
pages 165–179. IEEE Computer Society, May 2011.

[236] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Dependent
type theory for verification of information flow and access control policies.
ACM Trans. Program. Lang. Syst., 35(2):6, 2013.

[237] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determi-
nacy and rewriting. TODS, 35(3):21, 2010.

[238] Netscape. Using data tainting for security.
http://www.aisystech.com/resources/advtopic.htm, 2006.

[239] J. Newsome and D. X. Song. Dynamic taint analysis for automatic detec-
tion, analysis, and signature generation of exploits on commodity software.
In NDSS, 2005.

[240] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program analysis.
Springer, 1999.

http://www.cs.cornell.edu/jif
http://www.cs.cornell.edu/jif

288 8. Empirical Study of Information Flows

[241] Hanne Riis Nielson and Flemming Nielson. Content dependent informa-
tion flow control. Journal of Logical and Algebraic Methods in Programming,
87:6–32, 2017.

[242] Hanne Riis Nielson, Flemming Nielson, and Ximeng Li. Hoare logic for
disjunctive information flow. In Programming Languages with Applications
to Biology and Security, pages 47–65. 2015.

[243] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster: Explor-
ing the ecosystem of web-based device fingerprinting. In 2013 IEEE Sym-
posium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013,
pages 541–555, 2013.

[244] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[245] Martin Odersky and Tiark Rompf. Unifying functional and object-oriented
programming with scala. Commun. ACM, 57(4), 2014.

[246] Colin O’Halloran. A Calculus of Information Flow. In ESORICS, 1990.
[247] Susan Owicki and David Gries. An axiomatic proof technique for parallel

programs. Acta Informatica, 6:319–340, 1976.
[248] https://f-droid.org/repository/browse/?fdid=name.bagi.

levente.pedometer. Accessed: 2016-07-05.
[249] François Pottier and Vincent Simonet. Information flow inference for ML.

In POPL, 2002.
[250] Leonor Prensa Nieto. Verification of parallel programs with the Owicki-Gries

and rely-guarantee methods in Isabelle/HOL. PhD thesis, Technische Univer-
sität München, 2002.

[251] Leonor Prensa Nieto and Javier Esparza. Verifying single- and multi-
mutator garbage collectors with Owicki/Gries in Isabelle/HOL. In Math-
ematical Foundations of Computer Science (MFCS), volume 1893 of LNCS,
pages 619–628, 2000.

[252] Willard Rafnsson and Andrei Sabelfeld. Secure multi-execution: Fine-
grained, declassification-aware, and transparent. In CSF, 2013.

[253] Willard Rafnsson and Andrei Sabelfeld. Compositional information-flow
security for interactive systems. In Proc. IEEE CSF, pages 277–292, 2014.

[254] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning
approach for classifying and categorizing android sources and sinks. In
NDSS, 2014.

[255] H. G. Rice. Classes of recursively enumerable sets and their decision prob-
lems. Trans. Amer. Math. Soc., 74:358–366, 1953.

[256] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewrit-
ing techniques for fine-grained access control. In SIGMOD, 2004.

[257] William K. Robertson and Giovanni Vigna. Static enforcement of web
application integrity through strong typing. In USENIX, 2009.

[258] Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno,
Helen J Wang, and Crispin Cowan. User-driven access control: Rethinking
permission granting in modern operating systems. In Security & Privacy,
pages 224–238, 2012.

[259] A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicious and nonmali-
cious code. Marktoberdorf Summer School (IOS Press), 2009.

https://f-droid.org/repository/browse/?fdid=name.bagi.levente.pedometer
https://f-droid.org/repository/browse/?fdid=name.bagi.levente.pedometer

BIBLIOGRAPHY 289

[260] Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proceedings of the 23rd IEEE Computer Security Foun-
dations Symposium, CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010,
pages 186–199. IEEE Computer Society, 2010.

[261] Joanna Rutkowska and Rafal Wojtczuk. Qubes OS architecture. Technical
report, Invisible Things Lab, January 2010.

