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The risk of divergence

Pierre Lescanne
University of Lyon, École normale supérieure de Lyon, CNRS (LIP),

46 allée d’Italie, 69364 Lyon, France

We present infinite extensive strategy profiles with perfect information and we
show that replacing finite by infinite changes the notions and the reasoning tools.
The presentation uses a formalism recently developed by logicians and computer
science theoreticians, called coinduction. This builds a bridge between economic
game theory and the most recent advance in theoretical computer science and
logic. The key result is that rational agents may have strategy leading to diver-
gence.

Keywords: divergence, decision, infinite game, sequential game, coinduction.

1 Introduction

Strategies are well described in the framework of sequential games, aka. games in
extensive forms with perfect information. In this paper, we describe rational strategies
leading to divergence.1 Indeed divergence understands that the games, the strategies
and the strategy profiles are infinite. We present the notion of infinite strategy profiles
together with the logical framework to reason on those objects, namely coinduction.

2 Decisions in Finite Strategy Profiles

To present strategy reasoning, we use one of the most popular framework, namely
extensive games with perfect information ([12] Chapter 5 or [3]) and we adopt its ter-
minology. In particular we call strategy profile an organized set of strategies, merging
the decisions of the agents. This organization mimics this of the game and has the
same structure as the game itself. They form the set2 StratProf. By “organized”, we
mean that the strategic decisions are associated with the nodes of a tree which cor-
respond to positions where agents have to take decisions. In our approach strategy
profiles are first class citizens and games are byproduct. In other words, strategy pro-
files are defined first and extensive games are no more than strategy profiles where all
the decisions have been erased. Therefore we will only speak about strategy profiles,
keeping in mind the underlying extensive game, but without giving them a formal defi-
nition3. For simplicity and without loss of generality, we consider only dyadic strategy
profiles (i.e.; double choice strategy profiles) , that are strategy profiles with only two
choices at each position. Indeed it is easy to figure out how multiple choice extensive

1In this paper we use “divergence” instead of “escalation” since it is somewhat dual convergence a
concept which plays a key role in what follows.

2To be correct, we should say the “they form the coalgebra”.
3A direct definition of games is possible, but is not necessary in this paper.
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strategy profiles can be represented by double choice extensive strategy profiles. We
let the reader imagine such an embedding. Therefore, we consider a set of choices:
Choice= {1,2}.

Along the paper, our examples need only a set of two agents: Agent= {A,B}. In
this paper we use coinduction and corecursion as basic tools for reasoning correctly
about and defining properly infinite objects. Readers who want to know more about
those concepts are advised to read introductory papers [5, 14], while specific applica-
tions to infinite strategy profiles and games are introduced in [9].

Definition 1 A finite strategy profile is defined by induction as follows:

• either given a utility assignment u (i.e., a function u :Agent→R) 〈〈u〉〉 is a finite
strategy profile, which corresponds to an ending position.

• or given an agent a, a choice c and two finite strategy profiles s1 and s2, 〈〈a,c,s1,s2〉〉
is a finite strategy profile.

For instance, a strategy profile can be drawn easily with the convention that 1 is
represented by going down and 2 is represented by going right. The chosen transition
is represented by a double arrow %- . The other transition is represented by a
simple arrow )) . For instance

// A
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B

2
%%

1
�

0,5

1,0.5 2,1

is a graphic representation of the strategy profile

sα = 〈〈A,2,〈〈A 7→ 1,B 7→ 0.5〉〉,〈〈B,1,〈〈A 7→ 2,B 7→ 1〉〉,〈〈A 7→ 0,B 7→ 5〉〉〉〉〉〉.

From a finite strategy profile, say s, we can define a utility assignment, which we
write ŝ and which we define as follows:

• 〈̂〈u〉〉= u

• ̂〈〈a,c,s1,s2〉〉= case c of 1→ ŝ1 | 2→ ŝ2

For instance ŝα(A) = 2 and ŝα(B) = 1.
We define an equivalence s =g s′ among finite strategy profiles, which we read as

“s and s′ have the same (underlying) game”.

