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Haptic Rendering of Interacting Dynamic Deformable Objects

Simulated in Real-Time at Different Frequencies

Francois Dervaux1, Igor Peterlik2, Jérémie Dequidt1, Stéphane Cotin1, Christian Duriez1

Abstract— The dynamic response of deformable bodies varies
significantly in dependence on mechanical properties of the
objects: while the dynamics of a stiff and light object (e. g.
wire or needle) involves high-frequency phenomena such as
vibrations, much lower frequencies are sufficient for capturing
dynamic response of an object composed of a soft tissue. Yet,
when simulating mechanical interactions between soft and stiff
deformable models, a single time-step is usually employed to
compute the time integration of dynamics of both objects.
However, this can be a serious issue when haptic rendering
of complex scenes composed of various bodies is considered.

In this paper, we present a novel method allowing for
dynamic simulation of a scene composed of colliding objects
modelled at different frequencies: typically, the dynamics of
soft objects are calculated at frequency about 50 Hz, while the
dynamics of stiff object is modeled at 1 kHz, being directly
connected to the computation of haptic force feedback. The
collision response is performed at both low and high frequencies
employing data structures which describe the actual constraints
and are shared between the high and low frequency loops. Dur-
ing the simulation, the realistic behaviour of the objects accord-
ing to the mechanical principles (such as non-interpenetration
and action-reaction principle) is guaranteed. Examples showing
the scenes involving different bodies in interaction are given,
demonstrating the benefits of the proposed method.

I. INTRODUCTION

Real-time simulation of deformable bodies is an intensive

area of research in the field of computer graphics, virtual

reality and haptics. Among applications targeted by the

research, there is a strong need for surgical training sys-

tems based on high-fidelity haptic interaction with simulated

deformable objects. An important advances have taken place

recently, often being related to utilization of the finite element

method (FEM) that allows for accurate modeling of mechan-

ical behaviour observed in physical objects. If interaction

equiped with force feedback is to be considered, the fidelity

of the feedback is significantly influenced by the accuracy

of deformation modeling, but also by the performance of

algorithms employed for modeling the interactions (such as

contacts, grasping).

Mainly in the area of haptic rendering, the main challenge

remains the computation of these deformations and interac-

tions in real-time. Although the finite element method is an

elegant tool for modeling the dynamic behaviour of objects,

it remains computationally expensive for complex objects

with irregular geometries that appear in medical simulations.
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Several strategies have been adopted to accelerate the com-

putations, either by simplifying the simulation of the object

behavior, or the interaction taking place among the modeled

objects.

The dynamic response may vary significantly depending

on geometric and material characteristics of the object: for

example let us suppose a simulation scenario where the scene

is composed of two objects: a flexible needle interacting

with an deformable organ such as liver. Clearly, as the

needle is stiff and light, realistic simulation of its dynamic

response requires high frequencies to be taken into account,

whereas in the case of the soft tissue which is bulky and soft

much lower frequencies are needed to capture its response

correctly. However, the temporal integration used in this

scenario usually relies on single time step in simulation of

both objects, mainly if an interaction between the two bodies

is modelled in the simulation. Such an approach can be

acceptable in the case where the simulation is not required

to be run in a real-time: in this case a small simulation time

step is chosen to account for the high frequencies in the

needle response. Thereby, it’s assumed that it will run much

more slowly than the real clock time, as in each small time

step, the costly dynamics of the bulky soft objects has to be

recomputed.

Such a solution is not sustainable any more, as soon as the

simulation is to be run in real-time. In this context, we focus

on a multi-rate approach where dynamics of each object

in the scene is integrated in real-time with its own time

step. We believe that this approach is especially suited for

simulations with haptic rendering. In this case, the dynamics

of the stiff object (e.g. the flexible needle) which does not

require heavy computations can be simulated in the haptic

loop running usually at 1000 Hz, while the dynamics of

the soft highly-deformable body (e.g. the liver) is simulated

on a much lower (typically synchonized with the visual

thread running about 30 or 60 Hz), since it requires more

computationally expensive calculations. This approach is

already studied for example in [1] where the objects are

simulated at different frequencies, however, at the cost of

simplification in modeling the interactions.

