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Lung Cancer Screening and Nodule 
Detection: The Role of Artificial 
Intelligence

Sunyi Zheng, Peter M. A. van Ooijen, 
and Matthijs Oudkerk

�Introduction

Lung cancer accounted for the majority of cancer-related 
deaths in 2017, more than the combination of the other three 
leading cancers: colorectal, breast, and prostate cancer [1]. 
Despite an accelerated decline in the long-term mortality 
rate, it remains one of the deadliest cancers worldwide. In 
2020, it is estimated to cause 135,720 deaths in the United 
States [1]. The 5-year survival rate for lung cancer at stage 
IV is only 4% [2]. However, early detection of lung cancer 
can improve survival rates, as patient treatment plans can be 
drawn up and implemented at an earlier disease stage [3]. 
Computed tomography (CT) is an effective method to detect 
and investigate lung cancer, which generally presents as a 
pulmonary nodule. CT can also be utilized for the measure-
ment of pulmonary nodule intensity, diameter, or volume, 
and can provide diagnostic information, based on morpho-
logical features, lymph node locations, and distant metasta-
sis, for use in subsequent nodule management. The 
implementation of lung cancer screening worldwide has led 
to an ever-increasing workload pressure on radiologists, and 
the need for accurate nodule detection. To reduce the heavy 
burden which radiologists face, over the last two decades, 

artificial intelligence (AI) systems using classic machine 
learning and advanced deep learning algorithms have been 
designed [4, 5]. These systems were designed with the aim of 
achieving a high sensitivity and a low false-positive rate in 
nodule identification [6]. Systems implemented using classic 
machine learning techniques more rely on human interven-
tion to define feature extraction algorithms, while systems 
with advanced deep learning techniques can independently 
learn the extraction of features. With more data available, the 
era of deep learning is leading to a renewed interest in lever-
aging AI systems for accurate and efficient nodule detection, 
and the integration of them within reporting workstations.

In this chapter, we will focus on the development of AI 
detection systems for pulmonary nodules, and discuss fac-
tors which affect their performance. Moreover, we look at 
the comparisons in performance between AI and radiologists 
on pulmonary nodule detection, and explore the role of AI in 
lung cancer screening programs.

�Lung Cancer Screening

With the aim of detecting lung cancer at an early stage, in popu-
lations with a high risk of lung cancer, randomized lung cancer 
screening trials have been established worldwide. In a recently 
published review regarding lung cancer screening, multiple 
large-scale screening programs have provided evidence show-
ing lung cancer-related mortality rate is reduced in patients who 
have undergone CT screening [7]. Variation was however seen 
in the definitions of clinically relevant nodules (based on size) in 
the differing CT-based screening trials. One of the major studies 
included “relevant” nodules based on diameters >4  mm [8], 
while other studies adopted diameter in addition to volume 
measurement for nodule managment [9–11]. In this section we 
briefly review four large-scale lung cancer screening programs. 
Comparisons of the four lung cancer screening programs 
including relevant findings are shown in Table 43.1.
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The National Lung Cancer Screening Trial (NLST) was 
initiated in 2002, and in total 53,454 participants were 
enrolled [8]. Half of the participants received LDCT scans 
and half underwent single-review chest radiography. The 
study demonstrated that screening using low-dose CT 
(LDCT) could yield a 20% reduction in lung cancer mortal-
ity compared to screening with chest radiography (hazard 
ratio [HR] = 0.80, P < 0.01). However, more false positives 
were found due to variation in nodule characterization and 
reporting manners by radiologists. To solve this issue, Lung 
Reporting and Data System (Lung-RADS) was released by 
the American College of Radiology, in order to provide clear 
definitions of positive findings and effective nodule manage-
ment for LDCT lung cancer screening. Despite a decrease in 
sensitivity, a study showed Lung-RADS (2014 version), 
when considering noncalcified nodules at least 4 mm in any 
diameter, can result in a lower false-positive rate (with vs. 
without: 12.8% vs. 26.6%) at baseline when applying it ret-
rospectively on the results of the NLST [12]. In the recent 
2019 version of Lung-RADS, taking diameter and volume 
measurement into consideration, nodules larger than 4 mm 
or 30  mm3 (regardless of type) with a risk of malignancy 
greater than 1% should be reported and recommended for 
short-term follow-up with additional diagnostic testing or 
tissue sampling [13].