Definition 2 We say that two strategy profiles s and s′ have the same game and we
write s =g s′ iff by induction

• either s = 〈〈u〉〉 and s′ = 〈〈u〉〉
• or s = 〈〈a,c,s1,s2〉〉 and s′ = 〈〈a′,c′,s′1,s′2〉〉 and a = a′, s1 =g s1 and s2 =g s′2.

We can define a family of finite strategy profiles that are of interest for decisions.
First we start with backward induction. Following [20], we consider ‘backward in-
duction’, not as a reasoning method, but as a predicate that specifies some strategy
profiles.



P. Lescanne 3

Definition 3 (Backward induction) A finite strategy profile s is backward induction
if it satisfies the predicate BI, where BI is defined recursively as follows:

• BI(〈〈u〉〉), i.e., by definition an ending position is ‘backward induction’.

• BI(〈〈a,1,s1,s2〉〉) ⇔ BI(s1)∧BI(s2)∧ ŝ1 ≥ ŝ2.

• BI(〈〈a,2,s1,s2〉〉) ⇔ BI(s1)∧BI(s2)∧ ŝ2 ≥ ŝ1.

In other words, a strategy profile which is not an ending position is ‘backward in-
duction’ if both its direct strategy subprofiles are and if the choice leads to a better util-
ity, as shown by the comparison of the utility assignments to the direct strategy subpro-
files. The two following strategy profiles are ‘backward induction’ [12](Example 158.1)

// A
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2
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2,1

1,2 0,1

// A
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B

2
!)

1
		

2,1

1,2 0,1

An agent is rational if she makes a choice dictated by backward induction and if
she keeps being rational in the future. We write this predicate Rat f where the index
f insists on finiteness making it distinct from the predicate Rat∞ on infinite strategy
profiles.

Definition 4 (Rationality for finite strategy profiles) The predicate Rat f is defined
recursively as follows:

• Rat f (〈〈u〉〉),

• Rat f (〈〈a,c,s1,s2〉〉)⇔∃〈〈a,c,s′1,s′2〉〉 ∈ StratProf,

– 〈〈a,c,s′1,s′2〉〉=g 〈〈a,c,s1,s2〉〉
– BI(〈〈a,c,s′1,s′2〉〉)
– Rat f (sc)

Then we can state a variant of Aumann theorem [1] saying that backward induction
coincides with rationality.

Theorem 5 ∀s ∈ StratProf,Rat f (s)⇔ BI(s).

3 Decisions in Infinite Strategy Profiles

We extend the concept of backward induction and the concept of rationality to infinite
strategy profiles. For that, we replace induction by coinduction.4 Notice that we mix
up recursive and corecursive definitions, and that we reason sometime by induction
and sometime by coinduction. Therefore we advise the reader to be cautious and to

4For readers not familiar with coinduction and not willing to read [5] or [14], we advise her to pretend
just that corecursive definitions define infinite objects and coinduction allows reasoning specifically on
their infinite aspects, whereas recursive definition define finite objects and induction allows reasoning on
their finite aspects.
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pay attention to when we use one or the other. 5 We write InfStratProf the set of finite
or infinite strategy profiles.

Definition 6 The set finite or infinite strategy profiles InfStratProf is defined corecur-
sively as follows:

• either given a utility assignment u, then 〈〈u〉〉 ∈ InfStratProf, which corresponds
to an ending position.

• or given an agent a, a choice c and two strategy profiles s1 ∈ InfStratProf and
s2 ∈ InfStratProf, then 〈〈a,c,s1,s2〉〉 ∈ InfStratProf.

We cannot define the utility assignments on all infinite strategy profiles, only on
those on which the utility can be “computed”. The strategy profiles on which utility
assignments are defined are called convergent, since when one follows the path indi-
cated by the choices one “converges”, that is that one gets to an ending position, i.e., a
position where utilities are actually attributed. The predicate convergent is defined by
induction, meaning that, on s, after finitely many steps following the choices of s an
ending position is reached. “Finitely many steps” is a finite aspect and this is why we
use an inductive definition.

