
NPS52-87-001

NAVAL POSTGRADUATE SCHOOL

Monterey, California

Computer Graphics Interactive Workshop for

Two-Dimensional Fractals

Lewis G. Mason

Ronald R. Rautenberg

Michael J. Zyda

January 1987

Approved for public release; distribution unlimited.

Prepared for:

_ ,„ 3hief of Naval Research
FedDocs in* „* 00017
D 208.14/2 Arlington, VA 22217

NPS-52-87-001

CP\ NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin
Superintendent

D. A. Schrady
Provost

This work was supported in part by the U.S. Army Combat Development Experimentation
Center (USACDEC) under MIPR ATEC 46-86 and in part by funds provided through the
Commodore Grace Murray Hopper Research Chair in Computer Science at the Naval
Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

MICHAEL J. ZYDI

Assistant Professor
Department of Computer Science

Reviewed by: Released by:

VINCENT Y.

Chairman
Department of Computer Science

\\a*juAk
KNEALE T. MARSHALL
Dean of Information & cience

UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PACE (Whit Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

t. REPORT NUMBER

NPS52-87-001

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Computer Graphics Interactive Workshop for
Two-Dimensional Fractals

S. TYPE OF REPORT 6 PERIOD COVERED

final/1 Oct 85 - 30 Sep 86
i. PERFORMING ORG. REPORT NUMBER 8 6 a

$£?
V H %
o.m-<

28I
O
O

7. AuTHORr«>

Lewis G. Mason
Ronald E. Rautenberg
Michael J. Zyda

• CONTRACT OR GRANT NUMBERfa.)

9. PERFORMING ORGANIZATION NAME AND ADORESS

Naval Postgraduate School
Monterey, CA 93943

N0003986WRDQ200

II. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, VA 22217

12. REPORT DATE

January 1987
13. NUMBER OF PAGES

109
14 MONITORING AGENCY NAME ft ADORESSf/f dlllerant Item Controlling Oltlce) IS. SECURITY CLASS, (ol thle report)

unclassified
16. DISTRIBUTION STATEMENT (ol thle Report)

Approved for public release; distribution unlimited

'7. DISTRIBUTION STATEMENT (ol the abetract entered In Block 20, II dllterent Irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rovoreo aide II nacaeeary and Identity by block number)

fractals, Koch-like fractal curves, Julia sets, interactive computer
graphics

20. ABSTRACT (Continue on revetee elde II nateeeary and Identity by block number)

We present in this study an interactive computer graphics workshop for

two-dimensional fractals. The workshop enables the user to learn about
fractals through experimentation with the generation of Koch-like fractal
curves. A variety of Koch-like fractal curves, Julia sets and the Mandelbrot
set are presented as examples. Algorithms are presented for creating the
Mandelbrot set and for creating Koch-like fractal curves.

do ,;: 1473 EDITION OF • MOV •• IS OBSOLETE

$ N 0102- LF-014- 6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Kntarad)

Computer Graphics Interactive Workshop for

Two-Dimensional Fractals $

Lewis G. Mason, Ronald E. Rautenberg and Michael J. Zyda *

Naval Postgraduate School,

Code 52, Dept. of Computer Science,

Monterey, California 93943

ABSTRACT

We present in this study an interactive computer graphics

workshop for two-dimensional fractals. The workshop enables the

user to learn about fractals through experimentation with the gen-

eration of Koch-like fractal curves. A variety of Koch-like fractal

curves, Julia sets and the Mandelbrot set are presented as examples.

Algorithms are presented for creating the Mandelbrot set and for

creating Koch-like fractal curves.

Key Words and Phrases: fractals, Koch-like fractal curves, Julia

sets, interactive computer graphics;

X This work wu lupported by the U.S. Army Combat Development! Experimentation Center, Fort Ord,

California and a grant from the Naval Ocean Syttemt Center, San Diego (Ref. # N0001486WR4B12SAC). Thii

work wu generated from Lew'u G. Maaon't Matter* Thetii.

* Contact author.

TABLE OF CONTENTS

I. INTRODUCTION 7

A. WHY DO WE NEED FRACTALS? 7

B. WHAT ARE FRACTALS? 7

1. What are their Origins? 7

2. The Meaning of Fractal 8

C. ARE FRACTALS BEING USED NOW? 14

D. GOALS OF THIS RESEARCH : 15

II. ABOUT KOCH-LIKE FRACTALS 17

A. FRACTAL DIMENSION 17

B. THE KOCH CURVE 20

C. KOCH-LIKE CURVES 23

III. JULIA SETS AND THE MANDELBROT SET 26

A. HISTORY 26

B. THE COMPLEX PLANE 27

C. JULIA SETS 28

D. THE MANDELBROT SET 30

E. MAKING PICTURES OF JULIA SETS AND THE
MANDELBROT SET 34

4

IV. IMPLEMENTATION DETAILS: 2D INTERACTIVE
FRACTAL WORKSHOP 36

A. BACKGROUND 36

B. THE MENU ORGANIZATION 36

1. Main Menu 37

2. Interactive Generator Build Menu 42

3. Free Form Options Menu 44

4. Fractal Curve Generation Menu 44

5. Re-Run or Dump Bitmap Menu 46

V. BUILDING A GENERATOR '. 47

A. HOW TO BUILD A GENERATOR 47

1. What information is saved about for a Generator 48

2. Data Structure for the Initial Object 51

B. CREATING THE FRACTAL CURVE 53

1. Fractal Curve Generation Overview 53

2. The Algorithm for Calculating the Generator Points 54

VI. WORKSHOP EXPERIMENTS CONDUCTED 62

A. INTRODUCTION 62

B. DIMENSION VERIFICATION FOR THE FRACTAL
CURVES 62

C. PRETTY KOCH-LIKE CURVES 70

D. EXPERIMENTS WITH THE MANDELBROT SET 78

VII. CONCLUSIONS 90

A. SUMMARY 90

B. LIMITATIONS 90

C. AREAS OF FURTHER RESEARCH 92

D. CONCLUSIONS 92

APPENDIX A - THE MANDELBROT SET 94

APPENDIX B - CALCULATING GENERATOR POINTS 101

LIST OF REFERENCES 109

INITIAL DISTRIBUTION LIST 110

I. INTRODUCTION

A. WHY DO WE NEED FRACTALS?

If you have ever tried to draw a picture of a natural object on a computer

graphics terminal with only the primitive drawing commands normally found on

a computer, then you know how hard it is to create a realistic looking picture of a

natural object. Why is this so difficult? Benoit B. Mandelbrot, who in 1975

coined the term fractals to give a title to his first essay on the subject says,

"Clouds are not spheres, mountains are not cones, coastlines are not circles, and

bark is not smooth, nor does lightning travel in a straight line" [Ref. 1: p. 6]. In

general, the objects of nature are not created with the regularity of the Euclidean

primitives.

Clearly then something new is needed if we are going to draw natural objects

and make them look more realistic. The standard Euclidean geometry with its

primitives, lines and circles and cones, and three dimensions is not enough for

either describing or rendering realistic looking objects.

B. WHAT ARE FRACTALS?

1. What are their Origins?

Mandelbrot is a mathematician, who has drawn heavily on his

mathematical background to describe fractals. He has relied on the works from

7

the mathematicians of the late 1800s and early 1900's. This was a period when

several maverick mathematicians challenged the conventional ideas of their day.

These mavericks, whose works Mandelbrot uses, Cantor, Peano, Weierstrauss,

Julia, Fatau and von Koch all proposed ideas that went against the establishment

at the time. They invented ideas such as continuous curves that had no

derivatives, and lines that could fill whole areas of a plane. These functions were

looked on as a "gallery of monsters", "pathological", "psychotic" and even

"terrifying". However, in about 1925 their ideas were placed on the shelf and

largely forgotten. In 1975, Mandelbrot began studying these old "monsters". He

had computers to use as a tool for the multitude of calculations these functions

required. He also used the precision of computer graphics to display the results.

The results give a visual, intuitive feel to these "monsters". Illuminated by

computer graphics, they have finally been recognized as some of the basic

structures in the language of nature's irregular shapes, the "Fractal Geometry of

Nature" [Ref. 2: p. 806].

2. The Meaning of Fractal

Mandelbrot said he coined the term fractal to represent something "rough

but self-similar". He also says that both terms are needed to describe fractals.

Intuitively, roughness is a measure of what an object looks like. Self-similarity,

simply put, is "as you zoom in and examine any portion, it doesn't look

different".

Roughness can best be explained with a few examples. A straight line is

a standard Euclidean object in one dimension and is not considered rough. A

plane is a standard two dimensional object and is not considered rough. What

about a line that wanders around the plane? It is no longer a simple line, yet it

does not fill the plane either. Roughness is a representation of the "wiggliness" of

the line and is related to a fractal dimension. Fractal dimension is formally

defined in [Ref 1: p. 361], but is considered here informally as a measure of

roughness. A relatively straight line, with few "wiggles" has a roughness greater

than the straight line, and has a fractal dimension greater than 1.0. For example,

Figure 1.1 is a relatively straight line and has a. fractal dimension of

approximately 1.06. A line that has many "wiggles" has a roughness that is

greater than a straight line and also greater than a line with less "wiggles". Figure

1.2 is an example of a line "more wiggly" than Figure 1.1. The line in Figure 1.2

has a dimension of about 1.26. As the roughness of a line gets larger, the line

wiggles all around the plane and almost completely fills a portion of the plane,

looking much like a filled polygon in Euclidean primitives. A line with a lot of

roughness approaches 2.0 for a fractal dimension as it approaches filling a portion

of the plane. The same concept of roughness or dimension between 1.0 and 2.0

can be applied to change in roughness from a plane (2.0) to a solid (3.0). A plane

that is "crumpled" is no longer a smooth plane, and has a roughness greater than

two but less than three. In this study, we concentrate on lines with dimensions

between 1.0 and 2.0.

9

g
<L 01

C

_l

z
t—

1

Figure 1.1 Dimension =1.06

10

TD S
01 »-H *"^

>
CO si a

u /
*
5

" E
z 5

Figure 1 . 2 Dimension = 1 . 26

11

There are two types of self-similarity: exact self-similarity and statistical

self-similarity. Exact self-similarity for a Fractal curve is achieved when the rules

of construction make the curve out of parts that look just like, but reduced in size

from, the original. A good example of exact self-similarity is the von Koch

snowflake (Figure 1.3). The von Koch snowflake was first proposed in 1904. To

describe the snowflake, some of Mandelbrot's terminology needs to be introduced.