The Dutch–Belgian randomized controlled lung-can-
cer screening trial (NELSON) was started in 2003 and 
recruited 15,789 individuals aged between 50 and 74. 
Half of the participants underwent volume-based LDCT 
screening, and the other participants received no screen-
ing (control group). Recently published results showed 
that among men, volume-based screening can substan-
tially reduce the mortality rate of lung cancer, when com-
pared to participants who did not undergo screening 
(cumulative rate ratio for lung cancer-specific mortality = 
0.76, 95% CI: 0.61–0.94, P < 0.05 at 10  years) [9]. To 
support the successful implementation of the NELSON 

study and other lung cancer screening programs in Europe, 
the European position statement on lung cancer screening 
was released [14]. The statement indicated that solid non-
calcified nodules larger than or equal to 4 mm or 30 mm3 
and sub-solid nodules greater than 5 mm are clinically rel-
evant in screening programs.

The UK Lung Cancer Screening (UKLS) pilot trial ran-
domized 4055 patients, aged 50–75, into CT screening and 
no screening groups. The UKLS trial showed that more than 
80% of early stage lung cancers could be detected and deliv-
ered potentially curative treatment [10]. This study focused 
on nodules which were larger than 3 mm or 15 mm3.

The multicenter Italian Lung Detection (MILD) trial 
recruited 2376 individuals who underwent annual or biennial 
LDCT. Ten-year results of the MILD trial provided evidence 
that prolonged LDCT screening led to a 39% mortality 
reduction in lung cancer (HR  =  0.61, 95% CI: 0.39–0.95, 
P  <  0.02) [15]. Besides, the lung cancer-specific 10-year 
mortality was similar in both biennial and annual screening 
groups. However, LDCT screening occurring every 2 years 
instead of 1 year could save 44% of follow-up scans for indi-
viduals who had a negative baseline examination [11]. A 
negative case in the MILD trial was classified as a nodule 
with the volume less than 60 mm3.

Despite the increased opportunity for early detection of 
lung cancer through the implementation of lung cancer 
screening programs, lung cancer may still be missed or 
detected at a late stage. This is due to the complexity of nod-
ule characterization and their anatomical structures, an 
increased number of CT slices to be viewed, inconsistent lev-
els of observer reading experience, fatigue, etc. A potential 
solution to this problem is the use of a well-preforming 
AI-based system to assist radiologists for nodule detection.

�AI-Based Pulmonary Nodule Detection

Machine intelligence, better known as artificial intelligence 
(AI), is used to describe machines which are designed to 
mimic and help humans to achieve certain goals. AI has been 
attempting to support radiologists since the end of the twen-
tieth century. The first AI system for lung nodule detection 
on chest radiographs was published in 1988. Due to insuffi-
cient computational power, poor image quality, and imma-
ture detection algorithms, the system yielded a high 
false-positive rate and its generalizability was unknown [16]. 
With the developments in computational resources and digi-
tal imaging, computers are able to process more difficult 
tasks, and the introduction of CT imaging brings a clearer 
view of the three-dimensional bodily structures. 
Consequently, AI has achieved great success in nodule detec-
tion in recent years, especially during the era of deep 
learning.

Table 43.1  Comparisons of relevant nodules and findings in various 
lung cancer screening studies

Screening 
trials

Size of 
relevant 
nodules Relevant findings

NLST ≥4 mm Diameter-based LDCT reduced lung 
cancer mortality (hazard ratio 
[HR] = 0.80, P < 0.01)

NELSON ≥4 mm or 
≥30 mm3

Volume-based LDCT reduced lung 
cancer mortality (HR = 0.76 in men, 
P = 0.01; HR = 0.67 in women)

UKLS ≥3 mm or 
≥15 mm3

LDCT can detect lung cancer (85.7% 
stage I or II) at an early stage. 
Mortality results to be published

MILD ≥60 mm3 Prolonged LDCT screening reduced 
lung cancer mortality
(HR = 0.61, P < 0.02)

S. Zheng et al.
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�Aims of AI

The reasons for implementing an AI nodule detection system 
for radiologists are as follows:

	1.	 To avoid missing clinically relevant nodules. Nodules 
have large variations in size, characteristics, and anatomi-
cal location, which can easily lead to false-negative 
outcomes.

	2.	 To reduce the number of false positives that might result 
in unnecessary follow-up, incorrect clinical staging and 
treatment, etc.

	3.	 To save the time of radiologists concentrating on diagno-
sis and subsequent management of nodule characteristics, 
if the AI system is efficient and can accurately process 
scans.

