506,425 research outputs found
Computer Science and Game Theory: A Brief Survey
There has been a remarkable increase in work at the interface of computer
science and game theory in the past decade. In this article I survey some of
the main themes of work in the area, with a focus on the work in computer
science. Given the length constraints, I make no attempt at being
comprehensive, especially since other surveys are also available, and a
comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic
A Game Theoretic Approach to Computer Science: Survey and Research Directions
Theoretical Computer Science classically aimed to develop a mathematical understanding of capabilities and limits of traditional computing architecture (Boole, von Neuman, Turing, Church, Godel), investigating in computability, complexity theory and algorithmics. Now it seems more natural to revisit classical computer science notions under a new game- theoretic model. The purpose of this work is to investigate some themes at the intersection of algorithmics and game theory, emphasizing both mathematical and technological issues.computer science, game theory, network, protocol
A Parameterisation of Algorithms for Distributed Constraint Optimisation via Potential Games
This paper introduces a parameterisation of learning algorithms for distributed constraint optimisation problems (DCOPs). This parameterisation encompasses many algorithms developed in both the computer science and game theory literatures. It is built on our insight that when formulated as noncooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of algorithms developed in the computer science literature using game theoretic methods. Furthermore, our parameterisation can assist system designers by making the pros and cons of, and the synergies between, the various DCOP algorithm components clear
The risk of divergence
We present infinite extensive strategy profiles with perfect information and
we show that replacing finite by infinite changes the notions and the reasoning
tools. The presentation uses a formalism recently developed by logicians and
computer science theoreticians, called coinduction. This builds a bridge
between economic game theory and the most recent advance in theoretical
computer science and logic. The key result is that rational agents may have
strategy leading to divergence .Comment: 3rd International Workshop on Strategic Reasoning, Dec 2015, Oxford,
United Kingdom. 201
Distributed Computing with Adaptive Heuristics
We use ideas from distributed computing to study dynamic environments in
which computational nodes, or decision makers, follow adaptive heuristics (Hart
2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly
"best replying" to others' actions, and minimizing "regret", that have been
extensively studied in game theory and economics. We explore when convergence
of such simple dynamics to an equilibrium is guaranteed in asynchronous
computational environments, where nodes can act at any time. Our research
agenda, distributed computing with adaptive heuristics, lies on the borderline
of computer science (including distributed computing and learning) and game
theory (including game dynamics and adaptive heuristics). We exhibit a general
non-termination result for a broad class of heuristics with bounded
recall---that is, simple rules of behavior that depend only on recent history
of interaction between nodes. We consider implications of our result across a
wide variety of interesting and timely applications: game theory, circuit
design, social networks, routing and congestion control. We also study the
computational and communication complexity of asynchronous dynamics and present
some basic observations regarding the effects of asynchrony on no-regret
dynamics. We believe that our work opens a new avenue for research in both
distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion
of v1. Revised version will appear in the proceedings of Innovations in
Computer Science 201
Economics and mathematical theory of games
The theory of games is a branch of applied mathematics that is used in economics, management, and other social sciences. Moreover, it is used also in military science, political science, international relations, computer science, evolutionary biology, and ecology. It is a field of mathematics in which games are studied. The aim of this article is to present matrix games and the game theory. After the introduction, we will explain the methodology and give some examples. We will show applications of the game theory in economics. We will discuss about advantages and potential disadvantages that may occur in the described techniques. At the end, we will represent the results of our research and its interpretation
Statistical Mechanics of maximal independent sets
The graph theoretic concept of maximal independent set arises in several
practical problems in computer science as well as in game theory. A maximal
independent set is defined by the set of occupied nodes that satisfy some
packing and covering constraints. It is known that finding minimum and
maximum-density maximal independent sets are hard optimization problems. In
this paper, we use cavity method of statistical physics and Monte Carlo
simulations to study the corresponding constraint satisfaction problem on
random graphs. We obtain the entropy of maximal independent sets within the
replica symmetric and one-step replica symmetry breaking frameworks, shedding
light on the metric structure of the landscape of solutions and suggesting a
class of possible algorithms. This is of particular relevance for the
application to the study of strategic interactions in social and economic
networks, where maximal independent sets correspond to pure Nash equilibria of
a graphical game of public goods allocation
- …