There are two main components used in the construction of the snowflake. The

"initiator" is the segment with which you start. The "generator" is the object that

is substituted in for the initiator, properly scaled so the end points of the initiator

and generator are coincident. An ititial object is composed of one or more

initiators. The initial object for the snowflake is a triangle, and the initiator for

the snowflake is a straight line segment The generator is four smaller line

segments each scaled to — of the length of the original line segment and

connected as depicted in Figure 1.3. The snowflake is created by starting with an

equilateral triangle. Each of the sides of the triangle is considered an initiator. A

generator is substituted in for each initiator. The object then has 12 line

segments each being — of the original length. Each of the 12 line segments is

now considered an initiator and the replacement is repeated. In theory, the

replacements can be repeated an infinite number of times, since for any two real

numbers there are infinitely many real numbers between them. This produces a

curve that has an exact self-similarity. If any portion of the curve is expanded to

12

^\

9
s 3m N

Olfi
m ^

i! / ® i

E §U-6 <
UJ O ^v. * £

II
&>

" E
z 5

Figure 1.3 The Koch Snowflake

13

an arbitrary magnification it looks exactly the same as the original curve. Most

objects in nature do not have this exact self-similarity, they exhibit a statistical

self-similarity.

A good example of statistical self-similarity is a tree. A branch of a tree

with its smaller branches looks a lot like the trunk of the tree with its branches.

Another example that is used in the literature is a coastline. A small segment of a

bay, when examined in detail looks similar to a large section of a coastline in a

larger scale. Although the segments being viewed are not exactly alike, they do

look remarkably similar. The key point is that fractals exhibit an invariance

under changes of scale.

C. ARE FRACTALS BEING USED NOW?

Fractals are being used now. Within the last five to ten years fractal

geometry and its concepts have become central issues in most of the natural

sciences. Fractals can "mimic the activities of the stock market, the motion of

molecules, and the growth of plants. Consequently their use ranges from physics,

biology, and sociology, to art and even motion-picture scene simulation" [Ref. 3:

p. 157]. Fractals have proven useful in two ways, both describing and acting as a

mathematical model for many seemingly complex shapes found in nature.

14

D. GOALS OF THIS RESEARCH

Using fractals would be almost impossible without the aid of computers.

While the formulas creating fractal curves are simple, the calculations must be

performed over and o\ r, each time using the result of the previous calculation.

All but the simplest are calculated millions of times. Once the calculations are

made, the rendering of the pictures requires the precision of computer graphics for

proper execution.

Gaddis states:

There are two approaches that can be taken in the investigation of fractal

geometry and computer graphics.

- To view the computer as a tool to enhance the investigation of fractal

geometry.

or

- To view fractals geometry as a tool to enhance the realism of computer

graphics. [Ref. 4: p. 6]

In this study, we have chosen to follow the first approach, to use the computer to

aid in learning about fractal geometry through experimentation with an

interactive workshop on two dimensional fractals.

We have created an interactive workshop where an individual can sit at a

computer terminal and using a mouse for inputs, sketch a generator directly onto

the video screen. If the generator is satisfactory, the initiator structure can then

be selected and the replacements commenced. The replacements can not continue

indefinitely, and we use a termination condition such that when the length of the

new initiator is less than one pixel width on the screen the replacement is stopped.

15

The results can be rapidly observed and the experiment can be repeated with a

new generator if desired. There is also a facility to save the results to a file in a

format that our laser printer can take as input. Hard-copy results of the

experiments can be saved and compared.

16

II. ABOUT KOCH-LIKE FRACTALS

A. FRACTAL DIMENSION

The following section is not a rigorous discussion of fractal dimension. It is

aimed at giving an intuitive feeling of a fractal dimension and self-similarity.

Self-similarity is the property that a portion of an object examined under an

arbitrary magnification looks similar to the original. The example cited most

often in the literature is the coastline of Great Britain. Looking at a map that

shows the entire west coast of Great Britain, and comparing it to a map that

shows only the south one-quarter of the coast expanded to occupy the same area

on a page, the coastlines look vaguely similar. They have the same "ruggedness".

Continuing on in the same manner and examining an arbitrary bay, expanding

the view of the bay shoreline, a similarity, the same "ruggedness" is noticed.

Self-similarity is observed independent of the viewing scale. Fractal curves with

exact self-similarity are invariant under changes of scale. Fractal curves that are

not exactly self-similar are not invariant, but they still resemble each other under

changes of scale.

Scaling also affects the length of the perimeter of the island. A drive around

the island is shorter than a walk that closely follows the shoreline. The perimeter

determined by the walk is shorter than the perimeter determined with a set of

17

calipers measuring around the island, along the waterline. The smaller the

measuring scale, the longer the perimeter appears. This concept of decreasing

scale and increasing perimeter can be transported to fractal curves. The scale

factor is closely related to the fractal dimension. For example, in one dimensional

space, start with a finite line segment. Divide it into N equal parts. Each part is a

smaller version of the original line, scaled down by a ratio r = 1/N. A general

formula in one dimension is N r
1 = 1. (Figure 2.1).

Using the same idea on a two dimensional object yields similar results. Begin

with a two dimensional square. Divide it into N equal parts. (For example divide

it into 4 equal parts by connecting the midpoints of each line segment.) Each

part is a smaller version of the original square, scaled down by a ratio r = —?-

N

(for our example N = 4, so r = —— or r = —). For two dimensions the formula

4
T

is N r
2 = 1. (Figure 2.2).

Going one step more into the third dimension follows the pattern already

established. Begin with a cube, all sides of equal length. Divide the cube into N

equal parts. (For example construct 8 equal parts by connecting the midpoints of

each side.) Each part is a smaller version of the original cube, scaled down by a

scaling ration r = ——r^. (For our example N = 8, r =
, i. or r = — .) Again

N 1' 8 8*7* 2
'

for three dimensions N r
5 = 1. (Figure 2.3).

18

N = 4

r = 1/4

N r
1

= 4(1/4) == 1

N r1 = 1

Figure 2.1 One Dimension

N = 4

r = 1/2

N r
2 =4(l/2)

2
= 1

1Nr 2 =

Figure 2.2 Two Dimensions

_^ ^ ^
ftZL <* N = 8

r = 1/2

N r3 = 8(l/2)
3
= 1

N r
3 = 1

Figure 2.3 Three Dimensions

19

In general if N is the number of equal parts, and r is the scaling ratio, we can

let D represent the dimension and the equation becomes N r = 1. If we now

assume that dimension is not limited to integer values we can solve the equation

for D. The result is

D logN

log(-)
r

This D, that depends on the scaling ratio and the number of segments, is a

good measure of the fractal dimension.

B. THE KOCH CURVE

We now return to the Koch curve for some examples of the dimension

calculations. The Koch curve is created by a recursive replacement technique.

Again we use Mandelbrot's two components, initiator and generator. The initiator

in our examples is always a single line segment. The generator is four line

segments. Each of those four line segments is — the length of the initiator. For
3

all the Koch-like curves, the end points of the initiator become the end points for

the generator. That is, a single line segment (the initiator) is replaced by an

appropriately scaled down set of line segments (the generator). The von Koch

snowflake begins with an equilateral triangle. Each leg of the triangle is

considered an initiator, thus there are three initiators at the begining of the

construction of the curve (Figure 2.4) [Ref. 4: p. 26].

20

INITIATOR

~~A
N = 4

THE KOCH CURVE

Recursive term-

ination distance

is .05 inch.

DT = 1,HB= 1 26

Output medium:

Laser printer

Resolution:
300 dots/inch

Figure 2.4 The Koch Curve

21

We begin with the equilateral triangle and replace each of the three initiators

with a generator. The picture now looks like the perimeter of a star of David, and

there are now 12 line segments (Figure 2.4). The 12 line segments now become

initiators and the replacement is done again. Each initiator is replaced by an

appropriately scaled down generator. This process is repeated an infinite number

of times.

If we assign the value of 1 to each beginning line segment's length, then the

perimeter of the original triangle is 3. After the first set of replacements the

perimeter is 4. After the second set of replacements the perimeter is 5 — . With

each successive iteration of the replacements, the length of an individual line

segment decreases (and approaches 0) while the length of the perimeter grows

without bounds. This is the seeming contradiction that the mathematicians of

the early 1900's found so interesting. The results do not fall nicely into the

'normal' three dimensions of Euclid.

If we examine the dimension of the initiator generator relationship, we see

some possible answers. The number of line segments is 4, and the scaling ratio is

1/3. Using these values in the dimension equation gives

D = J2£± * 1.26
log 3

22

This is certainly not an integer but then the curve does not behave in Euclidean

fashion. Figure 2.5 is an example of the representation of a Koch snowflake on a

graphics screen. The resulting picture is certainly not a line, yet it does not fill a

plane so it is somewhere between a dimension of 1.0 and a dimension of 2.0.

The 1.26 dimension represents a "wiggliness" of the line in the plane. As the

number grows from 1.0, the curve begins to "wiggle" through more of the plane.

A dimension of 1.26 is not very "wiggly" but a curve with a dimension near 2.0

almost becomes a solid polygon.

C. KOCH-LIKE CURVES

All Koch-like fractal curves use the same recursive replacement techniques as

described above. The dimension calculation for a Koch-like curve that does not

have all segments of the generator the same size is not as nice. Since the

segments of the generator are not the same size, the scaling ratio is not a fixed

number. There have been several methods proposed for determining the fractal

dimension when the scaling ratio is not constant throughout the generator. One

such method uses the relationship between the perimeter length and the size of

the measuring tool. "When using a ruler of size r to measure a coastline's length,

the total length equals the ruler size times the number of steps of size r, N(r),

taken tracing the coast.

LENGTH = rN(r).

23

c

fA

U/W *f\r3

®
m Sm n

OLD ° 01
l-l

a / t ^ 01

B-6 <\ i i g < 5

Ixl o \.

H Wn E
z 5

5 \
t-H

*

Figure 2.5 The Koch Snowflake

24

As with the snowflake, N(r) varies on the average as —=r- and

LENGTH = r -^- = -^-p" |Ref. 2: p. 808] The approximate fractal

dimension can be determined from this equation.

25

III. JULIA SETS AND THE MANDELBROT SET

A. HISTORY

The Koch-like curves are not the only type of fractal. There are two types of

fractals that have been used to produce the majority of the fractal pictures seen in

the literature. Fractal mountains are generated through the use of "random"

fractals. Random fractals are the ones that imitate nature [Ref. 3: p. 157]. The

technique for producing random fractals is described in [Ref. 4]. The second type

of fractal produces the dragons and multicolored monsters of the Julia sets and

the Mandelbrot set. Julia sets and the Mandelbrot sets are fractals that are

invariant under non-linear transformations. Mandelbrot has used the recursive,

non-linear relation Zn + 1
= Zn + C , where Z and C are elements of the complex

number system. This function was first studied by G. Fatau in 1906 [Ref. 2: p.