�Stages of Nodule Detection Systems

An AI nodule detection system can consist of five stages. 
Firstly, images should be retrieved from the picture archiving 
and communication system. Then, the image will be prepro-
cessed in appropriate window settings. The next (optional) 
step is to segment lung parenchyma, so that the system can 
focus solely on the region of interest and not be disrupted by 
other organs, clothes, or tables. The most essential two stages 
come after the segmentation of lung parenchyma, as shown 
in Fig. 43.1. At the nodule candidate detection stage, AI will 
try to find as many nodule candidates as possible based on 
features defined by algorithms. Corresponding nodule coor-
dinates and size can be further calculated to extract features 
of nodule candidates. In the end, by analyzing extracted fea-
tures, false-positive candidates will be removed from the 
final output at the false-positive reduction stage.

�Detection Systems Using Classic Machine 
Learning Algorithms

Machine learning (ML), as a subset of AI, can achieve a 
good performance on small datasets, but reply on the experi-
ence of humans. This might limit the generalizability of the 
machine learning-based system if it is validated on an exter-
nal set, or even an internal set. Moreover, due to inadequate 
computational power, most systems have been established 
based on small private databases, and their performance var-
ies. In a literature survey regarding the progress of machine 
learning-based systems on nodule detection, the sensitivity 
of the systems varied from 70.0% to 90.0%, whereas the 
false-positive rate ranged from 0.5 to 15 per scan [17].

In one of the fully automated detection systems, multiple 
thresholds were applied to segment the lung region, and ini-
tial nodule candidates were selected using an 18-point algo-
rithm [18]. For nodule candidate characterization, a feature 
vector was computed based on the mean HU value, standard 
deviation, volume, radius, sphericity, eccentricity, and circu-
larity. In 43 evaluated CT scans with 171 nodules, the AI 
system had a sensitivity of 70.0% with 1.5 false positives 
detected in every scan. A different study dedicated to detect-
ing isolated, juxtapleural, and juxtavascular nodule types 
using 2D and 3D operations accordingly [19] used 164 nod-
ules detected in 20 patients by 2 radiologists as a reference 
standard. A sensitivity of 97.4% was achieved for isolated 
nodules, whereas a sensitivity of 93.0% was achieved for 
juxtapleural and juxtavascular nodules. Using a novel quan-
tized convergence index filter to enhance round lesions, an 
automatic system was able to achieve a high sensitivity of 
90% on five clinical datasets [20]. Eight rule-based features, 
such as the output level of quantized convergence index fil-
ter, gray-level gradient, and lengths, were applied for false-
positive reduction by linear discriminant analysis. Another 

Nodule Candidate Detection False Positive Reduction

Nodule & Non-noduleSuspicious findings

P=0.98 P=0.05

Algorithms

Fig. 43.1  Two main stages in a nodule detection system

43  Lung Cancer Screening and Nodule Detection: The Role of Artificial Intelligence
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interesting study designed an algorithm that included a 
multi-scale Laplacian of Gaussian filter, prior shape infor-
mation, and circularity to detect nodule candidates, before 
applying deep learning techniques for false-positive reduc-
tion [21]. One hundred percent of nodules on the 888 CT 
scans were found, although an average false-positive rate of 
50.3 appeared in each scan.

Since many AI systems used different data for development, 
it is difficult to make a fair comparison. Hence, the public data-
set ANODE09 was released, to benchmark the performance of 
different systems [22]. This dataset included 55 scans collected 
in the NELSON study. The organizer compared the perfor-
mance of six AI systems and found the combination of the 
results can boost the final sensitivity from 20.8% to 72.5% with 
one false positive per scan [23]. More specially, with the same 
false-positive rate, the sensitivities of identifying small, large, 
isolated, vascular, pleural, and peri-fissural nodules were 
76.1%, 67.8%, 73.8%, 72.1%, 62.7%, and 82.9%, respectively. 
More nodules could have been detected if a higher false-posi-
tive rate was tolerated. They also studied false-positive findings 
and found the main causes to be vessel branchings, small 
lesions such as scar tissue, and apparent protrusions mimicking 
nodules in areas where high-density body structures are close 
or in contact with the pleural surface of the lung. As false posi-
tives are often small, an extra algorithm might be helpful which 
discards findings less than 4 mm, in order to further reduce the 
false-positive rate of the system.

�Detection Systems Applying Advanced Deep 
Learning Algorithms

Deep learning (DL) is a subcategory of machine learning utiliz-
ing artificial neural networks to learn presentative features of 
targets. Compared to ML algorithms, DL is more advanced 
with automated feature extraction and possibly unlimited accu-
racy, although a larger training set and more powerful comput-
ers are required. A recent systematic review paper showed DL 
systems can achieve high accuracy from 82.2% to 97.6% [4].

