1,478 research outputs found

    Automatic Filter Design for Synthesis of Haptic Textures from Recorded Acceleration Data

    Get PDF
    Sliding a probe over a textured surface generates a rich collection of vibrations that one can easily use to create a mental model of the surface. Haptic virtual environments attempt to mimic these real interactions, but common haptic rendering techniques typically fail to reproduce the sensations that are encountered during texture exploration. Past approaches have focused on building a representation of textures using a priori ideas about surface properties. Instead, this paper describes a process of synthesizing probe-surface interactions from data recorded from real interactions. We explain how to apply the mathematical principles of Linear Predictive Coding (LPC) to develop a discrete transfer function that represents the acceleration response under specific probe-surface interaction conditions. We then use this predictive transfer function to generate unique acceleration signals of arbitrary length. In order to move between transfer functions from different probe-surface interaction conditions, we develop a method for interpolating the variables involved in the texture synthesis process. Finally, we compare the results of this process with real recorded acceleration signals, and we show that the two correlate strongly in the frequency domain

    VISIO-HAPTIC DEFORMABLE MODEL FOR HAPTIC DOMINANT PALPATION SIMULATOR

    Get PDF
    Vision and haptic are two most important modalities in a medical simulation. While visual cues assist one to see his actions when performing a medical procedure, haptic cues enable feeling the object being manipulated during the interaction. Despite their importance in a computer simulation, the combination of both modalities has not been adequately assessed, especially that in a haptic dominant environment. Thus, resulting in poor emphasis in resource allocation management in terms of effort spent in rendering the two modalities for simulators with realistic real-time interactions. Addressing this problem requires an investigation on whether a single modality (haptic) or a combination of both visual and haptic could be better for learning skills in a haptic dominant environment such as in a palpation simulator. However, before such an investigation could take place one main technical implementation issue in visio-haptic rendering needs to be addresse

    Haptic Rendering of Interacting Dynamic Deformable Objects Simulated in Real-Time at Different Frequencies

    Get PDF
    International audienceThe dynamic response of deformable bodies varies significantly in dependence on mechanical properties of the objects: while the dynamics of a stiff and light object (e. g. wire or needle) involves high-frequency phenomena such as vibrations, much lower frequencies are sufficient for capturing dynamic response of an object composed of a soft tissue. Yet, when simulating mechanical interactions between soft and stiff deformable models, a single time-step is usually employed to compute the time integration of dynamics of both objects. However, this can be a serious issue when haptic rendering of complex scenes composed of various bodies is considered. In this paper, we present a novel method allowing for dynamic simulation of a scene composed of colliding objects modelled at different frequencies: typically, the dynamics of soft objects are calculated at frequency about 50 Hz, while the dynamics of stiff object is modeled at 1 kHz, being directly connected to the computation of haptic force feedback. The collision response is performed at both low and high frequencies employing data structures which describe the actual constraints and are shared between the high and low frequency loops. During the simulation, the realistic behaviour of the objects according to the mechanical principles (such as non-interpenetration and action-reaction principle) is guaranteed. Examples showing the scenes involving different bodies in interaction are given, demonstrating the benefits of the proposed method

    Direct and gestural interaction with relief: A 2.5D shape display

    Get PDF
    Actuated shape output provides novel opportunities for experiencing, creating and manipulating 3D content in the physical world. While various shape displays have been proposed, a common approach utilizes an array of linear actuators to form 2.5D surfaces. Through identifying a set of common interactions for viewing and manipulating content on shape displays, we argue why input modalities beyond direct touch are required. The combination of freehand gestures and direct touch provides additional degrees of freedom and resolves input ambiguities, while keeping the locus of interaction on the shape output. To demonstrate the proposed combination of input modalities and explore applications for 2.5D shape displays, two example scenarios are implemented on a prototype system

    Interactive Chemical Reactivity Exploration

    Full text link
    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.Comment: 36 pages, 14 figure

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure
    • …
    corecore