224]. The sets formed by this function were studied in "the theory of iteration of

rational maps of the complex plane". The study reached its high point in 1918,

with papers by both G. Julia and P. Fatau [Ref. 5: p. 153]. These sets have

become known as Julia sets. When Mandelbrot first started creating Julia set

pictures he says:

We accumulated beautiful drawings of Julia sets by the bushel. ... It was

nice to understand intuitively, at long last, what Julia and Fatau had

really been after. And in addition nearly all Julia sets proved to be

extraordinarily beautiful. [Ref. 5: p. 153]

26

To create these beautiful pictures, we need to understand a little about the

complex numbers and the complex plane.

B. THE COMPLEX PLANE

The complex plane is a two dimensional plane with the two axes labeled real

and imaginary. All complex numbers can be represented as a point in the

complex plane and are of the form Z = a + bi . a is the component along the

real axis and b is the component along the imaginary axis. The i is a

representation of \/-l. such that i
2 = -1. Addition and subtraction in the

complex plane is similar to addition in the "Real" number system, except real

components are added to real components and imaginary components are added

to imaginary components. For example, if Zj = a + bi and Z 2
= g + hi then

Zj + Z 2
= (a + g) + (b + h)i. Multiplication is more complicated and is

carried out as the multiplication of two ordinary binomials. For example, again

using Z 1 and Z 2 ,

Z 2
x Z 2

= a(g + h)i + b(g + hi) = ag + ahi + bgi + bhi 2
.

Since i
2 = —1,

Z 1
x Z 2

= (ag - bh) + (ah + bg)i.

27

The modulus of a complex number is a measure of the distance of the point

representing that number from the origin of the plane. The modulus can be

calculated by using the Pythagorean theorem,

modulus
|
Zn |

= v/a
2

-f b 2
.

C. JULIA SETS

What is a Julia set? The easiest answer is a simple example. For the

function Zn + 1
= Z 2 + C pick the value for C to be + Oi. The function then

becomes Zn + 1
= Z 2

. a simple squaring of the complex number. Consider the

starting value. Z in polar coordinates, a modulus and an angle measured from

the real axis, representing the point. To obtain the value Zq we simply square

the modulus and double the angle. If the function is iterated time and time again

there are three possible outcomes.

1. If the modulus of Z is greater than 1, then Zn + 1 approaches oo.

2. If the modulus of Z is less than 1, then Zn+1 approaches 0.

3. If the modulus of Z is equal to 1, then Zn+1 is on the unit circle about the

origin and remains on the circle forever. (Figure 3.1)

In this example, the two values and oo act as attractors if Z is not on the

unit circle. With multiple iterations of the function, Z begins to approach either

or oo. and oo attract values, and they each have a basin of attraction. The

basin of attraction of a limit value is the set of all numbers that when iterated

repetitively approach that limit value. In our example, everything inside the unit

circle is in the basin of attraction of 0. Similarly everything outside the unit circle

28

Cu

imaginary

~"^V \ z i

^
z
°

1

real

v
^

The Unit Circle—^

D
J

Z after multiple iterations approaches Zero.

Z^ after multiple iterations approaches infinity.

Z2 after multiple iterations is still on the unit circle

Figure 3.1 Basins of Attraction in the Complex Plane

29

is in the basin of attraction of oo. The boundary between the two basins of

attractions, for our example the unit circle, is a Julia set.

If we pick a C other than 0, the boundary is not a circle, and there can be

attractors other than and oo. In such cases, there is competition among several

attractors for domination of the plane. The boundaries are seldom simple, instead

they are an "unending filigreed entanglement and unceasing bargaining" for

control of the plane [Ref. 5: p. 4]. The border regions are an area c transition,

from one domain of attraction to another. It is here in the border regions that the

interesting pictures lay waiting.

There are two major classes of Julia sets. Some are in one piece and we call

them connected. The others are not in one piece, they are a cloud of points called

Cantor sets. Adrien Douady has given the name Mandelbrot Set to the set of all

values of C (in the function Zn+1 = Z* + C) for which the Julia sets are

connected. [Ref. 5: p. 161]

D. THE MANDELBROT SET

The Mandelbrot set is a graphical representation of the values of C for which

connected Julia sets result from the iteration of Zn + 1
= Z* + C [Ref. 6: p. 16].

The Mandelbrot set has a cardoid shaped main body with multiple smaller buds

growing from the body. The Mandelbrot set is the black portion in the center of

the plane (Figure 3.2). The rings around the Mandelbrot set are not part of the

set, though they are usually the prettiest part of the pictures (Figure 3.3).

SO

Figure 3.2 The Mandelbrot Set

31

Figure 3.3 The Mandelbrot Set with Rings

32

The rings represent an escape time towards oo. Mathematicians have shown

that if the modulus of Z ever exceeds two then Z is in the basin of attraction of

oo [Ref. 7: p. 77]. Escape time is a measure of how fast Z is moving toward oo,

and is calculated by counting the number of iterations required to reach a

modulus of two. If a modulus of two is not reached within a set maximum

number of iterations, the point is considered to be in the Mandelbrot set. Most of

the pictures of Julia sets and the Mandelbrot set are obtained by computing the

escape time for each point of the screen, and coloring the point accordingly using

a color map calculated for maximum aesthetic effect !

If a value of C is picked outside the Mandelbrot set, 'a disconnected Julia set

results. If a value of C is picked in the Mandelbrot set. a connected Julia set

results. There are four main types of Julia sets. C's position in the Mandelbrot

set determines what type of Julia set is computed.

- "If C is in the interior of the main body of the Mandelbrot set, a fractally

deformed circle surrounc one attractive fixed point.

- If C is in the interior of one of the buds, then the Julia set consists of

infinitely many fractally deformed circles which surround the points of a

periodic attractor and their pre-images.

- If C is the germination point of a bud, we have a parabolic case: the

boundary has tendrils that reach up to the marginally stable attractor.

- If C is any other boundary point of the cardoid or a bud ... we have a

seigel disk." [Ref. 5: pp. 12-14]

A seigel disk is an invariant circle inside a Julia set. That is, if we take a

point on the circle, all iterated points derived from that point will also be on

33

the circle. The type of Julia set determines the characteristics of the picture that

is produced.

E. MAKING PICTURES OF JULIA SETS AND THE MANDELBROT SET

To create the Mandelbrot set pictures we use the function Zn + 1 = Zn + C

in an algorithm summarized as follows:

Loopl until all pixels are calculated

Set Z = + 0:'.

Set C to the value of the complex plane for this pixel.

Initialize a counter to 1.

Set a maximum number of iterations (100 is a good place to start).

Calculate Zn^ = Z\ + C.

Calculate the modulus of Zn + 1
.

Loop2 until the modulus of Zn + 1
^2 or the counter is > your

maximum number of iterations then

Set Zn
= Zn+1 .

Calculate Zn + 1
= Z + C.

Calculate the modulus of Zn+1 .

Add one to your counter.

End Loop 2

Establish the color of the pixel based on the counter.

End Loopl

We establish a correspondence mapping the region of the complex plane for

which we are calculating values to the pixels of the screen. Also, an escape radius

is needed. That is, we need a modulus value. This value is used as a terminating

condition for the recursive iteration, Zn+1 = Z* + C . If the modulus of Zn+1

exceeds this maximum modulus (escape radius) the current iteration is halted and

a value for the color is assigned. If after multiple iterations the modulus ever

34

reaches the escape radius, the point Z is considered to escape from the

Mandelbrot set to the attractor at oo. We use the value 2 for our escape radius.

Chapter six includes some figures produced using the summary algorithm listed

above.

To create Julia set pictures, the same procedure is followed except values of

C are picked from the Mandelbrot set and fixed at that value. Z is then allowed

to vary over the range of the complex plane corresponding to the pixel space.

(Appendix A contains a program written in the C language that produces the

Mandelbrot set.)

Most of the monster-like fractal pictures are produced creating Julia sets.

They create pretty pictures, and represent one of the most complicated ideas in

mathematics today. Julia sets are being studied in such diverse areas as the

dynamics of chaos, and for calculating the roots of equations using Newton's

method in the complex plane. Readers desiring more information on the uses of

Julia sets and the Mandelbrot set are directed to [Ref. 5].

35

IV. IMPLEMENTATION DETAILS: 2D INTERACTIVE FRACTAL WORKSHOP

A. BACKGROUND

The program we have implemented is an interactive computer graphics

workshop for two-dimensional fractals. More specifically, it allows

experimentation with two-dimensional Koch-like curves. The program was

started by Mike Gaddis in 1985. and our goal was to take the partial program and

make it a functional program. In addition to making the program functional, we

added some capabilities and made the program more robust. The normal steps

involved in executing the program consist of building a generator, or selecting a

previously constructed generator from a file. Then an initial object, composed of

one or more initiators, is selected and the fractal curve is constructed by

recursively replacing all initiators with generators. The results can be saved for a

laser printer and the process can be started again.

B. THE MENU ORGANIZATION

The program is a menu driven system with selections made through the use of

a mouse. Our mouse is mobile and has three selection buttons on the top. Menu

selections are made by holding down the middle mouse button and scrolling

through the selections. When the desired selection is highlighted, the middle

mouse button is released and that selection is executed. Throughout the program

S6

there are on screen displays of the function of each mouse button. The following

is a menu by menu description of our program's organization.

1. Main Menu

The first menu displayed on startup is titled MAIN MENU and is shown

in Figure 4.1. There are six active options in the Main Menu.

The first option in the menu leads to the construction of a new generator.

It is the main feature allowing the rapid experimentation with Koch-like curves.

This mode enables the use of the mouse for the creation of a generator for use in

the recursive substitution of the Koch-like fractal curves. This selection displays a

menu (Interactive Generator Build, Figure 4.2).

The second option of the Main Menu retrieves a previously created

generator from a file. This mode is an alternative to redrawing the generator

every time the program is run.

The third option in the Main Menu retrieves an initial object, consisting

of one or more initiators, from a file. For the current system, there are 5 initial

objects: a line, a square, a triangle, an "inverse square", and an "inverse triangle".

The "inverse square" is denned by the same points as the square but the points

are taken in reverse order. This causes the recursive replacement to be made on

the opposite side of the line. (Figures 4.3 and 4.4) Similarly, the "inverse

triangle" is defined by the same points as the triangle but the points are used in

reverse order. The files for the initial objects are ASCII character files to allow for

ease in changing the objects with a text editor.