For the purpose of facilitating the development of 
computer-aided detection systems using DL techniques, 
large datasets are available, such as the Lung Image 
Database Consortium and Image Database Resource 
Initiative (LIDC/IDRI) with 1018 annotated thoracic CT 
scans collected from 7 participated academic centers, [24] 
and the National Lung Cancer Screening Trial (NLST) data-
set with LDCT scans from 26,254 patients [25]. Furthermore, 
many competitions have been held for the implementation 
of DL-based nodule detection systems. For example, the 
LUng Nodule Analysis 2016 (LUNA16) competition built a 
benchmark dataset with 888 CT scans which were acquired 
in thin slices and selected from the LIDC-IDRI database for 
evaluation [26]. In 2017, a Kaggle’s Data Science Bowl 
(DSB) challenge was organized for lung cancer diagnosis 
with a subset of the NLST set [27]. Two years later, the 
Lung Nodule Database (LNDb) competition released 294 
annotated CT scans retrospectively collected in Porto for 
automated nodule management based on the 2017 Fleischner 
society pulmonary nodule guidelines [28, 29].

In recent years, a large number of researchers have uti-
lized the LUNA16 dataset to build up AI detection systems. 
In one study, results of five complete AI detection systems 
and three systems developed only for removal of false posi-
tives were combined. The nodule detection rate at the candi-
date detection stage was increased up to 98.3%, which was 
higher than that of any single system. At the false-positive 
reduction stage, probabilities of nodule candidates were sim-
ply averaged. As a result, the merged system achieved a sen-
sitivity of 96.9% with one false positive per scan [30]. In 
another study, a deep learning approach was implemented 
inspired by the maximum intensity projection (MIP) tech-
nique which is one of the useful routine clinical procedures 
[31]. Their results showed that convolutional neural net-
works were capable of detecting more small nodules (85.5–
88.5%) between 3 and 10 mm on three different MIP slices 
(5, 10, and 15  mm) than on 1  mm axial slices (79.4%). 
Examples of various MIP images are shown in Fig.  43.2. 
After results on various slices were merged, 95.4% of nod-

1 mm slices 5 mm MIP 10 mm MIP 15 mm MIP

Fig. 43.2  Comparisons between different images generated by maximum intensity projection (MIP) and 1 mm axial slices. Nodules are enhanced 
and vessels are more continuous in the MIP images

S. Zheng et al.
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ules (regardless of size) were detected. Moreover, using two 
kinds of cubic patches for the elimination of false positives 
resulted in a final sensitivity of 92.7% with one false positive 
per scan. When the system took 16 MIP slices into consider-
ation, the performance was further improved to 94.4% at a 
false-positive rate of one [32]. Furthermore, a study pro-
posed a 3D Feature Pyramid Network with 96  ×  96  ×  96 
volumetric patches and an HS2 network to reduce false posi-
tives by tracking changes of consecutive slices where the 
nodule candidate is [33]. Aided by applying spatial features, 
the system can reach a sensitivity of 90.4% with a very low 
false-positive rate of one eighth. Additionally, this study 
implemented a faster region-based convolutional neural net-
work with two regions [34]. To integrate spatial information 
with the aim of refining results, three continuous slices con-
taining nodule candidates were fed into three classification 
models, and the final probability was averaged. If the models 
misclassified any nodules, this data was used again for 
retraining. The designed system finally found 85.2% of nod-
ules with also one false positive per scan.

In addition, nodules have large variations in morphology, 
which challenges the ability of the system to reduce the num-
ber of irrelevant findings. One method took CT patches in 
multiple scales for training, and combined the strategy that 
gradually extracted features in a zoom-in and zoom-out man-
ner [35]. As a consequence, the proposed method yielded a 
sensitivity of 94.7%. Moreover, based on the ResNet-101 
which had high accuracy on natural images, a developed 
nodule detector found 71.9% of nodules on the subset of the 
DSB challenge [36].

Some studies have used other databases for system imple-
mentation and yielded good performance in nodule 
identification. For example, a retrospective study collected 
9225 chest radiographs with nodules and 34,067 negatives 
cases, between 2010 and 2015 [37]. Thirteen experienced 
radiologists labeled these images. The proposed DL system 
was internally and externally assessed on datasets from three 
hospitals in South Korea and one in the United States. The 
area under the receiver of AI (0.92–0.99) was superior to 17 
out of 18 physicians who were involved in the evaluation. AI 
was able to detect 96% of nodules which were >30 mm, 74% 
of nodules 20–30 mm, 68% of nodules 15–20 mm, 55% of 
nodules 10–15 mm, and 11% of nodules <10 mm. A different 
study included 2000 CT scans with 2608 nodules from 
NLST, LIDC-IDRI, and a private dataset [38]. Challenging 
negative mining and volumetric patches training were 
applied to facilitate the performance. When the system was 
evaluated on 354 validation CT scans, a sensitivity of 93% 
was achieved for nodules larger than 5 mm. A third study 
used 12,754 CT scans, of which 11,625 were obtained from 
3 hospitals for AI development and 1129 were collected from 
more than 10 centers for validation [39]. The AI system 
showed a sensitivity of 74.0% when the false-positive rate is 
one in terms of different nodules. More specifically, AI had a 