The work presented in this paper is based on [2] where

a methods allowing for multi-rate interactive simulation

of objects simulated at two different frequencies has been

proposed. However, the method was suitable only for a

quasi-static scenario: as it required that compliance matrices

needed to simulate the interactions between the objects do

not depend on time step. The contribution of this paper is to

overcome this limitation and extend the multirate approach to



constraint-based interaction to dynamic scenario. To our best

knowledge, this is the first approach that allows for real-time

dynamic simulation of colliding deformable objects, whose

dynamics is computed at different frequencies.

The remainder of this paper is organized as follows: a

brief overview of related work is given in section 2. Then the

multi-rate dynamics is presented in section 3 mainly from the

mathematical point of view. In section 4, the computational

model is presented and finally the results are presented and

discussed in section 5.

II. PREVIOUS WORKS

Haptic rendering is a productive and very active research

field and the literature on the topic is quite vast. We narrow

the scope of this section to research focusing on stable

realistic haptic rendering of contacts between soft deformable

bodies and the works dealing with asynchronous and/or

multi-rate methods.

Haptic interaction with deformable bodies is based on two

competing but coupled scientific problems: realistic soft body

simulation which is computationally intensive and requires

large integration time steps in order to be interactive, and

realistic haptic rendering which implies fast computations of

forces and therefore requires small integration time steps.

In order to achieve an efficient trade-off, works in this

field usually rely on two main simplification strategies to

achieve the realistic haptic rendering: either the mechanical

coupling between the simulation scene and the haptic device

is simplified or the complexity of the mechanical models is

reduced substantially.

Pioneering works in the field employed the first approach

by allowing for local interactions only. For instance Bro-

Nielsen and Cotin [3] use bilateral constraints solved with

Lagrange Multipliers in order to prevent inter-penetrations

whereas Popescu and Compton [4] introduce small area

paradigm which defines equality constraints that will im-

pact the position of a reduced set of surface vertices of

the deformable surface. Unilateral contact combined with

computation of capacitance matrix is introduced by James

and Pai[5] using pre-computed Green’s functions that is valid

for linear deformations. These methods are limited to an

interaction with single contact point.

Handling complex and multiple friction contacts is intro-

duced by Duriez et al. [6] but the method also requires the

pre-computation of a compliance matrix and the method is

also limited to linear deformations. Extension to non-linear

deformations is proposed by Barbic and James [7] that allows

for multiple contacts and self-collisions of soft bodies with

penalty forces. As penalty can not reproduce precise contact

and friction conditions, Saupin et.al [8] propose to use an

approximations of the compliance that allows to handle

multiple friction contact points using constraints on non-

linear models. Similarly, Garre and Otaduy [9] only consider

the block-diagonal matrix of the compliance matrix assuming

small displacements between time steps. These later works

enable more advanced haptic interaction but are based on

assumptions that are not compatible with realistic modeling

of dynamic response in stiff and light deformable objects.

Recent works propose computationally fast deformable

models in order to achieve high-frequency simulation. For

instance, approach proposed by Barbic and James [7] is

compatible with reduced deformation models. Similar ap-

proach is used in the work of Jacobs et. al. [10] where a fast

linearized deformable model is computed.

Multi-rate or asynchronous simulation has also been much

investigated the past few years in order to handle computa-

tionally expensive deformable models. Harmon et. al. [11]

describe a multi-rate simulation framework that prevents

inter-penetrations, obeys causality and guarantees the conser-

vation of momentum and energy. Their work relies, among

other contributions, on asynchronous variational integrators

and kinematic data structures. While proven to complete

in finite time, such framework is not intended for haptic

interactions where small and strictly bounded computation

time step is required. More recent works have addressed

the performance issue of multi-rate simulation. Efficient

culling of collisions [12] or intermediate representations

called phantom meshes [13] have been investigated to reduce

the computation burden. Nevertheless, the proposed methods

are still far from providing a stable haptic rendering of

complex objects. Others works deal with haptic interactions

provided by dynamic simulation, but are still limited to rigid

[14] objects or textiles [15].