Definition 7 (Convergent) Saying that s is convergent is written ↓ s. ↓ s is defined
by induction as follows:

• ↓ 〈〈u〉〉 or

• if ↓ s1 then ↓ 〈〈a,1,s1,s2〉〉 or

• if ↓ s2 then ↓ 〈〈a,2,s1,s2〉〉 or

On convergent strategy profiles we can assign utilities. The resulting function is
written ŝ when applied to a strategy profile s.

Definition 8 (Utility assignment) ŝ is defined corecursively on every strategy profile.

when s = 〈〈u〉〉 ŝ = f
when s = 〈〈a,1,s1,s2〉〉 ŝ = ŝ1
when s = 〈〈a,2,s1,s2〉〉 ŝ = ŝ2

The function ·̂′ has to be specified on an infinite object and this is why we use a core-
cursive definition.

Proposition 9 If ↓ s, then ŝ returns a value.

Actually convergent strategy profiles are not enough as we need to know the utility
assignment not only on the whole strategy profile but also on strategy subprofiles. For
that, we need to insure that from any internal position we can reach an ending position,
which yields that on any position we can assign a utility. We call always-convergent
such a predicate6 and we write it 2↓.
Definition 10 (Always-convergent)

5Notice that not all the authors are as cautious. For instance, Hargreaves-Heap and Varoufakis write
([3] p.27) “The idea [of common knowledge] reminds one what happens when a camera is pointing to a
television screen that conveys the same image recorded by the same camera: an infinite self-reflection”.
Indeed common knowledge is typically inductive whereas infinite self-reflection is typically coinductive.

6Traditionally 2 is the notation for the modality (i.e., the predicate transformer) always.
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• 2↓ 〈〈u〉〉 that is that for whatever u, 〈〈u〉〉 is always-convergent

• 2↓ 〈〈a,c,s1,s2〉〉 if

– 〈〈a,c,s1,s2〉〉 is convergent (i.e., ↓ 〈〈a,c,s1,s2〉〉), and
– s1 is always-convergent (i.e., 2↓ s1), and
– s2 is always-convergent (i.e., 2↓ s2).

Proposition 11 2↓ s ⇒ ↓ s.

s22 in Figure 1 is a typically non convergent strategy profile, wherever s1222 in the
same figure is a typically convergent and not always-convergent strategy profile.
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Figure 1: Two examples of strategy profiles

Using the concept of always-convergence we can generalize the notion of back-
ward induction to this that the tradition calls subgame perfect equilibrium [15] and
which we write here SPE. In short SPE is a corecursive generalization of BI. First we
define an auxiliary predicate.

Definition 12 (PE)

PE(s) ⇔ 2↓ s ∧ s = 〈〈a,1,s1,s2〉〉 ⇒ ŝ1(a)≥ ŝ2(a)
∧ s = 〈〈a,2,s1,s2〉〉 ⇒ ŝ2(a)≥ ŝ1(a)

We define SPE as always-PE. In other words, a strategy profile s is a subgame perfect
equilibrium if 2PE(s). 2 applies to a predicate.

Definition 13 (Always) Given a predicate P, the predicate 2P is defined corecur-
sively as follows.

• if P(〈〈u〉〉) then 2P(〈〈u〉〉) and

• if 2P(s1), 2P(s2) and P(〈〈a,c,s1,s2〉〉) then 2P(〈〈a,c,s1,s2〉〉)
Formally SPE is 2PE. Besides we may notice that the notation used for always-
convergence (Definition 10) is consistent with Definition 13. Now thanks to SPE we
can give a notion of rationality for infinite strategy profiles. Like for finite strategy
profiles we define corecursively, this time, an equivalence s =g s′ on infinite strategy
profiles (read s and s′ have the same game). Two strategy profiles have the same game
if at each step, they have the same agent and their respective direct strategy subprofiles
have the same game and only the choices differ.

