129,051 research outputs found

    Randomly Generated 3D Environments for Serious Games

    Get PDF
    Abstract — This paper describes a variety of methods that can be used to create realistic, random 3D environments for serious games requiring real-time performance. These include the generation of terrain, vegetation and building structures. An interactive flight simulator has been created as proof of concept. An initial evaluation with two small samples of users (remote and hallway) revealed some usability issues but also showed that overall the flight simulator is enjoyable and appears realistic and believable. Keywords – serious games; 3D terrain modeling; computer graphics; flight simulator. I

    Computer graphics interactive workshop for two-dimensional fractals

    Get PDF
    We present in this study an interactive computer graphics workshop for two-dimensional fractals. The workshop enables the user to learn about fractals through experimentation with the generation of Koch-like fractal curves. A variety of Koch-like fractal curves, Julia sets and the Mandelbrot set are presented as examples. Algorithms are presented for creating the Mandelbrot set and for creating Kock-like fractal curves. Keywords and Phrases: fractals, Kock-like Fractal curves, Julia sets, interactive computer graphicsU.S. Army Combat Development Experimentation Center (USACDEC) under MIPR ATEC 46-86 and in part by funds provided through the Commodore Grace Murray Hopper Research Chair in Computer Science at the Naval Postgraduate School.http://archive.org/details/computergraphicsin00masoN0003986WRDQ200N

    Supporting Story Synthesis: Bridging the Gap between Visual Analytics and Storytelling

    Get PDF
    Visual analytics usually deals with complex data and uses sophisticated algorithmic, visual, and interactive techniques. Findings of the analysis often need to be communicated to an audience that lacks visual analytics expertise. This requires analysis outcomes to be presented in simpler ways than that are typically used in visual analytics systems. However, not only analytical visualizations may be too complex for target audience but also the information that needs to be presented. Hence, there exists a gap on the path from obtaining analysis findings to communicating them, which involves two aspects: information and display complexity. We propose a general framework where data analysis and result presentation are linked by story synthesis, in which the analyst creates and organizes story contents. Differently, from the previous research, where analytic findings are represented by stored display states, we treat findings as data constructs. In story synthesis, findings are selected, assembled, and arranged in views using meaningful layouts that take into account the structure of information and inherent properties of its components. We propose a workflow for applying the proposed framework in designing visual analytics systems and demonstrate the generality of the approach by applying it to two domains, social media, and movement analysis

    A framework for digital sunken relief generation based on 3D geometric models

    Get PDF
    Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose

    The development of a Java based GIS viewing tool : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Technology in Information Engineering at Massey University

    Get PDF
    Geographic Information Systems (GIS) industry sources quote the ratio of power users to casual users at 1000:1, within New Zealand this figure has been found to be 30:1. The casual user is often under-supported, with slow and cumbersome viewing tools. This project implements a full data download system in Java for use with Genasys (New Zealand) GIS software. Three components were developed; a vector data handler, an image download system, and a database client. These components were integrated to form a powerful client that offered a significant performance increase over the "server based" client. The image download system outperformed the "server based" client by over 400%. The vector data handler outperformed the "server based" client by over 50%, while the database client was over 250% quicker. GIS users rated all components to be of significant benefit, offering improved performance over their current GIS viewing tools. The work completed in this thesis provides Genasys (New Zealand) a useful tool to enable powerful, fast and stable Java based GIS viewing clients. Keywords: GIS, Java, computer graphics, image pyramid
    corecore