37

HA IN MENU

ZD Fractal Workshop

BUILD of Koch-Like GENERATOR

GET GENERATOR from External File

GET INITIATOR Initial Structure

PUT Current Generator in a File

DISPLAY Current Fractal

EXIT Systt

Figure 4.1 Main Menu

38

1 Interactive Generator Build
|

iFreeform (uncontrolled! Draw 1

Lattice (controlled) Draw

Verify Generator Ualidi ty

Edit Current Generator

RETURN to MAIN

EXIT System

Figure 4.2 Interactive Generator Build Menu

30

<

9
m S
CD N

O ID
m ^

i-rsj J ®
ii

S- // H eLUX < L iz u \u o \. «
g

ii |
z 5

8 01

t ^ 0)

2 < s
1- \.
H"1 ^^Z ^ £M

I

Figure 4.3 Triangle

40

9

S s
Olfi

en ^
®

ii

g- / " r

W-G < L o

Ui ^>
ii

s
II g

z 5

01

^H

B 1
01

s« -^
•-1 <T L
H-

S\ h-
*-• ^\ 1Z ^ >
h-

1

C
t—

l

Figure 4.4 Inverted Traingle

41

The fourth option of the Main Menu saves a generator to a file for later

use. The name of a file is requested, and the file is saved in the directory GENS,

a subdirectory under the working directory.

The fifth option of the Main Menu is the first step in generating the

fractal curve. Selecting this option causes the Fractal Curve Generation Menu

(Figure 4.5) to be displayed.

Accessing the files for reading both the generators and initial objects is

through a scroll and select process. The files for the generators are stored in the

directory "GENS". The files for the initial objects are stored in the directory'

"OBJS". These directories must be direct subdirectories of the same directory

containing the fractal workshop program. The directory containing the fractals

workshop must be the current director}'. The directory contents are displayed in

a scroll and select menu.

2. Interactive Generator Build Menu

The Interactive Generator Build menu is retained primarily for later

expansion of the program (Figure 4.2). It is displayed as an intermediate step on

the way to building a generator. Currently there is only one active choice.

Selection 1 is the option for the interactive construction of a generator.

This selection displays another menu, the Free Form Options menu (Figure 4.6).

The Return to Main selection returns control to the Main Menu . The Exit system

selection terminates the program and clears the graphics screen.

42

Fracta L Curve 1 tfSJTI ?OTimir3?

start Fractal Recursion

PAUSE Fractal Recursion

RESUME Fractal Recursion

LINE Display Mode (default)

POINT Display Mode

EXIT System

RETURN To Main Menu

Figure 4.5 Fractal Curve Generation Menu

1 Input lode

Erase

RETURN

RETURN

EXIT

A11 (clear)

to Build Menu

to MAIN

System

Figure 4.6 Free Form Options Menu

3. Free Form Options Menu

The Free Form Options menu is the last step on the way to building a

generator. This menu has 5 options. The Input Mode option displays the screen

for constructing the generator. The Erase All option erases the current generator

from active memory. The Return to Build Menu option returns control to the

Interactive Generator Build menu. The Return to MAIN selection returns control

to the Main Menu. The Exit System selection terminates the program and clears

the graphics screen.

4. Fractal Curve Generation Menu

The "Fractal Curve Generation" menu controls the creation and display

of the fractal curve. There are seven active selections in this menu.

Start Fractal Recursion recursively replaces each initiator of the selected

initial object with the selected generator, creating the fractal curve. When the

fractal curve is completed, the Re-Run or Dump Bitmap menu is displayed

(Figure 4.7).

Pause Fractal Recursion temporarily stops the execution of the program.

The display on the screen is frozen until another option is selected. Resume

Fractal Recursion restarts the program at the point where execution was halted.

Line Display Mode is the default display mode. This causes each initiator

line to be erased and the new generator to be drawn in fully as line segments

during the fractal curve generation.

44

Dump Bitmap

RERUN Fractal Recursion

DUMP bitmap of screen

EXIT System

Figure 4.7 Re-Run or Dump Bitmap Menu

45

Point Display Mode displays only the end points of the generator's line

segments as they are calculated. The generator line segment end points become

the end points for new initiators. As long as the new end points are farther apart

than the minimum recursion termination distance, replacement generator points

are calculated and displayed between these new end points. Since the initiator

line segments are not drawn, there is no need to erase them prior to replacing the

initiators with generators. The final picture is similar to the line display mode,

but the display during generation of the curve is different.

Return to Main Menu, causes control of the program to return to the

Main Menu at the completion of the fractal curves generation. The fractal curve

drawn is erased, but the initial object and generator are retained in memory.

5. Re-Run or Dump Bitmap Menu

The Re-Run or Dump Bitmap menu is displayed at the completion of the

generation of the fractal curve. (Figure 4.7). There are four options in this menu.

Return to Main Menu returns control of the program to the top level of the

program. The fractal curve drawn is erased, but the initial object and the

generator are retained in memory. Rerun Fractal Recursion returns control to the

Fractal Curve Generation menu (Figure 4.5), and the curve created is erased from

the screen. Both the initial object and the generator are retained in memory.

Dump bitmap of screen asks for a file name in which to save the bitmap. This

selection reads the pixels of the screen and saves the information necessary such

that the file can be printed on a laser printer.

46

V. BUILDING A GENERATOR

A. HOW TO BUILD A GENERATOR

A generator is the set of line segments that is used to replace an initiator. To

build a generator, a rectangular part of the screen is set up as a drawing area.

The initiator end points are displayed at the left and right edges of the drawing

area, along with a pencil shaped cursor that moves within the drawing area.

Generator size is limited by the size of this rectangle. The end points of the

generator are fixed coincident with the end points of the initiator. Having the end

points fixed makes it easier to calculate the other points that define the generator.

Since the end points of the initiator and the generator are coincident, and the end

points for the initiator are always known, data is not saved for the end points of

the generator being constructed. The data structure that saves the information

defining the generator has room for 20 points. Therefore, the maximum number

of line segments in a generator is 21.

When the mouse is moved, in addition to the pencil cursor moving, a new line

is drawn from the last saved point (at the start it is the generator left end point)

to the current cursor position. Another line is drawn from the current cursor

position to the generator right end point. These two lines act as a "rubber band"

47

line that follows the cursor around the drawing rectangle. This allows the viewing

of potential generator segments without actually designating points.

The three buttons on the mouse are used to control options for building the

generator. When the middle mouse button is pressed, the current cursor position

is saved and becomes a point in the generator. The saved point becomes the new

start of the "rubber band" line. The left mouse button erases the last point

added to the generator. The right mouse button says that the generator is

complete and control is returned to the Free Form Options menu. The final

generator is composed of a set of line segments. The line segments are drawn

consecutively starting at the left end point, to the first saved point, then the

second saved point, etc. until the last saved point is reached. The final line

segment is drawn from the last saved point to the right end point. The line

segments from the last saved point to the cursor position and then to the right

end point are not included in the generator.

Figure 5.1 is a partial screen bitmap, and indicates that information is being

saved for three generator points. The small picture of the generator indicates that

the two line segments from the last saved point to the current cursor position, and

then to the right end point are not included in the generator.

1. What information is saved for a Generator?

In screen coordinates, the drawing rectangle is 200 units in the X

direction, and 250 units in the Y direction. The size of a generator is restricted by

48

Point is set in data structure

GENERATOR

_ , . - -

(9,1)(9,9)

Ratio_Init_Perp 9-8499 Angle A; Rads- 9-1477

Di st.Ratio 1-4154 An9le A; De9s. 8-4649

X 9-8499 Y 9.1Z59 Tansent of A 9.1488

Num of Gen. Pnts 3

Fractal D i mens i on 1 . 3344

Figure 5.1 Building a Generator

this drawing rectangle. The distance between the generator end points is 200

units. This information is used in determining information to define new generator

points.

It is easy to determine the X and Y coordinates for the saved points from

cursor position. The X and Y coordinates are then used to calculate information

necessary to construct a generator from any two arbitrary end points defining an

initiator. Having the fixed X, Y coordinates for a generator point is not enough

information to determine where that generator point is to be placed for an

initiator that is different in size and orientation from the fixed situation of the

generator build. What is needed is the ability to .determine the relative

positioning of the generator point, given only two arbitrary initiator end points.

The relative measures we use are a ratio of where the generator point is

located between the two initiator end points, and angles to determine how far

away from the initiator the generator point is to be placed. We move a line that

is perpendicular to the initiator from the first end point towards the second end

point until the generator point lies on the perpendicular line. We save a ratio of

the distance the perpendicular line has moved when the generator point is on the

perpendicular line, to the distance between the initiator end points. Knowing this

ratio is still not sufficient information to determine where the generator point is to

be placed. The generator point can lie anywhere along the perpendicular line. If

we use only X and Y coordinates and the initiator line is moved to another

position in the plane, the X and Y coordinates are not valid for the new generator

50

point. If we use the distance from the generator point to the initiator along the

perpendicular line, that distance is not valid for an initiator that is longer or

shorter than the fixed size generator build initiator. We need to know a relative

positioning to determine where to place the generator point. To discriminate

where along the perpendicular line the generator point lies we use angles.

For calculating where the generator point is to be placed, we use a

relative distance along the perpendicular line, given that we know the distance

from the first end point to the perpendicular line. This relative measure, a

distance along the perpendicular over the distance from the first end point to the

perpendicular is the tangent of the angle formed by the initiator and the line

connecting the first end point and the generator point. We call this angle $. We

also calculate the angle formed by the initiator and the line connecting the second

end point and the generator point. W7

e call the second angle <f> (Figure 5.2).

To define a generator point, we save a ratio of movement between the

end points and we save information about the two angles $ and <j>. One angle is

sufficient in most situations to determine where the generator point is to be

placed. We save two angles to handle special cases. The data that we store in

memory to represent an angle is the tangent of that angle.

2. Data Structure for the Initial Object

The initial objects are represented by a set of points (X, Y coordinates),

and a number representing the number of points in the object. An object can be

represented by up to 25 points. The object is created by starting at point one and

51

Drawing Rectangle

Generator Point

EndGen line

Gen line

Perpendicular Movement
I T—l *. 1 _ A. _Initiator line

Total Length

= Angle between Gen line and the initiator

= Angle between EndGen line and the initiator

ratio =
Perpendicular Movement

Total Length

Figure 5.2 Defining A Generator Point

52

drawing a line segment to point two, then drawing a line segment to point three,

etc. This procedure is carried out until the last point in the object has been

reached. A closed object requires a repeated point. For example, a triangle

requires four points, with the first and the fourth point the same.

