506,425 research outputs found

    Computer Science and Game Theory: A Brief Survey

    Full text link
    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic

    A Game Theoretic Approach to Computer Science: Survey and Research Directions

    Get PDF
    Theoretical Computer Science classically aimed to develop a mathematical understanding of capabilities and limits of traditional computing architecture (Boole, von Neuman, Turing, Church, Godel), investigating in computability, complexity theory and algorithmics. Now it seems more natural to revisit classical computer science notions under a new game- theoretic model. The purpose of this work is to investigate some themes at the intersection of algorithmics and game theory, emphasizing both mathematical and technological issues.computer science, game theory, network, protocol

    A Parameterisation of Algorithms for Distributed Constraint Optimisation via Potential Games

    No full text
    This paper introduces a parameterisation of learning algorithms for distributed constraint optimisation problems (DCOPs). This parameterisation encompasses many algorithms developed in both the computer science and game theory literatures. It is built on our insight that when formulated as noncooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of algorithms developed in the computer science literature using game theoretic methods. Furthermore, our parameterisation can assist system designers by making the pros and cons of, and the synergies between, the various DCOP algorithm components clear

    The risk of divergence

    Get PDF
    We present infinite extensive strategy profiles with perfect information and we show that replacing finite by infinite changes the notions and the reasoning tools. The presentation uses a formalism recently developed by logicians and computer science theoreticians, called coinduction. This builds a bridge between economic game theory and the most recent advance in theoretical computer science and logic. The key result is that rational agents may have strategy leading to divergence .Comment: 3rd International Workshop on Strategic Reasoning, Dec 2015, Oxford, United Kingdom. 201

    Distributed Computing with Adaptive Heuristics

    Full text link
    We use ideas from distributed computing to study dynamic environments in which computational nodes, or decision makers, follow adaptive heuristics (Hart 2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly "best replying" to others' actions, and minimizing "regret", that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the borderline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall---that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion of v1. Revised version will appear in the proceedings of Innovations in Computer Science 201

    Economics and mathematical theory of games

    Get PDF
    The theory of games is a branch of applied mathematics that is used in economics, management, and other social sciences. Moreover, it is used also in military science, political science, international relations, computer science, evolutionary biology, and ecology. It is a field of mathematics in which games are studied. The aim of this article is to present matrix games and the game theory. After the introduction, we will explain the methodology and give some examples. We will show applications of the game theory in economics. We will discuss about advantages and potential disadvantages that may occur in the described techniques. At the end, we will represent the results of our research and its interpretation

    Statistical Mechanics of maximal independent sets

    Full text link
    The graph theoretic concept of maximal independent set arises in several practical problems in computer science as well as in game theory. A maximal independent set is defined by the set of occupied nodes that satisfy some packing and covering constraints. It is known that finding minimum and maximum-density maximal independent sets are hard optimization problems. In this paper, we use cavity method of statistical physics and Monte Carlo simulations to study the corresponding constraint satisfaction problem on random graphs. We obtain the entropy of maximal independent sets within the replica symmetric and one-step replica symmetry breaking frameworks, shedding light on the metric structure of the landscape of solutions and suggesting a class of possible algorithms. This is of particular relevance for the application to the study of strategic interactions in social and economic networks, where maximal independent sets correspond to pure Nash equilibria of a graphical game of public goods allocation
    corecore