100 research outputs found

    Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program

    Get PDF
    Objective: To evaluate the performance of a deep learning-based computer-aided detection (DL-CAD) system in a Chinese low-dose CT (LDCT) lung cancer screening program. Materials and methods: One-hundred-and-eighty individuals with a lung nodule on their baseline LDCT lung cancer screening scan were randomly mixed with screenees without nodules in a 1:1 ratio (total: 360 individuals). All scans were assessed by double reading and subsequently processed by an academic DL-CAD system. The findings of double reading and the DL-CAD system were then evaluated by two senior radiologists to derive the reference standard. The detection performance was evaluated by the Free Response Operating Characteristic curve, sensitivity and false-positive (FP) rate. The senior radiologists categorized nodules according to nodule diameter, type (solid, part-solid, non-solid) and Lung-RADS. Results: The reference standard consisted of 262 nodules ≥ 4 mm in 196 individuals; 359 findings were considered false positives. The DL-CAD system achieved a sensitivity of 90.1% with 1.0 FP/scan for detection of lung nodules regardless of size or type, whereas double reading had a sensitivity of 76.0% with 0.04 FP/scan (P = 0.001). The sensitivity for detection of nodules ≥ 4 - ≤ 6 mm was significantly higher with DL-CAD than with double reading (86.3% vs. 58.9% respectively; P = 0.001). Sixty-three nodules were only identified by the DL-CAD system, and 27 nodules only found by double reading. The DL-CAD system reached similar performance compared to double reading in Lung-RADS 3 (94.3% vs. 90.0%, P = 0.549) and Lung-RADS 4 nodules (100.0% vs. 97.0%, P = 1.000), but showed a higher sensitivity in Lung-RADS 2 (86.2% vs. 65.4%, P < 0.001). Conclusions: The DL-CAD system can accurately detect pulmonary nodules on LDCT, with an acceptable false-positive rate of 1 nodule per scan and has higher detection performance than double reading. This DL-CAD system may assist radiologists in nodule detection in LDCT lung cancer screening

    Computed tomography reading strategies in lung cancer screening

    Get PDF

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    A Low-Dose CT-Based Radiomic Model to Improve Characterization and Screening Recall Intervals of Indeterminate Prevalent Pulmonary Nodules.

    Get PDF
    Lung cancer (LC) is currently one of the main causes of cancer-related deaths worldwide. Low-dose computed tomography (LDCT) of the chest has been proven effective in secondary prevention (i.e., early detection) of LC by several trials. In this work, we investigated the potential impact of radiomics on indeterminate prevalent pulmonary nodule (PN) characterization and risk stratification in subjects undergoing LDCT-based LC screening. As a proof-of-concept for radiomic analyses, the first aim of our study was to assess whether indeterminate PNs could be automatically classified by an LDCT radiomic classifier as solid or sub-solid (first-level classification), and in particular for sub-solid lesions, as non-solid versus part-solid (second-level classification). The second aim of the study was to assess whether an LCDT radiomic classifier could automatically predict PN risk of malignancy, and thus optimize LDCT recall timing in screening programs. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, positive predictive value, negative predictive value, sensitivity, and specificity. The experimental results showed that an LDCT radiomic machine learning classifier can achieve excellent performance for characterization of screen-detected PNs (mean AUC of 0.89 ± 0.02 and 0.80 ± 0.18 on the blinded test dataset for the first-level and second-level classifiers, respectively), providing quantitative information to support clinical management. Our study showed that a radiomic classifier could be used to optimize LDCT recall for indeterminate PNs. According to the performance of such a classifier on the blinded test dataset, within the first 6 months, 46% of the malignant PNs and 38% of the benign ones were identified, improving early detection of LC by doubling the current detection rate of malignant nodules from 23% to 46% at a low cost of false positives. In conclusion, we showed the high potential of LDCT-based radiomics for improving the characterization and optimizing screening recall intervals of indeterminate PNs

    Latest CT technologies in lung cancer screening:protocols and radiation dose reduction

    Get PDF
    The aim of this review is to provide clinicians and technicians with an overview of the development of CT protocols in lung cancer screening. CT protocols have evolved from pre-fixed settings in early lung cancer screening studies starting in 2004 towards automatic optimized settings in current international guidelines. The acquisition protocols of large lung cancer screening studies and guidelines are summarized. Radiation dose may vary considerably between CT protocols, but has reduced gradually over the years. Ultra-low dose acquisition can be achieved by applying latest dose reduction techniques. The use of low tube current or tin-filter in combination with iterative reconstruction allow to reduce the radiation dose to a submilliSievert level. However, one should be cautious in reducing the radiation dose to ultra-low dose settings since performed studies lacked generalizability. Continuous efforts are made by international radiology organizations to streamline the CT data acquisition and image quality assurance and to keep track of new developments in CT lung cancer screening. Examples like computer-aided diagnosis and radiomic feature extraction are discussed and current limitations are outlined. Deep learning-based solutions in postprocessing of CT images are provided. Finally, future perspectives and recommendations are provided for lung cancer screening CT protocols

    An Innovative Method for Lung Cancer Identification Using Machine Learning Algorithms

    Get PDF
    Biological community and the healthcare sector have greatly benefited from technological advancements in biomedical imaging.&nbsp; These advantages include early cancer identification and categorization, prognostication of patients' clinical outcomes following cancer surgery, and prognostication of survival for various cancer types. Medical professionals must spend a lot of time and effort gathering, analyzing, and evaluating enormous amounts of wellness data, such as scan results. Although radiologists spend a lot of time carefully reviewing several scans, tiny nodule diagnosis is incredibly prone to inaccuracy. Low dose computed tomography (LDCT) scans are used to categorize benign (Noncancerous) and malignant (Cancerous) nodules in order to study the issue of lung cancer (LC) diagnosis. Machine learning (ML), Deep learning (DL), and Artificial intelligence (AI) applications aid in the rapid identification of a number of infectious and malignant diseases, including lung cancer, using cutting-edge convolutional neural network (CNN) and Deep CNN&nbsp;architectures, we propose three unique detection models in this study: SEQUENTIAL 1 (Model-1), SEQUENTIAL 2 (Model-2), and transfer learning model Visual Geometry Group, VGG 16 (Model-3). The best accuracy model and methodology that are proposedas an effective and non-invasive diagnostic tool, outperforms other models trained with similar labels using lung CT scans to identify malignant nodules. Using a standard LIDC-IDRI data set that is freely available, the deep learning models are verified. The results of the experiment show a decrease in false positives while an increase in accuracy

    Lung Cancer Screening, Towards a Multidimensional Approach: Why and How?

    Get PDF
    International audienceEarly-stage treatment improves prognosis of lung cancer and two large randomized controlled trials have shown that early detection with low-dose computed tomography (LDCT) reduces mortality. Despite this, lung cancer screening (LCS) remains challenging. In the context of a global shortage of radiologists, the high rate of false-positive LDCT results in overloading of existing lung cancer clinics and multidisciplinary teams. Thus, to provide patients with earlier access to life-saving surgical interventions, there is an urgent need to improve LDCT-based LCS and especially to reduce the false-positive rate that plagues the current detection technology. In this context, LCS can be improved in three ways: (1) by refining selection criteria (risk factor assessment), (2) by using Computer Aided Diagnosis (CAD) to make it easier to interpret chest CTs, and (3) by using biological blood signatures for early cancer detection, to both spot the optimal target population and help classify lung nodules. These three main ways of improving LCS are discussed in this review
    • …
    corecore