B. CREATING THE FRACTAL CURVE

1. Fractal Curve Generation Overview

The program for generating the fractal curve is both iterative and

recursive. We assume that an object is composed of one or more initiators (line

segments). Each of the original initiators is dealt with in the order they are

defined in memory. The length of the initiator is calculated. If the initiator

length is greater than a specified minimum distance, a replacement generator is

calculated for that initiator. This replacement generator is composed of new

initiators, and they are handled consecutively. If the length of the new initiator is

greater than the minimum distance, the process is repeated recursively. The

terminating condition for the recursion is the length of an initiator being less than

or equal to the minimum distance. We use one pixels width for a minimum

distance. When the recursion terminates, the next initiator at the current level is

examined. This continues until all the initiators of the original object have been

considered.

The heart of the program is an algorithm that calculates the points for a

replacement generator. Using this algorithm, given any two arbitrary points

53

representing the end points of an initiator, a set of generator points is determined.

These generator points are scaled and oriented such that a generator replaces the

initiator. The calculations are not complex. They are basic trigonometry and

geometry calculations. However, they are carried out many times.

2. The Algorithm for Calculating Generator Points

This algorithm assumes that the X, Y coordinates of the initiator end

points are known. Since the end points of the initiator and the replacement

generator are coincident, they are referred to only as end points. The general

method for determining the new generator uses the X and Y coordinates of the

two end points and the ratios and angles information that defines the generator.

Using this information, we find the equations, in terms of the X and Y values of

the generator point, of two different lines passing through the generator point.

We solve these two equations to find the values of the two unknowns, the X and

Y of the generator point. Once the X and Y coordinates have been determined,

the initiator is erased and the lines for the generator are drawn. The algorithm

being described here does not do all of the checking for special cases that a

functional program requires. An example of a special case that needs to be

handled is the prevention of division by zero in an equation. The function that

the workshop uses is included in Appendix B, and does the necessary special case

checking. Figure 5.3 summarizes the steps of the algorithm.

54

Repeat for all generator points.

Calculate the distance between end points.

Calculate the slope of the initiator.

If saved ratio for this generator point does not equal then

begin if

Calculate the point of intersection, Ppepp , of the line, Perp,

perpendicular to the initiator and through the generator point.

Iff =
then the generator point is Pperp .

else

begin else

Calculate Slopegenof the line, Gen, through the first end

point and the generator point.

Calculate the Y intercept of the line Gen.

* unknown — ^*°Pegen x -^unknown ' "gen-

Calculate Slopeperp.

Calculate the Y intercept of the line Perp.

* unknown = ^*°Peperp x -^-unknown + Dgen-

end else

end if ratio not =

else ratio =

begin else

Calculate Slopegen for the line, Gen, through the first end point

and the generator point.

Calculate the Y intercept for the line Gen.

^unknown = Slopegen X Xunknown + bgen .

Calculate Slopeendgen for the line, endgen, through the second end

point and the generator point.

Calculate the Y intercept for the line endgen.

* unknown — ^'°Peendgen x -\inknown ' "endgen-

end else ratio =

Solve the two equations and determine a value for Y^^o^.
Use the value for Yunknown in one of the two equations and solve for

-^unknown
End Repeat.

All the X and Y values for the generator point are now known.

Figure 5.3 Algorithm for Calculating Generator Points

55

Unlike the von Koch snowflake that can theoretically continue it's

replacements an infinite number of times, we use a finite machine and need a

termination condition for the replacements. We stop the recursion when the

distance between two end points (any arbitrary initiator) is less than the distance

that can be displayed in one pixel on our viewing screen. The first step is to

determine the distance, DIST, between the two points. For simplicity we label

the first end point P 1 , and label the second end point P 2 . If DIST is less than a

specified minimum distance, the recursion stops. However, if DIST is greater than

the terminating distance, the points for a generator are calculated to replace the

initiator between the points P 2 and P 2 .

The steps to calculate the X and Y values for each of generator points are

similar. We determine the slope of the lire connecting points P 2 and P 2 ,and call

it the slope of the initiator. Slopeinit .

Y 2 - Yj
SloPeinit = r= =T-

-*» ~ A l

If the ratio of movement between points P 2 and P 2 is not then we calculate the

point of intersection on the initiator of a line through the generator point that is

perpendicular to the initiator. This point is called the perpendicular point and

has values Xperp and Yperp .

Xperp = X2 + savedRatiox(X
2
- X2)

Yperp = Y i + savedRatiox(Y 2 - Yx)

56

Then the angle is used to determine where along the perpendicular line the

generator point lies. If $ = the point is on the initiator and the X and Y values

are Xperp and Yperp . If is not 0, the X and Y values must be calculated. To

do this, we must determine the slope of the line connecting the point P x and the

generator point, call it Slopegen . We now use the knowledge that the slope of a

line is also the tangent of the angle formed by that line and the X axis. We know

Slopeinit and we know tan0. We use Slopeinit as the tangent of the angle 7, the

angle formed by the initiator and the X axis. We determine the tangent of the

sum of the two angles, 7 and $. Tan(7 + 0) is the slope of the line connecting

point Pj and the generator point, Slopegen . Figure 5.4 indicates how 7 and are

positioned to allow us to use the tangent of the sum of two angles to determine

Slopegen .

„, tantf + tan7
Slope_en

=
gen

1.0 - tan* x tan7

We now find the Y intercept, bgcn , for the line through Pj and the generator

point.

bgen = Yx - Slopegen x X 2

This gives us an equation for the line through point P 2 and the unknown

generator point.

* unknown — ^*°Pegen * -^unknown ' "gen

57

Initiator/1

i

Slope = tan 7
initiator

Slope = tan (6 + 7)

Gen

Slope = tan (7 -)Gen-end

Figure 5.4 The Angles and Lines defining the Generator

58

We also know that the slope of the line perpendicular to the initiator is

-1.0
Slopeperp

Slope
ir

Using Slopeperp and the point Xperpi Yperp we can determine the Y intercept

point for the perpendicular line.

Dperp = Yperp - Slopeperp x Xperp .

This gives us the equation for the perpendicular line through the unknown

generator point.

* unknown ~~ ^*"Peperp -^unknown ' gen -

Thus we have the two equations with two unknown values, Xunknown and

Yunknown- Solving these equations for Xunknown we get

X
Dperp

_ Dgen
unknot

slopeeen - Slope
t

Using this value for Xunknown in either of the two equations, we determine

y
* unknown*

YUnknown = ^^°Pegen x Xunknown + bgen .

The X and Y coordinates for the generator point are now known.

If the ratio is 0, a different method is needed. If the ratio is 0, we know

the generator point lies on a line perpendicular to the initiator and passing

through the point P 2 . $ is ±90° and will not define a unique generator point.

59

The slope of the line connecting the point P 2
and the unknown generator point is

s,ope- = Slo^T

We now find the Y intercept, bgen , for the line through P 2
and the unknown

generator point.

bgen = Y2 - Slopegen x Xr

This gives us an equation for the line through point P 2 and the unknown

generator point.

^unknown = Slopegen x ^unknown + "gen-

We now use the angle <t>. We determine the slope, Slopeendgen . of the line

connecting the point P 2 and the unknown generator point similarly to the

calculation of Slopegen .

01 tanfl — tan^
Slope«ndg€1,

= ——j—j.

We now find the Y intercept, bgen , for the line through P 2 and the unknown

generator point.

bendgen = Y2 ~ SloPeendgen x X 2

This gives us the equation for the line connecting the unknown generator point

and point P 2 .

* unknown — ^'°Peendgen x -^unknown ' "endgen

60

Thus we have the two equations with two unknown values, Xunknown and

Yunknown- Solving these equations for Xunknown we get

"endgen gen
^unknown 01 01S1°Pegen

- SloP^endgcn

Using this value for Xy^^^ in either of the two equations, we determine

* unknown

•

* unknown ~ ^^°Pe endgen x -^-unknown + "endgen-

The X and Y values for the generator point are now determined. The

process is repeated to determine the X and Y values for the next generator point.

This is continued for all the generator points.

When all of the points are known, we replace the initiator with a new

generator. A line is drawn from point to point, in order, creating the generator

with the proper orientation and scaling. The recursion is continued using the

calculated points as the end points for the next level of initiators. When all of the

initiators have been replaced to their lowest levels, the picture is done. Control is

passed to the Re-Run or Dump Bitmap menu.

61

VI. WORKSHOP EXPERIMENTS CONDUCTED

A. INTRODUCTION

We have now introduced two programs that construct Koch-like fractal

curves and the Mandelbrot set. It is time to show some of the results that have

been obtained from these programs. Figures 1.1. 1.2. 1.3 and 2.5 discussed above

are products of our experimentation. Some of our experiments were conducted to

verify a property of the program, i.e.. dimension calculations. Some were

conducted to construct "pretty" pictures and some were conducted just to see

what would happen. An interactive workshop allows this flexibility.

B. DIMENSION VERIFICATION FOR THE FRACTAL CURVES

The equation we use for the fractal dimension in the generation of fractal

log N
Fractal Dimension = D =

log (-;
r

N is the number of line segments in the generator and r is the scaling ratio for

these line segments. This produces excellent results for the fractal dimension

when all the line segments that compose the generator are equal in length. When

their lengths are not equal, we calculate an average length for the line segments to

62

compute the scaling ratio. This causes our results to be an approximation for the

fractal dimension when the line segment length varies.

There are several generators with equal length line segments that we use for

dimension verification. The Koch generator is one of these. Since each line

segment of the Koch generator is — the original length and there are four line
S

segments, the dimension should be

D = p± » 1.26.
log 3

Figure 6.1 is the Koch generator used with a single initiator for constructing

the fractal curve. It has a fractal dimension of 1.2610. Figure 6.2 is the same

generator, with a triangle as the inititial object. This combination produces the

Koch snowflake discussed earlier.

Figure 6.3 has a generator that is constructed of 8 line segments, each line

segment has a scaling ratio of — . The dimension is

4

D = JO! - 1.5
log 4

When the generator with a fractal dimension of 1.5 is used with the line initial

object, the fractal curve constructed is more "wiggly" than the fractal curve

constructed with the Koch generator. We also create a variant of the generator

with a fractal dimension of 1.5. The variant generator looks identical to the

generator with a fracal dimension of 1.5, but it is constructed with seven line

63

c
o

<s>

l/t

m £ L
m n 3

GENERATOR

kochl.ZG A
V ® n

E i

N U
" E
z 5

a
<L

t—

Z

QJ

C

—1

1

O

i—

1

$
QJ
1—

1

X

I

Figure 6.1 Koch Line

64

ID

c
o

<s>
_j ^ iJi

ro Sfl
L

m n 3

O LD
m ^ g 0)

h- M •
ii

P ^ 1-1 at
rr . y t- X (J)

GENERI

kochl A
/

2 £

i
< 5 o

>
0J

X
ac

Figure 6.2 Koch Triangle

65

tt5

E i

GO W

II |

z 5

UJ
19

Figure 6.3 1.5 Line

segments instead of eight line segments. Six of the line segments have a scaling

ratio of — and one line segment has a scaling ratio of — . The average scaling

ratio is now .2857 and results in a higher fractal dimension, 1.5533. The resulting

fractal curve (Figure 6.4) is even more "wiggly" than the fractal curve constructed

with the generator that has a fractal dimension of 1.5 (Figure 6.3).