[262] P. Ryan. Mathematical models of computer security—tutorial lectures. In
FOSAD. Springer, 2001.

[263] P. Y. A. Ryan and T. Peacock. Opacity - further insights on an information
flow property. Technical Report CS-TR-958, University of Newcastle upon
Tyne, 2006.

[264] A. Sabelfeld and D. Sands. A per model of secure information flow in
sequential programs. Higher Order and Symbolic Computation, 14(1), March
2001.

[265] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles.
JCS, 17, 2009.

[266] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
2003.

[267] Andrei Sabelfeld and Andrew C. Myers. Language-based information-
flow security. JSAC, 2003.

[268] Andrei Sabelfeld and Andrew C. Myers. A model for delimited informa-
tion release. In ISSS, volume 3233 of Lecture Notes in Computer Science,
pages 174–191. Springer, 2003.

[269] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In Interna-
tional Andrei Ershov Memorial Conference on Perspectives of System Informat-
ics, pages 352–365. Springer, 2009.

[270] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-
threaded programs. In CSFW, pages 200–214. IEEE Computer Society,
2000.

[271] Andrei Sabelfeld and David Sands. Declassification: Dimensions and prin-
ciples. Journal of Computer Security, 17(5):517–548, 2009.

[272] Pierangela Samarati. Recursive revoke. In Encyclopedia of Cryptography and
Security, pages 1035–1037. Springer, 2011.

[273] Pierangela Samarati and Sabrina Capitani de Vimercati. Access Control:
Policies, Models, and Mechanisms. Springer LNCS, 2171, 2001.

[274] Ravi Sandhu and Fang Chen. The multilevel relational (MLR) data model.
TISSEC, 1(1), 1998.

[275] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. FLAX:
Systematic discovery of client-side validation vulnerabilities in rich web
applications. In Network and Distributed System Security Symposium (NDSS
2010). The Internet Society, 2010.

[276] Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles,
and Cormac Flanagan. Faceted dynamic information flow via control and
data monads. In POST, 2016.

[277] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld. Explicit secrecy: A
policy for taint tracking. In EuroS&P, 2016.

290 8. Empirical Study of Information Flows

[278] Daniel Schoepe. Isabelle formalizations. https://schoepe.org/

˜daniel/phd/isabelle, 2018.
[279] Daniel Schoepe, Musard Balliu, Frank Piessens, and A. Sabelfeld. Let’s

face it: Faceted values for taint tracking. In ESORICS, 2016. To Appear.
[280] Daniel Schoepe, Daniel Hedin, and Andrei Sabelfeld. SeLINQ: tracking

information across application-database boundaries. In ICFP, 2014.
[281] B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence analysis via

graph reachability. In SCAM, 2008, 2008.
[282] David A. Schultz and Barbara Liskov. IFDB: decentralized information

flow control for databases. In EuroSys, 2013.
[283] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know

about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In S&P 2010, 2010.

[284] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: A selective record-replay and dynamic analysis framework for
JavaScript. In European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE 2013), pages 488–498.
ACM, 2013.

[285] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing
engine for c. In ESEC/SIGSOFT FSE, pages 263–272, 2005.

[286] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David
Wetherall. Enhancing mobile apps to use sensor hubs without programmer
effort. In UbiComp, 2015.

[287] Paritosh Shroff, Scott Smith, and Mark Thober. Dynamic dependency
monitoring to secure information flow. In Proceedings of the 20th IEEE
Computer Security Foundations Symposium, CSF ’07, pages 203–217, 2007.

[288] Vincent Simonet. The Flow Caml system. Software. http://cristal.
inria.fr/˜simonet/soft/flowcaml, 2003.

[289] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. Discovering
browser extensions via web accessible resources. In Proceedings of the Sev-
enth ACM on Conference on Data and Application Security and Privacy, CO-
DASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017, pages 329–336, 2017.

