71,687 research outputs found

    Pilot interaction with automated airborne decision making systems

    Get PDF
    Two project areas were pursued: the intelligent cockpit and human problem solving. The first area involves an investigation of the use of advanced software engineering methods to aid aircraft crews in procedure selection and execution. The second area is focused on human problem solving in dynamic environments, particulary in terms of identification of rule-based models land alternative approaches to training and aiding. Progress in each area is discussed

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    How explicit are the barriers to failure in safety arguments?

    Get PDF
    Safety cases embody arguments that demonstrate how safety properties of a system are upheld. Such cases implicitly document the barriers that must exist between hazards and vulnerable components of a system. For safety certification, it is the analysis of these barriers that provide confidence in the safety of the system. The explicit representation of hazard barriers can provide additional insight for the design and evaluation of system safety. They can be identified in a hazard analysis to allow analysts to reflect on particular design choices. Barrier existence in a live system can be mapped to abstract barrier representations to provide both verification of barrier existence and a basis for quantitative measures between the predicted barrier behaviour and performance of the actual barrier. This paper explores the first stage of this process, the binding between explicit mitigation arguments in hazard analysis and the barrier concept. Examples from the domains of computer-assisted detection in mammography and free route airspace feasibility are examined and the implications for system certification are considered
    • 

    corecore