Another generator that is used to verify the fractal dimension is the generator

constructed with 9 line segments, all with a scaling ratio of — . The fractal
3

dimension should be

D = J2*£ = 2.0.
log 3

The generator in Figure 6.5 is constructed of nine line segments. Each line

segment is about — the length of the initiator. The minimum resolution for
3

generator points in the workshop is .005 units, and — is approximated with the
3

value .335. We calculated that the generator in Figure 6.5 has a fractal

dimension of 2.01, close to 2.0. The fractal curve almost fills an entire polygon

(Figure 6.5). The inability of our program to construct the generator line

segments exactly — the original length is the reason for the gaps in the polygon,
3

and the deviation from the dimension being exactly 2.0.

67

at +i

in Ln
00 L"

• 1

I
1

II |
z 5

^ -

lj Ln
L3 •

Figure 6.4 1.5 Variant Line

e

N

n s

•
1.

"I
m 5s 07

C
II |

z 5

Figure 6.5 2.0 Line

C. PRETTY KOCH-LIKE CURVES

We now turn to some of the prettier Koch-like curves we have constructed.

We begin with a very simple generator and with only minor changes in the

generators we get some drastic changes in the fractal curves.

We construct a simple generator of two equal length line segments forming an

inverted V. The resulting fractal curve constructed with a single line initial

object is as expected, a simple almost cloud-like fractal curve (Figure 6.6). The

result looks even more like a cloud when this generator is used with a square for

an initial object (Figure 6.7).

The fractal curve in Figure 6.8 is another example of a fractal curve in which

the result was as predicted. This fractal curve is included partially for

sentimental reasons. This was the first fractal curve that we printed on the laser

printer. With only a slight change in the generator, the results are a complete

surprise (Figure 6.9).

Figures 6.10 and 6.11 are similar generators with only small perturbations in

the line segments of the generator. The results are again surprisingly different,

although quite pleasing to view. With the exception of Figures 6.2 and 6.7 all of

the fractal curves within this chapter so far have been constructed from a single

line segment initial object (one initiator). These curves constructed with the line

as an initial object run faster, and are simpler than those curves constructed with

an initial object composed of more than one initiator. Adding initiators adds

complexity to the pictures (Figure 6.12).

70

CO

/

K 1

LP ^
H- ®

1.
<c I

gco

(

\

\

"
g

B n g
ii

^
\

" E

\

z 5

Figure 6.6 A Line

71

CD

m
/

/

® &
2 s

5
/

<x

z
(

i i
Ul
L9 \

N g
\

\

N |

z 5

Figure 6.7 A Square

72

«

1

ffi
B

K
<*• ^

2£
®

II

m g

/ ii |

/ z 5

u5
h-
<Z c
t—

_l

z

Figure 6.8 First Line

73

\ R at*. *N^t&r<& &v
|

%Lj%£1^ m
CO

II

c
o

1
ttj £ in

J 8 B
s

oGENERATOR
Colleen

II gj

8
<E

t-H

z
t-H

01

c

f
E l-H

1

i

z 5 X

£

Figure 6.9 Colleen Line

74

"0 ^
cu «- ®
> prj ,H
a

/ S «M

U
si

/
/

B
<r

t—

z

01

c

z
1 ii &

3
1

/_
" E
z 5

Figure 6.10 Wave Line

75

89

/ r^
Vww*^'

X%^
*44Juyv

"D ffl

01

|

® LP

B*
*z •

..

"I
m g

z H 01

UNK z 5
L

Figure 6.11 Spiral Line

76

g
I— QJ

It

z 1
hH

Figure 6.12 Meagan Square

77

Additional variations are achieved by using the "inverse triangle" and

"inverse square" for the initial objects. Figure 6.13 is the Koch snowflake

"inside-out". Sometimes though the difference between using the triangle and the

"inverted triangle" is negligible. Figures 6.14 and 6.15 look the same. This shows

that the symmetry in the generator sometimes negates the use of different initial

objects. Figure 6.14 is constructe using the triangle initial object and Figure

6.15 is constructed using the "inverse triangle" initial object.

The ability to make small changes to a generator and watch the resulting

fractal curve grow is both entertaining and informative. The resulting fractal

curve is often not what is expected intuitively. Part of the enjoyment of

experimenting with the fractal curves is the attempt to predict how the resulting

curve will look. This is not an easy task, particularly when the generators are

more complicated (Figure 6.16).

D. EXPERIMENTS WITH THE MANDELBROT SET

The Mandelbrot set program we have implemented has an ability to "zoom"

in and examine small sections of the complex plane in detail. With apologies, we

present black and white replicas of the figures that on the computer graphics

screen are alive in color. A large part of the time spent constructing the

Mandelbrot set pictures is spent constructing a color scheme that presents the

most aesthetically appealing picture. The black and white replicas do not do these

pictures justice. To examine some outstanding color Mandelbrot and Julia sets

78

®

sfi 0)

• i

M e

i-H

en

1

-E < U g
i—i < L

Si \
N |

Z ^ 1

>
C
t—

1

z 5

Figure 6.13 Koch Inverted Triangle

79

Ifl

1

CD

s §
8"?

INITIATOR A
01

I
L
1—

z1 ^
u
13

" o

CD U

II
U

2 5

Figure 6.14 1.5 Triangle

80

If)

g

1"!
* o

GO g
II 1

2 a

01

g 0)
c

h- (0

oc

< L
>-

1z >
t—

1

c
1—

1

Figure 6.15 1.5 Inverted Triangle

81

u>

S
s / ®

II

E3

/
/'

/

/

4_

1 §

> z 5

Figure 6.16 Anns Line

82

the interested reader is directed to (Ref. 5]. A list of regions in the complex plane

that are used to make beautiful pictures can be found in [Ref. 5: pp. 193-196].

Figure 6.17 is the Mandelbrot set without any magnification, or any of the

colored rings with which it is surrounded. Each colored ring represents a set of

points that reach a modulus of 2 after the same number of iterations of the

function Zn + 1
= Zn + C. Figure 6.18 includes some the colored rings. In Figure

6.18. we print every other colored ring for the first eight rings. That is, those

rings where the points reaches a modulus of 2 after 2. 4. 6 or 8 iterations. The

points that reach a modulus of 2 after 8 and before 100 iterations are left white,

and are the portion adjacent to the Mandelbrot set. Figure 6.18 is a relatively

high level picture and does not display much detail. The portion of the complex

plane displayed is a rectangular region, from -2.0 to +2.0 along the real axis and

from -2.0 to +2.0 along the imaginary axis. Figure 6.19 is the same portion of the

complex plane, but with every other color up to 50 iterations displayed as black.

Colors for 50 to 100 iterations are displayed as white.

Figure 6.20 is a close up of a small portion at the end of the "antenna" of the

Mandelbrot set. The portion of the complex plane displayed is from -1.945 to

-1.935 along the real axis, and from -0.005 to +0.005 along the imaginary axis.

Every other color up to 50 iterations is displayed as black. Colors for iterations

from 50 to 100 are left white. The black portion in the center of the figure is a

part of the Mandelbrot set.

83

Figure 6.17 The Mandelbrot Set

84

Figure 6.18 The Mandelbrot Set (8 Rings)

85

Figure 6.19 The Mandelbrot Set (50 Rings)

Figure 6.20 Antenna of the Mandelbrot Set

87

Saving the best for last, Figure 6.21 is the most aesthetically pleasing picture

we have produced. Again every other color up to 50 iterations is displayed, and

colors for 50 to 100 iterations are left white. The color scheme used on the Iris

graphics work station is designed to provide gradual changes in color for five

bands of iterations, with maximum color contrast at the border of the bands. The

portion of the complex plane displayed is from -1.781 to -1.768 along the real axis

and from 0.0 to +0.13 along the imaginary axis. This figure is a recreated version

of map 33 in [Ref. 5: p. 80].

The figures presented here are not an all inclusive set of figures that can be

produced by the two programs. There is an almost unlimited number of pictures

that can be constructed. We present here only a few illustrative examples.

88

Figure 6.21 [Ref . 5: p. 80] Map 33 Rendering

89

VII. CONCLUSIONS

A. SUMMARY

We have implemented an interactive workshop for constructing and

displaying two-dimensional Koch-like fractal curves. This workshop facilitates

learning about Koch-like fractals through experimentation. The workshop gives

one the ability to rapidly construct a generator, select an initial object and then

immediately display the resulting fractal curve. This immediate visual feedback

allows one to gain an intuitive feel for the Koch-like fractal curves.

We have also implemented a program that allows visual exploration of the

Mandelbrot set. One can specify the portion of the complex plane that is to be

displayed. The Mandelbrot set can be viewed with different levels of

magnification. The Mandelbrot set in Figure 6.18 displays approximately

16 units of the complex plane. The Mandelbrot set in Figure 6.21 displays only

2.89 x 10~ 4 units 2
, a magnification of approximately 5 x 104

.

B. LIMITATIONS

The biggest limitation in the algorithm for Koch-like curves is that the

algorithm only works with straight line segments. This restricts the program

drastically. The ability to manipulate arcs and curves would greatly enhance the

program.

90

Although not a severe limitation, the data structures limit the size of the

generator to 21 line segments and the size of the initial objects to 25 line

segments. These are arbitrary limits and can be easily changed. The algorithm

for replacing initiators with generators is a recursive algorithm, and requires a

terminating condition. We use a distance of one pixel's width for our terminating

condition. If the length of a line segment is less than one pixel width, we

terminate the recursion. Implicit in the algorithm is the length of the generator

line segments relative to the initiator length. The generator line segments must

be smaller than the initiator they are replacing. If all of the generator line

segments are smaller than the line segment the generator is replacing, the

terminating condition is eventually reached. If a generator line segment is longer

than the initiator it is replacing, the program gets into an infinite loop condition

and does not terminate naturally. In this loop condition, the program usually

terminates when some system parameter is exceeded. The system condition that

causes termination is most likely running out of stack space to save the recursive

calls. The program then crashes. We have not prohibited this condition,

although we display a warning as the generator is being constructed if a generator

line segment is longer than the original line segment. Although not a normal

mode of operation, if a generator has a line segment long enough to cause a crash,

the displays prior to the system crash are sometimes interesting.