sensitivity of 71.9%, 88.6%, 61.3%, 85.2%, 86.4%, and 
75.3% for solid nodules ≤6 mm, solid nodules >6 mm, sub-
solid nodules ≤5 mm, sub-solid nodules >5 mm, calcified 
nodules, and pleural nodules, respectively. In 2019, the 
Google AI team proposed an end-to-end system that took the 
volume of interest for cancer detection [40]. The system was 
first trained on the LIDC-IDRI dataset and subsequently 
fine-tuned on 70% of 29,541 NLST cases. Tested on 6729 
cases, the cancer detector reached a sensitivity of 97.5% for 
baseline scans and 94.6% for prior scans when the top 2 
detections were hit.

�Factors Impacting the Performance of AI

The performance of existing AI systems varies from system 
to system. Many factors such as CT parameters (slice thick-
ness, slab thickness, scan dose), nodule characteristics (nod-
ule location, nodule size, nodule density), and pulmonary 
vessel can influence the performance of AI.

�Slice Thickness

Due to the difference between vendors and reconstruction 
algorithms, CT scans have thin and thick slices. Thick-
section CT scans have the issue of partial volume effect, 
which causes the information loss of small objects. Evidence 
demonstrates sensitivity of the AI detection system is 
decreased when the same AI was assessed in CT scans with 
thick slices compared to thin slices. To explore the effect of 
slice thickness on the performance of a computer-aided 
detection (CAD) system, Kim et al. evaluated an AI system 
on multi-detector CT scans in 1 mm and 5 mm groups in 10 
patients [41]. In the thin-section group, 126 nodules were 
detected by 2 radiologists, whereas 114 nodules were found 
in the thick-section group. The AI system detected 120 out of 
126 (95.2%) and 101 out of 114 (88.6%) nodules in two 
groups separately. The evidence was also supported by 
Narayanan et  al. who assessed a CAD system in 192 CT 
scans with a slice thickness of 1.25 mm from the LUNA16 
dataset [42]. At a down-sampling ratio of 2, 4, and 8, images 
with a slice thickness of 2.5, 5, and 10 mm were stimulated. 
The study exemplified the system tested on 1.25 or 2.5 mm 
slices outperformed the one on 5 or 10 mm slices. The per-
formance of using different slice thickness settings is shown 
in Fig. 43.3.

�Slab Thickness in Maximum Intensity 
Projections

Maximum intensity projections (MIPs) are one of the clin-
ical procedures used by radiologists to efficiently detect 

43  Lung Cancer Screening and Nodule Detection: The Role of Artificial Intelligence
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nodules in vessel-enhanced slices. Human observation 
using MIPs with a slab thickness of 10  mm showed a 
higher nodule detection rate than using 5, 15, and 20 mm 
MIPs [43]. However, the principle of detecting nodules 
between radiologists and AI is not completely the same. 
Ten-mm might not be the optimal slab thickness for AI to 
detect lung lesions. To determine the optimal slab thick-
ness for AI, one study investigated the effect of different 
slab thicknesses at the nodule candidate detection stage 
using the large LUNA16 dataset [32]. To avoid partial vol-
ume effect, scans with a slice thickness >2.5  mm were 
excluded. All scans were interpolated to 1 mm slices, and 
MIPs with a slab thickness from 3 to 50 mm at an interval 
of 5 mm were generated by the 1 mm slices. The system 
was developed and validated with one type of MIP each 
time, and results were acquired by tenfold cross-validation. 
With increasing slab thickness, the detection rate of the AI 
system initially gradually increased up to 90% with a slab 
thickness of 10  mm, and thereafter decreased slowly. 
Regarding false positives, the number decreased with slab 
thickness from 1 mm to 25 mm, and remained stable there-
after. When determining the appropriate method for detect-
ing as many nodules as possible at the nodule candidate 
detection stage, 10 mm was the optimal parameter of MIP 
for AI.