The main objective of our approach is to provide realistic

haptic rendering of deformable models that can handle a

large scope of soft bodies (from stiff and light objects

to soft and heavy ones). Our approach combines a multi-

rate simulation and an accurate mechanical coupling. The

major improvement over the previous work in [2] lies in

the capability of our framework to handle full second-order

dynamics and is no more restricted to quasi-static scenario.

III. DYNAMIC AND ASYNCHRONOUS DEFORMABLE

MODELS IN CONTACT

This section presents an overview of our asynchronous

framework and details the mathematical notation that will be

used throughout the paper. More particularly, we detail the

models and the numerical methods involved in the simulation

of dynamic deformable solids simulated at different frequen-

cies. Additionally, we present the constraint-based solving

process associated to the mechanical interactions between

these deformable objects.

Our framework relies on simulation loops running at dif-

ferent frequencies. To simplify the explanations and without

limiting the generality of the approach, we consider that we

have two simulation loops for simulating the interactions

between two deformable solids. The first loop, named low

rate loop, is dedicated to the computation of the dynamics

of the object that can be simulated with a large integration

time-step (e.g. 20 ms). The solid with such a low dynamics

is relatively heavy and composed of soft material. We call it

the soft object.



The second one, named high rate loop, handles the sim-

ulation and the haptic rendering with a small integration

time-step, typically 1 ms in order to compute correctly the

dynamics of the deformations of a light and stiff object. This

solid is called the stiff object.

The following notation is used throughout the remaining

of the paper: for any mechanical variable, such as M, the

right subscript indicates the corresponding object, the left

subscript represents which simulation loops computed the

value (L for the low rate loop, H for the high rate one) and

the left superscript which integration time-step has been used

to compute the mechanical variable. In our framework, two

integration steps are used ∆T which is the larger time-step

and dt which is the smaller time-step. For instance dt

L
Mstiff

encodes the mass matrix of the object named stiff. This

matrix is computed in the low rate simulation loop using an

integration time-step of dt. The same notation is consistently

derived to represent vectors: dt

L
vsoft is the velocity vector of

the object soft being computed in the low rate loop using an

integration time-step of dt.

A. FEM-based deformable models

The deformable models used in our simulation are based

on the Finite Element Method (FEM). The materials are sup-

posed to have linear elastic constitutive laws but geometric

non-linearities due to large transformations are handled. As

FEM models are generally computationally expensive, it is

worth mentioning the requirement that the computation of the

deformations must be included in the two simulation loops.

Thus, the model used for the stiff solid must have a very

quick computation method to hold the real-time constraint.

In our work we have used serially linked beam elements

that can fulfill the computation time requirements [16] while

accounting for non-linear deformations. On the contrary, the

computation time for the soft object is less constrained. Typ-

ically, we can use a volume FEM model composed of several

hundreds of tetrahedral elements. To capture the geometrical

nonlinearities, we rely on a corotational formulation [17].

In both cases, the FEM models are composed of elements

that integrate the material properties of the solids (mass,

elasticity) and of nodes which are the degrees of freedom

sampled over the deformable domains. Both deformable

solids behave according to the equation of the dynamics:

Ma = f(x,v) + J
Tλ (1)

where a denotes the acceleration of the nodes, x and v

are respectively the node positions and velocities, M is the

mass matrix and f is the sum of internal stiffness forces and

external forces. Finally, the second term of the right-hand

member of Eq.(1) stands for the constraints imposed on the

solid: JT provides the directions of constraints and λ is the

vector of constraint response forces.

The time integration is performed using a backward Euler

integration scheme. Implicit integration is preferred to ensure

stable behavior regardless the choice of the time-steps.

Denoting h the time-step used in the integration (h = dt

for small time step and h = ∆T for large time step), the

backward Euler scheme provides the following equations:

v
t+h = v

t + hat+h
x
t+h = x

t + hvt+h. (2)

The forces f are non-linear functions of the positions x

and velocities v. We apply a Taylor series expansion to f and

make the first order approximation (a single linearization by

time step):

f(xt+h,vt+h)≈ f(xt,vt)+K(xt+h−x
t)+B(vt+h−v

t) (3)

where f represents the internal stiffness forces at a given

position x of the degrees of freedom, K is the stiffness

matrix depending on the current position. A damping matrix

B = αM + βK is introduced in the Eq.3, where α and β

are respectively the Rayleigh mass and the Rayleigh damping

coefficients. By combining equations (1) and (3) we get

(
1

h
M−B− hK)

︸ ︷︷ ︸

A

dv = f(xt,vt) + hKv
t

︸ ︷︷ ︸

b

+
1

h
J
tλ (4)

where dv is defined as ha = v
t+h − v

t. The matrix A is

refreshed at each time step. We emphasize that the matrix

A depends on the time step h, so the matrix is not the same

with h = dt and with h = ∆T .