91

C. AREAS OF FURTHER RESEARCH

As mentioned above, an algorithm that can create Koch-like curves using arcs

and curves instead of straight line segments would aid in the ability to

interactively experiment with fractals. The algorithm for displaying the

Mandelbrot set could be expanded to allow the display of the Julia sets as well.

Fractals are still not well defined. Fractals have attracted a wide audience,

and different forms of fractals are being used for a variety of tasks. Among these

tasks is the generation of music, the rendering of plants and mountains, the

display of the Julia set "monsters", and the study of the distribution of natural

rain [Ref. 3: pp. 1-45]. All of these tasks use fractals, although the fractals one

task uses does not necessarily resemble the fractals another uses. A better

definition of fractals is needed. Perhaps what is needed is to define a partition of

the set of fractals. Each class of the partition exhibiting special characteristics of

that class. Further study is needed to determine if a partition of the set of

fractals is feasible. If a partition can be made, then new names can be given to

the classes of the partition, and some of the confusion that exists with the term

fractals could be eliminated.

D. CONCLUSIONS

It is the hope of the author that this work, and the two-dimensional fractal

workshop can be used to learn about fractals. The concepts presented are not too

complex, but can be confusing at times. The pictures that can be displayed are

92

worth the time and effort of working with the workshop. Running the workshop

requires no knowledge of the algorithm that constructs the curves. However, a

little understanding of the algorithm can help give the curves more meaning and

help develop an intuitive understanding of fractals.

93

APPENDIX A THE MANDELBROT SET

This section contains the computer listing of the function used to

calculate the Mandelbrot set. The function saving data for the laser

printer is not included.

#include "gl.h"

^include "device.h"

define four 4.0

typedef struct {

double real;

double imaginary:

} complex:

main()

{

/ * local variables ***/

complex Start; /* the lower left corner of the area of interest*/

complex Z: /* the complex number being manipulated */

complex Zsquared; /* an intermediate calculation Z * Z */

complex C; /* the constant complex number inZ = Z*Z-(-C */

double DeltaX: /* the change per unit along the real axis */

double DeltaY; /* the change per unit along the imaginary axis */

double Size; /* the modulus of the complex number */

double Scalefactor; /* the magnification factor for the picture */

int iteration: /* count of number of iterations*/

int maxrows=767; /* maximum number for rows in the pixel space*/

int row; /* the scan line being worked on currently*/

int maxcolumns=1023;/* max number of columns in the pixel space*/

int column; /* the column of pixels now being worked on*/

int maximum=200; /* the number of iterations that signal a cut off */

char color table [4096]; /* for use with saving to printer*/

Colorindex wmask;

/* Functions used by the main routine */

complex ComplexAddQ:
complex ComplexMultiplyQ:

double SizeofSquaredQ;/* for determining the modulus */

94

void setupcolorsQ; /* for the iris */

void dumpbits(); /* save for laser printer */

void colortable(); /* for the laser printer*/

void gettheQ; /* gets a filename*/

/* initialize the graphics package */

ginit():

doublebuffer();

gconfig();

wmask=((K<getplanes()) -1);

writemask(wmask);

/* select full screen viewport */

viewport(0. 1023.0. 767):

I* orthogonal projection 2D for the world coordinates sys *
/

ortho2(0.0.1023.0.0.0. 767.0):

/* clear both buffers */

color(BLACK):

clearQ;

swapbuffers();

clear();

/* turn the cursor off*/

cursofFQ;

while(TRUE)

{
i^t*-***/

I* input the starting left corner of the area of interest */

/* put a box around the place to put the message */

color(BLUE);

rectf(600.0,700.0,1000.0,750.0);

/* move to the place to print */

cmov2(605.0,730.0):

95

/* print the message */

color (WHITE);
charstr(" Input the lower left corner of interest"):

cmov2(605.0,710.0):

charstr(" +/-)n.nn (+/-)n.nn");

/* put that info on the screen */

swapbuffersQ;

/* now get the info from the keyboard */

scanf("%f%f",&Start.real,&Start.imaginary);

/* now get the sizeing factor */

/* put a box around the place to put the message *
/

color(BLUE);

rectf(600.0.700.0.1000.0.750.0):

/* move to the place to print */

cmov2(605.0.730.0):

/* print the message */

color(WHITE);

charstr(" Input the sizing factor");

cmov2(605.0.710.0):

charstr(" >1 for more area <1 for magnification");

/* put that info on the screen */

swapbuffersQ;

/* now get the info from the keyboard */

scanf("%r ,&Scalefactor)

:

/* erase the message */

color(BLACK);

rectf(600.0,700.0,1000.0,750.0)

;

/* put in a thank you message */

color(WHITE);

cmov2(605.0.710.0);

charstr(" Thank you for the information ");

96

/* put that info on the screen */

swapbuffers();

/* set up the color ramp */

setupcolorsQ;

/* now set up for the fractals calculation */

I* figure out the unit increment values */

DeltaX = Scalefactor / maxcolumns;

DeltaY = (maxrows / maxcolumns)
* Scalefactor / maxrows:

/* note the size of the screen for the picture now is 767 x 1023 */

/* maxrows / maxcolumns keeps the aspect ratio for the window */

/* write to both buffers so you can see it as you go *
/

frontbuffer(TRUE);

backbuffer(TRUE);

/* for each pixel in the display area, by row look at each pixel */

for (row = 0; row < maxrows; row = row + 1)

{

for (column = 0: column < maxcolumns: column = column + 1)

{

/* set Z to zero initially */

Z.real = 0.0;

Z.imaginary = 0.0:

/* initialize C for the new pixel */

C.real = column " DeltaX + Start. real;

C.imaginary = row * DeltaY 4- Start. imaginary;

/* reset the iteration counter */

iteration = 1;

/* add Z and C */

Z = ComplexAdd(Z,C);

/* see how large the modulus has gotten */

Size = SizeofSquared(Z);

97

/* if the iterations have exceeded maximum that chances are

the number will always stay in the set.

And if the size is > 4 it will eventually go to infinity

so it is not in the set */

while ((iteration < maximum) &z&c (Size < four))

{

/* find Z*Z */

Zsquared = ComplexMultiply(Z,Z);

/* the heart of the algorithm Z = Z*Z+C*/
/* Add Zsquared + C */

Z = ComplexAdd(Zsouared,C);

/* again find how big the number is getting */

Size = SizeofSquared(Z);

/* increment the iteration counter */

iteration = iteration + 1;

}
/* end while iteration < max and size less than 4 */

/****************************** ****** *******************/

/* now that you are out of the loop find out what to do next */
/***/

/* is the size still less than four? */

if (Size < four)

{

/* the size is still small so the iterations must have

reached the limit, so the point is in the Mandelbrot

set. I choose to leave the color black for this */

color(BLACK);

}

if (Size >= four)

{

/* use the number of iterations as an index into the

color map for the color this pixel is to be printed */

color(iteration);

}

08

/* now move the graphics position to the pixel desired */

move2((double)column,(double)row);

/* and print the color desired */

pnt2((double)column,(double)row);

} /* end for column */

} /* end for row */

/* * *** /

/* this is the part that saves the info for the printer */

/***/

/* save the state of the program */

pushattributesQ:

pushmatrixQ:

pushviewport();

getthe(filename);

I* set the new viewport and ortho2 */

viewport(0, 1023.0, 767):

ortho2(0.0,1023.0,0.0,767.0);

/* which colors do you want printed? */

colortable(color table);

/* dumpbits reads the back buffer so put what you want there */

swapbuffersQ;

dumpbits(0.0,0.0.600.0.600.0,color table, "filename");

/* restore the state of the program */

swapbuffersQ;

popviewportQ;

popmatrixQ;

popattributesQ;

/* this says only do it once, remove to do more */

break;

} /* end while true */

} /* end main */

99

A*************************************/

/* Routines to do the complex arithmetic */

complex ComplexAdd (Numberl,Number2) /* Add two complex numbers */

complex Numberl; /* the first number to be added */

complex Number2: /* the second number to be added */

{

/* local variable to hold the answer */

complex Answer;

Answer.real = Numberl.real + Number2.real;

Answer,imaginary = Numberl.imaginary + Number2.imaginary:

return (Answer):

}

complex ComplexMultiply(Numberl,Number2) /* Multiply two complex numbers "/

complex Numberl: /* the first number to multiply */

complex Number2: /* the second number to multiply */

{

/* local variables */

complex Answer;

Answer.real = (Numberl. real * Number2.real)-

(Numberl.imaginary * Number2.imaginary):

Answer.imaginary = (Numberl.real * Number2.imaginary) +
(Numberl.imaginary * Number2.real);

return (Answer);

double SizeofSquared(Number) /* find the modulus squared of a comples number */

complex Number; /* the input number */

{

/* local variables */

double Answer; /* the value returned */

Answer = Number. real * Number.real + Number.imaginary * Number.imaginary;

return (Answer);

}

100

APPENDIX B - CALCULATING GENERATOR POINTS

/************************** ********************************

PURPOSE this is the function that takes the initiator and

replaces it with the generator, does so recursively

PARAMETERS : Xl,X2. Y1.Y2 the end points of the initiator
***/

^include "Init.extern.h" /* Global variables include file; external

variables maintained in the main routine

Koch.c */

^include <stdio.h>

^include <math.h> /* Standard math include file for UNIX lib */

/* BEGIN RECURSIVE PROCESS */

generate (XI.Yl,X2.Y2)

/* Parameter variables */

double Xl.Yl.X2.Y2:

{

/* Declare variables: Recursive parameter and local variables

are passed "by value" so for each call the current variables

are preserved by the system els any normal subroutine call would

(on a stack). The values are restored as the recursive routine

"backtracks" after hitting the recursive termination event

(distance between points < pixel width
)

*/

/* Local variables */

double Tempi; /* used in tangent calculations*/

double G point[20][2]; /* array to hold the generator points*/

double Slope init,Slope perp,Slope_gen,Slope_end_gen;

double X perp.Y perp; /* where perp line crosses initiator*/

double TEMP,DIST; /* to find dist between two points*/

double X unk,Y unk; /* the point we are trying to find*/

double b perp,b gen.b end gen; /* the y intercepts */

int I,J; /* loop control variables*/

101

/* keep track of the level of recursion on the way in */

Recursion depth = Recursion depth + 1;/* global variable*/

/* The Koch curve is defined in the infinite but our recursion

will terminate after the distance between points becomes less

than the length of a pixel. The window is declared

so there is a one to one correspondence between the

Euclidian space (natural numbers of) and the pixels

of the screen. */

/* Determine distance between point 1 and point 2 *
/

TEMP = (X2 - X1)*(X2 - XI) + (Y2 - Yl)*(Y2 - Yl):