�Radiation Dose

Radiation dose is related to the tube current and voltage, and 
by lowering one of these values, radiation dose can be 
reduced. However, in doing so the image quality can be also 
decreased which may cause more false positives. To attempt 
to reduce the dose which patients receive from screening, 
while keeping a high detection rate of lung cancer, studies 
have been conducted to evaluate the effect of using low-dose 
CT (LDCT) or ultra-low-dose CT (ULDCT) on the perfor-
mance of AI detection. It is evident that in spite of an increas-
ing number of false positives, AI can detect a similar number 
of nodules on CT scans performed at a lower dose. For 
example, Young et al. collected 481 LDCT scans from the 
NLST screening and simulated corresponding scans with 
50% and 25% of the original dose [44]. On a patient level, 
the AI system detected 38%, 37%, and 38% of patients who 
had at least one nodule at the original, 50%, and 25% dose, 
respectively. Although the sensitivity was comparable, the 
AI system found 13.5 more false positives per scan with 25% 
dose, compared to 5 false positives per scan with 50% dose 
and 3 false positives per scan with routine dose. Therefore, 
the authors suggested that it might be possible to reduce 
radiation dose of LDCT by a half in the current NSTL proto-
col. A different study included scans of 25 patients, and 
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image acquisitions were performed at a dose of 2.2, 1.2, 0.9, 
and 0.6 mSv by reducing the tube current [45]. When CT 
scans were reconstructed using the filtered back-projection 
technique, a similar number of true positives were detected 
by the AI system at different dose levels, while ten more false 
positives appeared on the scans at a lower dose compared to 
routine scans. Furthermore, in a large evaluation study, an AI 
system was tested on 187 LDCT scans and 942 regular CT 
scans [39]. There was no significant difference between dose 
levels for AI when detecting true positives.

�Nodule Location

According to anatomical location, nodules can be catego-
rized into pleural, isolated, and juxtavascular types. Some 
studies have shown that nodule location can affect the per-
formance of AI. In the research of Bae et al., authors found 
that isolated nodules were easier to detect using the system 
than juxtavascular and pleural nodules [19]. This was due to 
isolated nodules having a clear contrast between nodule 
boundary and lung parenchyma. In addition, these nodules 
were differentiable on a single slice without the need for 
comparison between contiguous slices. By contrast, the other 
two types of nodules, having more complex morphological 
features, were connected to disturbing vessels or tissues. 
This trend was also proved by the study of van Ginneken 
et al. who evaluated an AI system on the ANODE09 dataset 
[23]. The sensitivities of detection of isolated, juxtavascular, 
and pleural nodules were 73.8%, 72.1%, and 62.7%, respec-
tively. Another reason for the good accuracy demonstrated 
when detecting isolated nodules is the high prevalence of 
these nodules in the training set. This meant that the system 
had learned more features of isolated nodules, and hence 
tended to detect them.

�Nodule Size

Some AI systems are prone to missing small nodules, since 
they only show up in a few slices and noise can highly impact 
the definition of the nodule boundary. In the work of Zheng 
et al., nodules were stratified according to the Lung-RADS 
guideline [46]. The majority of missed nodules (15/23) had a 
diameter between 3 and 6 mm at the nodule candidate detec-
tion stage. A similar result was found in the work of Xie et al. 
[34]. The detection rate was only 44.4% for nodules smaller 
than 10 mm, whereas it was 86.9% for larger nodules (10–
30 mm). Contrarily, van Ginneken et al. found that five out of 
six of the evaluated AI systems presented lower sensitivities 

in identifying large nodules at different false-positive rates 
[23]. A possible explanation from the authors was that small 
nodules appeared more frequently in the training dataset, 
which results in a conflict expectation.

�Nodule Density

In general, solid nodules are more differentiable than part-
solid and non-solid nodules in the lung window settings. A 
study undertaken by Setio et  al. analyzed the density of 
detected nodules for seven AI nodule detection systems 
which participated in the LUNA16 challenge [30]. All of the 
systems showed a similar detection trend; the fewer the solid 
components in nodules, the greater the sensitivity of the sys-
tem. In other words, among the three types of nodules, non-
solid nodules had the lowest sensitivity. They normally 
represent areas of ground-glass opacity, which increases the 
difficulty for AI to differentiate them from almost identical 
lung parenchyma or focal pneumonia. Another study also 
investigated the performance of AI on solid and sub-solid 
nodules [39]. The detection rate of solid nodules was 72.9% 
(556/763) in LDCT scans, whereas that of sub-solid nodules 
was only 65.0% (256/394).