B. Interaction Model

The FEM models of both stiff and soft objects are linked

by the constraint based expression of their mechanical inter-

actions. Among the interactions between the two deformable

bodies, we need to detect the collision and provide an

adequate response (without interpenetration). The collision

detection (or more generally the geometrical determination

of the contact points) is often time consuming and is not

compatible with the high rate loop. In our approach, we

use an algorithm based on proximity queries between FEM

meshes that is computed in the low rate loop. It supposes

that we have access to a geometrical position of the stiff

object in this low rate loop. The algorithm places contact

constraints where the local minimal distance between the

meshes is small enough to have a potential collision between

current time t and t + ∆T . Other type of constraints, for

instance bilateral constraints (attachment, sliding..) can also

be set. After computing the queries, a matrix J containing

the directions of unilateral and bilateral constraints for each

object is assembled.

To handle the contacts realistically, we rely the Signorini’s

law1 0 ≤ δ ⊥ λ ≥ 0 where δ represents the signed distances

between potential contact points detected by the proximity

queries. The bilateral constraints prevent the relative motion

of the bodies at a given point, in a given direction. Thus,

at this point the relative distance is forced to δ = 0. The

constraints are set in the low rate loop but a very important

feature of our method is that the resolution of the constraints

is performed at both high and low rates, in order to have

adequate constraint response on both dynamic models.

1We can also set additional constraints to simulate the friction with
Coulomb’s law like it is done in [6].



To solve the reaction forces of this response, we first

to need evaluate the constraint violation when applying an

unconstrained dynamic motion to both deformable objects

(i. e. solving Eq.(4) with λ = 0.). These unconstrained

motions are called the free motions. Computed on the stiff

and soft objects with respectively small h = dt and large

h = ∆T time steps, they provide the positions dt

H
x

free
stiff and

∆T

L
x

free
soft . However, to obtain a measure of the violation for

both h = dt and h = ∆T , we also need to compute a value

for dt

L
x

free
soft and ∆T

L
x

free
stiff (i.e. the free position for the soft

object with h = dt and for the stiff object with h = ∆T ).

Obtaining these position values require to solve two ad-

ditional linear system of equation. This is not a problem

for the stiff solid because the cost of solving its system

at low rates can be neglected. In the contrary, for the soft

object, its system can be very large. Thus, the value dt

L
x

free
soft is

computed at low rates. This approximation is valid because

the soft body has a low dynamics. If it were computed at high

rate, the displacement created by the unconstrained motion
dt

H
x

free
soft −

dt

H
xsoft would not change much between high rate

steps .

When obtaining the violation δ
free at both low and high

rates, we need to solve, at low and high rates a mixed

complementarity problem (MCP). First we compute the MCP

at low rates, with a time step ∆T :






δ =
[
∆T

L
Wsoft +

∆T

L
Wstiff

]

︸ ︷︷ ︸
∆T

L
W

λ+∆T

L
δ
free

0 ≤ δ ⊥ λ ≥ 0 (for contact constraints)
δ = 0 (for bilateral constraints)

(5)

where the compliance matrices for soft and stiff objects are

computed as

∆T

L
Wsoft = LJsoft

∆T

L
A

−1
soft LJ

T

soft

∆T

L
Wstiff = LJstiff

∆T

L
A

−1
stiff LJ

T

stiff

(6)

Again, as it was already the case for the free motion, we

need to compute the compliance matrix of the stiff object

with large time steps h = ∆T in order to have an adequate

response of the constraints at low rates. This is important as

for dynamic systems, the value of the matrix A defined at

Eq.(4) depends on the time step h.