DIST = sqrt(TEMP):

/* IF DIST less than one then terminate this recursion and *
/

/* save the point for the printer file and begin backtracking *
/

if (DIST = 1.0)

{

return:

}
/* END if DIST < 1 */

/* ELSE DIST > 1, Construct the GENERATOR on top of the INITIATOR */

/* Put INITIATOR points one and two into the first and last */

/* points of the GENERATOR points array as they are always */

/* part of the generated structure 7

G_point[l][0] = XI;

G_point[l)[l] = Yl:

G_point[init.Generator_points + 2][0] = X2;

Gpointjinit.Generator points + 2][l] = Y2;

/* Determine the slope of the line formed by the initiator end points*/

/* This is the slope of the INITIATOR */

if (X2 == XI)

{

Slopeinit = 10,000:

}

102

else

{

}

Slope init = (Y2-Y1)/(X2-X1)

/* For each GENERATOR point (except end points as they are equal*/

/* to the INITIATOR end points) find the X.Y values. This is */

/* accomplished by using the data in the data dictionary include*/

/* file Init.h (Init.extern. h) and the fact that the ratios */

/* and angles between the INITIATOR and GENERATOR points remain */

/* the same regardless of the INITIATORS length or orientation */

/* in EUCLIDIAN space */

for (1=1: I <= init.Generatorpoints; I++)

{

if (init.Gen_ratio[I] == 0.0)

{ /* point is perpendicular at Xl.Yl */

if (init.Y_ratio[I] == 0.0)

{ /* the point is the start point */

G_point[I+l][0] = XI:

G point[I+l][lj = Yl:

else

{ /* calculate slopeinit */

if (XI == X2) /* initiator is vertical */

{

Slopeinit = 10000.0;

}

else

{

Slopeinit = (Y2 - Yl)/ (X2-X1);

}

} /* end else calculate slopeinit */

/* calculate slope of generator line : note the */

/* generator line is perpendicular to the initiator */

103

if ((Slope init == 0.0) ||
(Slope init >= 10000.0))

{

if (Slopeinit == 0.0)

{

Slope gen = 10000.0;

}

else

{

Slope gen = 0.0;

}

}
/* end slope init = or 10000 */

else /* initiator not parallel to an axis */

{

Slope gen = (-1.0)/ Slopeinit;

}

/* find the y intercept of generator line */

b gen = Yl - (Slope gen * XI);

/* now have an equation for the generator line */

/* Y unk = Slope gen*X unk + bgen */

/* two unknowns */

/* find the slope of the line from the generator */

/* point to the end point */

Slope end gen = (Slopeinit - init.Y_ratio[I])/

(1.0 + (Slopeinit * init.Y_ratio[I]));

/* find the y intercept for the end gen line */

b end gen = Y2 - (Slope endgen * X2);

/* now have a second equation for a line through*/

/* the unknown gen point */

/* Y_unk = Slopeendgen * Xunk -I- bendgen */

/* two eqns, two unknown, solve for Xunk */

Xunk = (bendgen - b_gen)/(Slope_gen - Slope_end_gen);

/* substitute in and find Y unk */

Yunk = Slopeendgen * Xunk -I- bendgen;

/* put that point in the array*/

G_point[I+l][0] = Xunk;

104

G_point[I+l][l] = Y unk;

} /* end init.Genratio = */

else /** ratio is not **/

{

/* Using the ratios of the generator perpendicular*/

/* intercept points on the INITIATOR determine the*/

/* X,Y values of the point of intersection of the*/

/* perpendicular from the GENERATOR point to the */

/* INITIATOR line. */

Xperp = XI 4- init.GenratiojI] *(X2 - XI):

Y_perp = Yl + init.Gen_ratio[I] *(Y2 - Yl):

/* If the angle of the INITIATOR point 1 and the GENERATOR */

/* point in question is zero then the GENERATOR point is */

/' coincident with the INITIATOR line and no further */

/" calculations are necessary */

if (init.Gen_angle[I] == (double)O.O
)

{

G_point[I+l][0] = Xperp:
G_point[I+l][l] = Yperp:

}

else /* gen angle not equal to */

{

/* There are three STATES possible at this time.

* STATE 1

* where the slope of the initiator line is parallel

* to the X or Y axis (which causes havoc with the line

* equations).

* STATE 2 where the slope of the line formed
* by the initiator point 1 and the unkwown generatorpoint

* is parallel to the X or Y axis.

* Or STATE 3 where no lines are parallel to any axis.

* Because of the relation of the initiator line and
* generator line both cannot be parallel simultaneously. */

/* Determine the slope of the line through the INITIATOR */

/* start point and the unknown GENERATOR point using the */

/* tangent of the Gen angle in Init.h */

/* tan (A + B) = (TanA * Tan B) / (1 - TanA * TanB) */

105

Tempi = init.Tan theda[I] * Slope init:

/* check to avoid / by zero */

if (Tempi == 1.0)

{

Slope gen = 10000.0;

}

else

{

Slope_gen= (init.Tan theda[I] + Slopeinit)/

("(double) 1.0-initT.Tan theda[I] * Slopeinit);

}

if ((Slopegen != (double) 0.0) &&
(Slopegen < (double) 10000.0))

{

/* Condition one of STATE 3 */

/* generator not parallel to any axis *

/

/* Determine Y-intercept for the generator line */

/* y = mx +b b = y- mx */

bgen = Yl - (Slope gen * XI);

if ((Slopeinit == (double) 0.0) ||

(Slope init >= (double) 10000.0))

{

/* STATE 1 - INITIATOR parllel to an axis */

/* find out which axis */

if (Slope init >= (double) 10000.0)

{

/* STATE 1 condition 1; INITIATOR is parallel */

/* to the Y axis Y part will be Yperp */

/* G_point[I+l][l] = Y_perp; */

/* x = (y-b)/m */

G_point[I+l][0] = (G_point[I+l][l] -

bgen)/ Slope gen;

}

else /* slope init = 0.0. parallel to x axis */

{

106

/* STATE 1 condition 2: INITIATOR is parallel

to the X axis X part will be X perp */

G_point[I+l][0] = X_perp;~

/*y = mx+b */

G_point[I+l][l] = Slope gen *

G_point[I+l][0] +b_gen;

}

} /* END STATE 1 */

else

{
/* neither initiator or generator slope = 0.0 or 100000.0 */

/* STATE 3 */

/* Determine slope of perpendicular line through the*/

/* INITIATOR perp. intercept. mperp = -1/m */

Slope perp =
(-1.0)/Slope init;

/* Determine Y-intercept for perpendicular line */

/*b = y-mx */

b perp = Y perp - (Slopeperp * X perp);

/* Determine the X,Y values of the unknown */

/* GENERATOR point. First solve for X */

G_point[I+l][0]= (b perp -bjen)/

(Slope gen - Slope perp);

/* now X is known y = mX + b */

G point[I+l][l] = Slopegen *

G_point[I-KL][0] + bgen;

}

}
/* END STATE 3 cond. 1 if */

else /* line to generator point is parallel to an axis */

{

/* STATE 2 */ /* mperp = -1/ m */

Slope perp =
(-1.0)/Slope_init;

/* b = y - mx */

b_perp = Yperp - (Slopeperp * X perp);

if (Slopegen >= 10000.0)

{
/* parallel to Y axis */

107

G_point[I+l)[0] = XI:

/* y = mx + b */

G _point[I+l][l] = Slopeperp *

G point [1+1] [0] + bperp;

}

else /* parallel to the X axis */

{

G_point[I+l][l] = Yl:

/* x = (y - b) / m */

G_point[I+l][0) = (G_point[I+l]|l]- bperp)/

Slopeperp;

}

}
/* end else gen parallel to an axis */

} /* END IF GEN ANGLE = */

} /* END ELSE x ratio is not */

} /" END FOR */

/* Poll the screen */

Menu_gen():

/" Draw GENERATOR */

Draw gen(G point);

/
+ Start recursion on each line formed by the generator */

for (J=l: J <= init.Generatorpoints + 1 ; J++)

{

generate(G point[J][0] ,G point[J][l],

G_point[J+I][0],G_point[J+l][l]);

/* going back to caller reduce recursive level by 1 */

Recursion depth = Recursiondepth - 1;

}

/* END generate */

108

LIST OF REFERENCES

1. Mandelbrot. Benoit B., The Fractal Geometry of Nature, W. H. Freemond
Company, 1983.

2. Special Interest Group on Computer Graphics of the Association for

Computing Machinery (SIGGRAPH), Fractals: Basic Concepts

Computation and Selected Topics, SIGGRAPH 86 Course No. 11 Notes,

August 18, 1986.

3. Sorensen. Peter R.. "Fractals," Byte, v. 9. no. 10, pp. 157-172, September

1984.

4. Gaddis. Michael E.. The Fractal Geometry of Nature: Its Mathematical

Basis and Application to Computer Graphics. Master's Thesis. Naval

Postgraduate School. Monterey, California. June 1986.

5. Pietgen, Heinz-Otto and Richter, Peter H., The Beauty of Fractals,

Springer-Verlag. 1986.

6. Dewdney. A. K., "Computer Recreations," Scientific American, v. 253, pp.

16-24. August 1985.

7. Byrnes. Edward A., "Basic Fractals," Sextant, v. 23. pp. 76-87, July-August

1986.

109

Distribution List for Papers Written by Michael J. Zyda

Defense Technical Information Center,

Cameron Station,

Alexandria, VA 22314 2 copies

Library, Code 0142
Naval Postgraduate School,

Monterey, CA 93943 2 copies

Center for Naval Analyses,

2000 N. Beauregard Street,

Alexandria, VA 22311 1 copy

Director of Research Administration,
Code 012,

Naval Postgraduate School,

Monterey, CA 93943 1 copy

Dr. Michael J. Zyda
Naval Postgraduate School,

Code 52, Dept. of Computer Science

Monterey, California 93943-5100 150 copies

Mr. Russell Davis,

HQ, USACDEC,
Attention: ATEC-IM,
Fort Ord, California 93941 1 copy

Dennis McCall,
Naval Ocean Systems Center,

Code 443,

San Diego, California 92152 1 copy

Roger Casey,
Naval Ocean Systems Center,

Code 84,

San Diego, California 92152 1 copy

Dr. Al Zied,

Naval Ocean Systems Center,

Code 443,

San Diego, California 92152 1 copy

Dr. Egbert D. Maynard,
OUSDR&E VHSIC Program Office,

Room 3D-139, 400 A/N,
The Pentagon,
Washington. DC 20301-3060 1 copy

Jlllllll II II II

3 2768 00341770