�Pulmonary Vessels

Pulmonary vessels are one of the main false-positive find-
ings in the results of AI systems. When nodules are close or 
attached to vessels, it becomes challenging for AI to select 
these nodules. If vessels are removed from the lung while 
preserving nodules completely, nodule detection could be 
much easier for both human readers and AI, with less false-
positive results. Inspired by this idea, Gu et al. developed a 
deep learning-based detection system using the pulmonary 
vessel suppression technique, and explored the effect of 
removal of vessels on the performance of AI [47]. The abla-
tion experiment demonstrated that sensitivity improved 
from 96.9% to 98.6%, with a false-positive rate that dropped 
from 7.65 to 0.92 per scan after ruling out pulmonary ves-
sels for the same candidate detection and false-positive 
reduction algorithms. Another recent study showed that the 
elimination of pulmonary vessels can reduce suspicious 
regions [48]. Although most nodules (94.0%) can be 
detected by AI, the false-positive rate, 15.1 per scan, was 
still high. The reason for this may be that the authors only 
used 2D slices instead of 3D cubic patches for false-positive 
elimination; therefore, nodular findings could not be effec-
tively removed.
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�Role of AI in Nodule Detection

Although AI can achieve promising performance in the 
detection of different sizes and types of pulmonary nodules, 
the effect of its performance in the reading of CT scans when 
compared to or used alongside radiologists should be further 
studied before applying it in real clinical practice. The per-
formance of AI, such as the percentage of truly detected nod-
ules, the number of false positives, and the order of using 
aided detection, highly impacts the role that AI plays in clini-
cal settings. For the purpose of exploring the feasibility of 
applying AI systems in clinical practice, a large number of 
studies have been conducted to compare their performance 
with that of radiologists. Despite a few researchers finding 
that AI failed in improving diagnostic accuracy [49], most 
results have shown that AI can be a good second or concur-
rent reader, when results of AI are shown to radiologists sub-
sequently or concurrently. The reading principles of using AI 
or computer-aided detection (CAD) systems are presented in 
Fig. 43.4.

In the subsequent model, AI is generally considered as a 
second reader, and radiologists are only allowed to see the 
results of computerized detection after finishing their first 
read. After the initial independent radiologist reads, the 
computerized findings for the same scans are displayed to 
radiologists for the purpose of checking whether nodules 
reported are indeed true nodules. Thus, the consensus 
panel, including nodules detected by both radiologists and 
AI, will be included in the reference standard. In the first 
phase of a comparison study, the authors analyzed the effect 
of utilizing AI in the subsequent model for nodule detection 
on thin-section CT scans [50]. When AI was used as a sec-
ond reader, the final sensitivities were 82%, 97%, and 82% 
for solid, part-solid, and GGO nodules, respectively. 
However, the sensitivities were only 57%, 81%, and 69% 
for corresponding nodules while reading without AI.  To 
assess the effectiveness of AI as a second reader, Awai et al. 

collected 50 chest CT scans with nodules ranging from 
3 mm to 29 mm [51]. Five experienced radiologists and five 
radiology residents were asked to rate nodule presence with 
and without using a computer-aided detection system. The 
observation results showed that there was a significant 
detection difference between reading alone and using the 
system afterward, for both experienced and less experi-
enced readers. The study concluded that the use of AI can 
enhance nodule detection for both reader groups.

In the concurrent model, radiologists can take image 
interpretation of AI into account while reading the CT scans. 
Studies have shown that when AI is used as a concurrent 
reader, radiologists are capable of detecting more nodules 
than reading alone. The study of Matsumoto et al. compared 
the performance of nodule detection on 50 CT scans with 
and without AI. With the help of the second AI reader, 66.5% 
of nodules were found by radiologists [52]. In contrast, only 
56.5% of nodules were detected in unaided reading. 
Importantly, radiologists took only approximately 10  sec-
onds longer reading each scan, and the sensitivity of nodule 
detection was improved.

The concurrent model obviously saves more time than the 
subsequent model since radiologists do not have to go 
through slices again without AI-aided detection. This 
assumption was proved by Matsumoto et al. who compared 
the performance of AI on 50 CT scans in both models [52]. 
The results showed that the mean reading time in the concur-
rent model (132 ± 70 s) was significantly shorter than that of 
the subsequent model (210  ±  103  s). A similar trend was 
reported in the study of Beyer et al. where the reading time 
was 274 seconds vs. 337 seconds on average for the concur-
rent model vs. the subsequent model [53]. Matsumoto et al. 
also found no significant difference in the performance of 
radiologists in these two models. Conversely, Beyer et  al., 
who also reviewed 50 scans, reported the sensitivity when 
using AI as a second reader was significantly higher than the 
sensitivity in the case of applying it concurrently [53]. A pos-
sible explanation for the varying results is that the AI system 
of Matsumoto et al. achieved a higher stand-alone sensitivity 
of 63% with 3.5 false positives per scan, whereas Beyer et al. 
had a stand-alone sensitivity of 43% with 1.3 false positives 
per scan. The results of Matsumoto et al. were more condu-
cive to the effectiveness of using AI.