For the MCP at high rates, we use the violation of the

constraints dt

H
δ
free based on the positions obtained at high

rates. Additionally, we compute the compliance matrices

obtained with small time step h = dt. For the stiff object , the

matrix dt

H
Astiff is refresh at high rates, and as the object has

a fast dynamic response, important changes in dt

H
Astiff can

be observed between two small time step dt. However, we do

the hypothesis that the directions of constraints in Jstiff can be

provided by the low rate loop (in order to avoid an update of

the proximity queries algorithm). This is valid only if these

directions do not change much in the high rate loop between

two updates. Thus, the computation of the compliance matrix

for the stiff object is:

dt

H
Wstiff = LJstiff

dt

H
A

−1
stiff LJ

T

stiff (7)

It must be emphasized that the computational cost needed for

this matrix must be compatible with the real-time constraint

on the high rate loop.

Finally, we need to compute the compliance dt
Wsoft that

would have the soft object if it were integrated with small

time steps h = dt. The computation of this matrix is

expensive as it involves the inverse of the matrix Asoft which

is not optimized for being updated at high rates. But as the

soft object has a low dynamic response, we estimate that
dt
Asoft does not change between two time steps computed at

low rates. Thus, the computation of the compliance matrix
dt
Wsoft is performed at low rates:

dt

L
Wsoft = LJsoft

dt

L
A

−1
soft LJ

T

soft. (8)

Finally, if the values computed at low rates are shared

with the high rates loop, we can compute the MCP at high

rates:






δ =
[
dt

L
Wsoft +

dt

H
Wstiff

]

︸ ︷︷ ︸
dt

L
W

λ+dt

H
δ
free

0 ≤ δ ⊥ λ ≥ 0 (for contact constraints)
δ = 0 (for bilateral constraints)

(9)

The resolution of this MCP provides an adequate response

for the constraints on the stiff object simulated at high rates.

Overall, to build the 2 MCPs, three compliance matrices

are computed at low rates (two matrices with two different

time-steps dt and ∆T for the soft object and one matrix with

time step ∆T for the stiff object). One compliance matrix

is computed at high rates for the stiff object with the small

time step dt. Consequently it can be observed that the method

provides additional computations at low rates for obtaining

adequate compliance matrices, but these computations can

be easily parallelized.

When the MCP are solved, a corrective motion can be

applied to each object. It consist in solving Eq.(4) with the

new value of λ and with b = 0. Then, as the system in

Eq.(4) is linear, we can compute the final motion by adding

the free motion and the corrective motion.

IV. COMPUTATIONAL MODEL

In this part, the computational model showing the im-

plementation of two threads and structures shared between

them is given in detail. The symbols introduced in the

previous section are employed to denote the vectors and

matrices corresponding to the objects simulated at different

frequencies.

A. Multi-rate algorithm for dynamic modeling

The simulation is performed in two separated threads each

running at different frequency. The first thread implements

the high rate loop of the simulation in which the dynamics

of the stiff object is computed and directly coupled to the

haptic force feedback. In the second thread, the dynamics of

the soft object is modeled, together with full resolution of

the LCP being in charge of constraint resolution as described

in section III-B.
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Fig. 1. Schematic visualization of the computational model.

In each time-step of the low rate loop, seven sub-steps

L1 — L7 are performed as follows:

L1 Potential collisions are detected using proximity queries

which are evaluated using the position vectors Lxproxy

and Lxsoft computed in the last sub-step of the previous

time-step. The calculation results in matrices LJproxy

and LJsoft. Both matrices are stored to the buffer to be

available to the high rate loop.

L2 The position of the stiff object Hxstiff computed in the

sub-step H6 of the previous high rate loop time-step is

imposed to the proxy.

L3 The unconstrained dynamics of each object is sim-

ulated: first, using ∆T for both proxy and soft, the

system matrices (4) are assembled and inverted resulting

in ∆T

L
A

−1
proxy and ∆T

L
A

−1
soft and unconstrained positions

are computed and stored in vectors ∆T

L
x

free
proxy, ∆T

L
x

free
soft .