[290] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Proc. ACM Symp. on Principles of Program-
ming Languages, pages 355–364, 1998.

[291] SnoopWall. Flashlight Apps Threat Assessment Report. https://www.
snoopwall.com/reports, 2014.

[292] D. X. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena. BitBlaze: A new approach to
computer security via binary analysis. In ICISS, 2008.

[293] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg. F4F:
taint analysis of framework-based web applications. In OOPSLA, 2011.

[294] Cristian-Alexandru Staicu and Michael Pradel. Freezing the web: A study
of ReDoS vulnerabilities in JavaScript-based web servers. Technical Report
TUD-CS-2017-0305, TU Darmstadt, 2017.

[295] Cristian-Alexandru Staicu, Michael Pradel, and Ben Livshits. Understand-
ing and automatically preventing injection attacks on Node.js. In NDSS,
2018.

https://schoepe.org/~daniel/phd/isabelle
https://schoepe.org/~daniel/phd/isabelle
http://cristal.inria.fr/~simonet/soft/flowcaml
http://cristal.inria.fr/~simonet/soft/flowcaml
https://www.snoopwall.com/reports
https://www.snoopwall.com/reports

BIBLIOGRAPHY 291

[296] CristianAlexandru Staicu and Michael Pradel. An empirical study
of implicit information flow, 2015. Poster at PLDI. https://www.
informatik.tu-darmstadt.de/fileadmin/user_upload/
Group_SOLA/Papers/poster-pldi2015-src.pdf.

[297] Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Ale-
jandro Russo, and David Mazières. Eliminating cache-based timing attacks
with instruction-based scheduling. In Proc. ESORICS, pages 718–735, Sep
2013.

[298] Alley Stoughton, Andrew Johnson, Samuel Beller, Karishma Chadha, Den-
nis Chen, Kenneth Foner, and Michael Zhivich. You sank my battleship!:
A case study in secure programming. 2014.

[299] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution
via dynamic information flow tracking. In ASPLOS, 2004.

[300] D. Sutherland. A model of information. In NCSC, 1986.
[301] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authoriza-

tion and information flow policies in Fine. In Proc. European Symp. on Pro-
gramming, March 2010.

[302] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan
Bhargavan, and Jean Yang. Secure distributed programming with value-
dependent types. In Proc. ACM International Conference on Functional Pro-
gramming, pages 266–278, 2011.

[303] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language
for enforcing user-defined security policies. In 2008 IEEE Symposium on
Security and Privacy (S&P 2008), 18-21 May 2008, Oakland, California, USA,
pages 369–383. IEEE, 2008.

[304] Don Syme. Leveraging .NET Meta-programming Components from F#:
Integrated Queries and Interoperable Heterogeneous Execution. In ML,
2006.

[305] Filippo Del Tedesco, Sebastian Hunt, and David Sands. A semantic hierar-
chy for erasure policies. In ICISS, 2011.

[306] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety
problem. In Static Analysis, 12th International Symposium, SAS 2005, London,
UK, September 7-9, 2005, Proceedings, pages 352–367, 2005.

[307] Manolis Terrovitis. Privacy preservation in the dissemination of location
data. SIGKDD Explorations, 2011.

[308] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. Taj: effective
taint analysis of web applications. In PLDI, 2009.

[309] Omer Tripp, Pietro Ferrara, and Marco Pistoia. Hybrid security analysis
of web javascript code via dynamic partial evaluation. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 49–59, 2014.

[310] Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore
Guarnieri. Andromeda: Accurate and scalable security analysis of web
applications. In FASE, 2013.

[311] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan,
Guilherme Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani,
and David I. August. RIFLE: An Architectural Framework for User-Centric
Information-Flow Security. In MICRO, 2004.

https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf
https://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_SOLA/Papers/poster-pldi2015-src.pdf

292 8. Empirical Study of Information Flows

[312] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan.
Soot - a java bytecode optimization framework. In Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative Research. IBM,
1999.