Definition 14 We say that two strategy profiles s and s′ have the same game and we
write s =g s′ iff corecursively
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• either s = 〈〈u〉〉 and s′ = 〈〈u〉〉

• or s = 〈〈a,c,s1,s2〉〉 and s′ = 〈〈a′,c′,s′1,s′2〉〉 and a = a′, s1 =g s1 and s2 =g s′2.

Definition 15 (Rationality for finite or infinite strategy profiles) Rat∞ is defined core-
cursively as follows.

• Rat∞(〈〈u〉〉),

• Rat∞(〈〈a,c,s1,s2〉〉)⇔∃〈〈a,c,s′1,s′2〉〉 ∈ InfStratProf,
〈〈a,c,s′1,s′2〉〉=g 〈〈a,c,s1,s2〉〉∧SPE(〈〈a,c,s′1,s′2〉〉)∧Rat∞(sc)

The reader may notice the similarity with Definition 4 of rationality for finite games.
The difference is twofold: the definition is corecursive instead of recursive and BI
has been replaced by SPE. Let us now define a predicate that states the opposite of
convergence 7

Definition 16 (Divergence) ↑ s is defined corecursively as follows:

• if ↑ s1 then ↑ 〈〈a,1,s1,s2〉〉,

• if ↑ s2 then ↑ 〈〈a,2,s1,s2〉〉.

s22 in Figure 1 is a typical divergent strategy profile. The main theorem of this paper
can then be stated, saying that there exists a strategy profile that is both divergent and
rational.

Theorem 17 (Risk of divergence) ∃s ∈ InfStratProf,Rat∞(s) ∧ ↑ s.

Witnesses of divergent and rational strategy profiles will be given in Section 4.2
and Section 5.

4 Extrapolating the centipede

As an illustration of the above concepts, we show, in this section, two simple exten-
sions to infinity of a folklore example. The centipede has been proposed by Rosen-
thal [13]. Starting from a wording suggested by Aumann [1] we study two infinite
generalization8. Wikipedia [24] says:

Consider two players: Alice and Bob. Alice moves first. At the start
of the game, Alice has two piles of coins in front of her: one pile contains
4 coins and the other pile contains 1 coin. Each player has two moves
available: either ”take” the larger pile of coins and give the smaller pile
to the other player or ”push” both piles across the table to the other player.
Each time the piles of coins pass across the table, the quantity of coins in
each pile doubles.

7People used to coinduction know why it is better to define divergence directly instead of defining it
as the negation of convergence.

8The reason why we call them ∞pede and ωpede.
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Figure 2: A sketch of a strategy profile of the ∞pede.

4.1 The ∞pede

P∞(s) is a set of strategy profiles extending the strategy profiles of the centipede. Such
an infinite strategy profile can only be is sketched on Figure 2 . Actually proposing
an infinite extension of the centipede is quite natural for two reasons. First there is
no natural way to make the game finite. Indeed in the definition of the game, nothing
precise is said about its end, when no player decides to take a pile. For instance,
Wikipedia [24] says:

The game continues for a fixed number of rounds or until a player
decides to end the game by pocketing a pile of coins.

We do no know what the utilities are in the end position described as “a fixed number
of rounds”. Since A started, we can assume that the end after a fixed number of rounds
is B’s turn and that there are outcomes like:

1. B receives 2n+1 coins and A receives 2n+3 coins like for the previous B rounds
and that is all.

2. B chooses between

(a) receiving 2n+1 coins whereas A receives 2n+3 or
(b) sharing with A, each one receiving 2n+2.