AI detection systems can also detect nodules previously 
missed in the consensus of radiologists, and could be uti-
lized as an assisting reader. Findings could be referenced 
by radiologists in lung cancer screening programs, if a 
higher sensitivity and a lower false-positive rate can be 
achieved. In the study of Zhao et al., an AI system was eval-
uated on 400 LDCT scans selected from the NELSON 
screening study [54]. Five out of one hundred and fifty-one 
nodules were only detected by double reading, whereas 

CT scans

Human reader

Human reader

Report Report

Human reader

CAD system CAD system

CT scans

Fig. 43.4  Reading principles with the CAD integrated. The CAD is a 
second reader in the left workflow, while the CAD is a concurrent 
reader at the right side
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thirty-three true nodules were only identified by AI. Notably, 
one nodule overlooked by radiologists but found by AI was 
lung cancer. A second study compared the detection perfor-
mance of AI and double reading on 346 CT scans retro-
spectively collected in a lung cancer screening program 
between March and November 2017 [55]. The ratio of men 
to women was 221:125, and the average age was 51 years 
old. The AI system had a higher sensitivity than radiolo-
gists, not only for nodules larger than 5  mm (96.5% vs. 
88.0%) but also for small nodules (84.3% vs. 77.5%), 
although the system yielded more false positives for radi-
ologists to check. Seventeen nodules were confirmed as 
missed by the readers but detected by AI after a third read-
ing by an experienced radiologist. A third comparison study 
evaluated three AI systems on the large LIDC-IDRI dataset, 
with 777 nodules accepted by 4 radiologists [56]. The best 
system reached a sensitivity of 82% with 1108 false-posi-
tive findings. After the exclusion of the obvious non-nod-
ules by a researcher, 269 findings were assessed by 4 
radiologists. There were 45 marks accepted by 4 radiolo-
gists as nodules, of which 70% were not obvious pulmo-
nary nodules. Thirty-seven nodules were larger than 4 mm 
and required follow-up. These findings indicate AI has the 
potential to detect subtle nodules previously missed by 
radiologists. Furthermore, an AI-based system was evalu-
ated on the NLST screening chest radiographs from 5485 
participants [57]. The sensitivity and specificity when using 
AI were 100.0% and 90.9% for malignant nodule detection 
in digital radiographs. Compared to results of AI, radiolo-
gists had a lower sensitivity of 94.1% but a slightly higher 
specificity of 91.0%. AI also found seven nodules or masses 
missed by radiologists. The study concluded that the AI 
system outperformed NLST radiologists in detecting 
malignant nodules, and might help radiologists to detect 
lung cancer if used as a second reader.

Despite studies showing that AI can boost radiologist’s 
performance, the feasibility of applying AI systems in daily 
clinical practice and lung cancer screening has not been suf-
ficiently proven. It is necessary to validate AI systems on 
screening data from multiple institutes and provide more evi-
dence on the detection of those clinically relevant nodules. In 
addition, not only technicians but also radiologists should 
work cooperatively to build up a larger and more widely dis-
tributed nodule dataset, which is shared with the community 
in order to further stimulate the development of nodule 
detection systems.

�Conclusions

Lung cancer accounts for the majority of cancer-related 
deaths, and the 5-year survival rate is only 4% when detected 
at stage IV. For the purpose of detecting lung cancer at an 

early stage, randomized lung cancer screening trials have 
been established all over the world. The results from some 
large-scale screening studies, such as NELSON and NLST, 
show that the mortality rate of patients who undergo CT 
screening was reduced. These developments give lung can-
cer patients a greater chance of survival, but as a consequence 
the reading workload of radiologists is increasing. Artificial 
intelligence detection systems have been designed with the 
aim of reducing the pressure on radiologists, so that they can 
focus more on diagnoses. Despite many factors, such as CT 
parameters, nodule characteristics, and pulmonary vessels, 
affecting the sensitivity and false-positive rates of AI, AI can 
still provide substantial assistance for radiologists in the 
clinic, both as a second reader and concurrent reader. A few 
studies have been conducted evaluating AI on lung cancer 
screening data, and show AI can achieve good performance 
on nodule detection. In the future, the effect of using AI in 
lung cancer screening programs should be further studied. AI 
could be utilized as an assisting reader whose findings can be 
referenced by radiologists in screening settings, so long as 
the sensitivity can be continuously improved and the false-
positive rate can be minimized.
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