[313] B. van Delft, S. Hunt, and D. Sands. Very static enforcement of dynamic
policies. In POST, pages 32–52, 2015.

[314] Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens,
and Tamara Rezk. Stateful declassification policies for event-driven pro-
grams. In CSF, 2014.

[315] V. N. Venkatakrishnan, Wei Xu, Daniel C. DuVarney, and R. Sekar. Prov-
ably correct runtime enforcement of non-interference properties. In Pro-
ceedings of the 8th International Conference on Information and Communications
Security, ICICS’06, pages 332–351, 2006.

[316] Sabrina De Capitani di Vimercati and Giovanni Livraga. Sql access con-
trol model. In Encyclopedia of Cryptography and Security, pages 1248–1251.
Springer, 2011.

[317] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christo-
pher Krügel, and Giovanni Vigna. Cross site scripting prevention with dy-
namic data tainting and static analysis. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2007, San Diego, California,
USA, 28th February - 2nd March 2007, 2007.

[318] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent
language. J. Computer Security, 7(2,3):231–253, 1999.

[319] D. M. Volpano. Safety versus secrecy. In SAS, 1999.
[320] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type

system for secure flow analysis. Journal of Computer Security, 4(2/3):167–
188, 1996.

[321] Dennis M. Volpano and Geoffrey Smith. Eliminating covert flows with
minimum typings. In CSFW, 1997.

[322] David von Oheimb. Information flow control revisited: Noninfluence =
noninterference + nonleakage. In ESORICS, 2004.

[323] Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa Bertino, Keith Irwin,
and Ji-Won Byun. On the correctness criteria of fine-grained access control
in relational databases. In Proceedings of the 33rd International Conference on
Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007,
pages 555–566, 2007.

[324] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A
precise and general inter-component data flow analysis framework for
security vetting of android apps. In CCS, 2014.

[325] Zachary Weinberg, Eric Y Chen, Pavithra Ramesh Jayaraman, and Collin
Jackson. I still know what you visited last summer: Leaking browsing
history via user interaction and side channel attacks. In Security and Privacy
(SP), 2011 IEEE Symposium on, pages 147–161. IEEE, 2011.

[326] J. Todd Wittbold and Dale M. Johnson. Information flow in nondetermin-
istic systems. In IEEE Symposium on Security and Privacy, 1990.

[327] Yi-Chin Wu and Stéphane Lafortune. Comparative analysis of related
notions of opacity in centralized and coordinated architectures. DEDS,
2013.

BIBLIOGRAPHY 293

[328] Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cor-
mac Flanagan, and Stephen Chong. Precise, dynamic information flow for
database-backed applications. In Proc. ACM SIGPLAN Conference on Pro-
gramming language Design and Implementation, volume 51, pages 631–647,
2016.

[329] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for
automatically enforcing privacy policies. In POPL, 2012.

[330] Aris Zakinthinos and E Stewart Lee. A general theory of security proper-
ties. In Security & Privacy, pages 94–102, 1997.

[331] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. Precise enforce-
ment of confidentiality for reactive systems. In CSF, 2013.

[332] Stephan Arthur Zdancewic. Programming Languages for Information Security.
PhD thesis, Cornell University, Ithaca, NY, USA, 2002.

[333] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing
distributed systems with information flow control. In 5th USENIX Sympo-
sium on Networked Systems Design & Implementation, NSDI 2008, April 16-18,
2008, San Francisco, CA, USA, Proceedings, pages 293–308, 2008.

[334] Chenyi Zhang. Conditional information flow policies and unwinding rela-
tions. pages 227–241, 2011.

[335] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A
hardware design language for timing-sensitive information-flow security.
2015.

[336] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static
information flow control. International Journal of Information Security, 6(2–
3), March 2007.

[337] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static
information flow control. Int. J. Inf. Sec., 2007.

	D Schoepe komplett_Part1
	D Schoepe komplett_Part12
	D Schoepe komplett_Part13