3. Both A and B receive nothing.

Moreover the statement “Each player has two moves available: either “take” ... or
push...” is not true, in the ending position. We are not hair-splitting since the end
positions are the initializations of the (backward) induction and must be defined as
precisely as the induction step. Ending with 2.(b) does not produce the same backward
induction as the others. Let us consider the strategy profiles

pn = 〈〈A,1,〈〈A 7→ 22n+2,B 7→ 22n〉〉,πn〉〉
πn = 〈〈B,1,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉, pn+1〉〉

In words, the pn’s and the πn’s are the strategy subprofiles of the ∞pede in which Alice
and Bob stop always. Notice that

p̂n(A) = 22n+2 p̂n(B) = 22n

π̂n(A) = 22n+1 π̂n(B) = 22n+3

Theorem 18

1. ∀n ∈ N,SPE(pn)∧SPE(πn),
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2. ∀s ∈ InfStratProf,s =g p0∧SPE(s) ⇔ s = p0.

In other words, all the pn’s and the πn’s are ‘backward induction’. Moreover for the
∞pede, p0 is the only ‘backward induction’. strategy profile.

Proof: One can easily prove that for all n, 2↓ pn and 2↓ πn.
Assuming SPE(πn) and SPE(pn+1) (coinduction) and since

̂〈〈A 7→ 22n+2,B 7→ 22n〉〉(A)≥ π̂n(A)

we conclude that SPE(〈〈A,1,〈〈A 7→ 22n+2,B 7→ 22n〉〉,πn〉〉) that is SPE(pn).
The proof of SPE(πn) is similar.

For the proof of 2. we notice that in a strategy profile in SPE with
the same game as p0, there is no strategy subprofile such that the agent
chooses 2 and the next agent chooses 1. Assume the strategy subprofile is
sn = 〈〈A,2,〈〈A 7→ 22n+2,B 7→ 22n〉〉,〈〈B,1,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉,σn〉〉〉〉.
ans that SPE(sn) and SPE(σn). If it would be the case and if we write
t = 〈〈A 7→ 22n+2,B 7→ 22n〉〉 and t ′= 〈〈B,1,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉,σn〉〉,
we notice that t̂(A) = 22n+2 > t̂ ′(A) = 22n+1. This is in contradiction with
SPE(sn). 2

We deduce that the strategy profile d0, which diverges, is not in Rat∞ and more gener-
ally there is no strategy profile in Rat∞ for the ∞pede.

dn = 〈〈A,2,〈〈A 7→ 22n+2,B 7→ 22n〉〉,πn〉〉
δn = 〈〈B,2,〈〈A 7→ 22n+1,B 7→ 22n+3〉〉, pn+1〉〉
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Figure 3: Strategy profiles p0 and d0 of the ∞pede.

4.2 The ωpede

We know9 that “trees don’t grow to the sky”. In our case this means that there is a
natural number ω after which piles cannot be doubled.footnotePeople speak of limited

9Usually agents do not believe this. See [9] for a discussion of the beliefs of the agents w.r.t. the
infiniteness of the world.
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payroll. In other words, after ω , the piles keep the same size 2ω . An example of strat-
egy profile is sketched on Figure 4. In this family of strategy profiles, which we write
Pω , the utilities stay stable after the ω th positions. Every always-convergent strategy
profile of Pω , such that agents push until ω is in SPE. We conclude the existence of
rational divergent strategy profiles in Pω . In other words in the ω pede there is a risk
of divergence.
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Figure 4: A ‘backward induction‘ strategy profile for the ωpede.

Theorem 19 ∃s ∈ Pω ,Rat∞(s)∧ ↑ s.

One may imagine that divergence is when optimistic agents hope a reverse of the
tendency.

Comments: The ωpede example is degenerated, but it is interesting in two respects.
First, it shows a very simple and naive case of rational divergence. Second it shows
that cutting the infinite game, case 2. (b) is the most natural way, with a equilibrium in
which agents take until the end.

5 Two examples

0,1 strategy profiles 0,1 strategy profiles are strategy profiles with the shape of an
infinite “comb” in which the utilities are 0 for the agent who quits and 1 for the other
agent. It can be shown [8] that strategy profiles where one agent continues always and
the other quits infinitely often (in other words the other agent never continues always)
are in SPE. For this reason, the strategy profile where both agents continue always is
in Rat∞, which shows that divergence is rational.

The dollar auction The dollar auction is a well known game [16, 6, 11]. Its strategy
profiles have the same infinite comb shape as the 0,1 strategy profiles, the ∞pede and
the ωpede with the sequence of pairs of utilities:

(0,100) (95,0) (−5,95) (90,−5) (−10,90) (85,−10) . . . (−5n,100−5n) (100−5(n+1),−5n) . . .

and corresponds to an auction in which the bet of the looser is not returned to her.
We have shown [10] that the dollar auction may diverge with rational agents. People
speak of escalation in this case. The divergent strategy profile of the dollar auction is
in Rat∞.
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6 Reflection

Je est un autre (I is another)
Arthur Rimbaud (1854-1891)

Examples like the dollar auction or the 0,1 raise the following question: “How is it
possible in an escalation that the agents do not see that they are entering a hopeless
process?”. The answer is “reflection”. Indeed, when reasoning, betting and choosing,
the agents should leave the world where they live and act in order to observe the diver-
gence. If they are wise, they change their beliefs in an infinite world as soon as they
realize that they go nowhere [17]. This ability is called reflection and is connected to
observability, from the theoretical computer science point of view, which is itself con-
nected to coalgebras and to coinduction [5]. In other words, agents should leave the
environment in which they are enclosed and observe themselves.Like the poet, they
should be able to claim “I is another” whom I consider as an object.

7 Singularities and divergence

Divergence is called singularity, bubble, crash, escalation, or turbulence according to
the context or the scientific field. In mechanics this is considered as a topics by itself.
Leonardo da Vinci’s drawings (Fig. 5 left)show that he considered early turbulence and
vortices and only Reynolds during the XIXth century studied it from a scientific point
of view. In many other domains, phenomena of this family are rejected from the core
of the field, despite they have been observed experimentally. Scientists, among them
mainstream economists [2], prefer smoothness, continuity and equilibria [23] and they
often claim that departing from this leads to “paradoxes” [16]. In [7], we surveyed
Zeno of Elea’s paradox from the point of view of coinduction, as well as Weierstrass
function [22], the first mathematical example showing discontinuity at the infinite.
Here we would like to address two other cases. In 1935, that is one year before his

Figure 5: Da Vinci’s drawings (left) and a artist view of a blackhole (right) Wikimedia commons

famous article in the Proceedings of the London Mathematical Society [19], Alan Tur-
ing wrote a paper [18] presenting his result for a publication in the Proceedings of the
French Academy of Science. In this paper he calls “nasty” a machine that terminates
and “nice” a machine that does not terminate, showing his positive view of non ter-
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minating computations.10 In 1795, Laplace published his book Exposition du Système
du Monde and proposed the first clear vision of the notion of blackhole(Fig. 5 right),
but probably in order not to hurt his contemporaries, he found wiser to remove this
presentation from the third edition of his book. Then we had to wait Schwartzschild in
1915, few months after the publication by Einstein of the general theory of relativity,
for a second proposal of the concept of blackhole. But at that time the general relativ-
ity was not yet fully accepted as were not blackholes. Only recently, at the end of the
last century, the general relativity has been considered as “the” theory of gravitation
and there is no more doubt on the existence of blackholes. Since blackholes are sin-
gularities in gravitation, they are for the general theory of relativity the equivalent of
divergent strategy profiles for game theory.

Contribution of this paper

Unlike previous presentations of similar results [10, 8, 21] here we focus on the con-
cept of strategy profile which is central for the those of convergence, of divergence
and of equilibrium and is more targeted for a workshop on strategy reasoning. More-
over we introduce the ωpede (a new infinite version of the centipede) and “divergent”
strategy profiles are those that where called “escalation” in previous literature. This
terminology seems better fitted for its duality with convergence.

8 Conclusion

We have shown that strategy profiles in which no fixed limit is set must be studied as
infinite objects using coinduction and corecursion. In these infinite objects, the risk of
divergence is real and should be considered seriously.
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