Second, the calculation is repeated for the soft object,

however, high rate time-step dt is used instead of ∆T to

compute the system matrix, resulting in inverted matrix
dt

L
A

−1
soft and unconstrained position vector dt

L
x

free
soft .

L4 The constraint violation ∆T

L
δ

free is computed as shown

in section III-B. An additional correction term is com-

puted as LJsoft

(
dt

L
x

free
soft −

∆T

L
x

free
soft

)
. This term is nec-

essary for the calculation of constraint violation in the

high rate loop as shown in H3. Both the violation and

corrective term vectors are stored in the buffer.

L5 Two compliance matrices, ∆T

L
Wproxy and ∆T

L
Wsoft are

computed for each object using ∆T

L
A

−1
proxy and ∆T

L
A

−1
soft.

One compliance matrix dt

L
Wsoft is computed for the soft

object using dt

L
A

−1
soft. The latter is stored to the buffer.

L6 The constraint resolution is performed in the low rate

loop using the compliance ∆T

L
W =∆T

L
Wsoft+

∆T

L
Wstiff

and the vector ∆T

L
δ

free computed in L4., resulting in the

vector of corrective forces ∆T

L
λ.

L7 Finally, the force vector ∆T

L
λ is used to apply the

motion correction to both proxy and the soft objects

resulting in constrained positions ∆T

L
xproxy and ∆T

L
xsoft.

The high rate simulation loop running in parallel performs

6 sub-steps in one time-step employing the data buffered in

the last time-step of the low rate loop as follows:

H1 The position representing the location of the haptic

interaction point is updated according to the actual

position of the haptic device.

H2 The unconstrained position dt

H
x

free
stiff of the stiff object

is computed using the inverse dt

H
A

−1
stiff of the system

matrix.

H3 The constraint violation dt

H
δ

free is computed. It is not

possible to use directly the violation ∆T

L
δ

free calculated

in L4 of the low rate loop, since this vector was

computed from unconstrained position simulated with a

different time-step ∆T . Nevertheless, the desired high

rate violation can be obtained as follows:

dt

H
δ

free = ∆T

L
δ

free (10)

+ LJsoft

(
dt

L
x

free
soft −

∆T

L
x

free
soft

)
(11)

+ LJproxy

(
dt

H
x

free
stiff −

∆T

L
x

free
proxy

)
(12)

where (11) is a corrective term compensating for the

different time-step in soft object dynamics computed in

L4 and (12) is a similar corrective term computed here

using the unconstrained positions of the proxy and stiff

objects calculated in L3 and H2, respectively.

H4 The compliance matrix dt

H
W is computed as a sum of

dt

L
Wsoft computed in L5 and

dt

H
Wstiff = { LJproxy}

{
dt

H
A

−1
stiff

}{

LJ
⊤

proxy

}
.

H5 The time-limited constraint resolution is performed us-

ing dt

H
W from H4 and dt

H
δ

free from H3, resulting in

correction force vector dt

H
λ.
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Fig. 2. Illustration of the two beams example. Deformations are the same
at low rates (green) and at high rates (red).

H6 The forces stored in dt

H
λ are used to compute the cor-

rected position dt

H
xstiff of the stiff object. The position

dt

H
xstiff is stored to the buffer to be available for the

low rate proxy object needed in sub-step L2.

B. Force-feedback for haptic rendering

As described in the previous, the dynamics of the stiff

body is computed in the high rate loop as realistic simulation

of its behaviour requires small time-step. Moreover, this body

usually represents the object (such as the deformable needle)

which is driven by the user. However, this means that this

tool is attached to the haptic device and the force response

of the tool represents the force-feedback which should be

delivered to the user via the haptic device.

In our setting, the vector dt

H
λ computed in H5 gathers the

actual forces corresponding to the constraints imposed on

both soft and stiff objects. In order to compute the response

force in the nodes of the stiff object corresponding to the

constraint forces, the constraint forces has to be transformed

from the constraint space to the space of degrees of freedom

of the stiff object. This is done using the matrix LJproxy

which contains the constraint directions computed in sub-

step L1 as fstiff = { LJproxy}
dt

H
λ where fstiff is the vector of

forces applied in the nodes of the stiff object due to the

constraints imposed on the stiff object. Finally, the force

feedback is calculated by summing the vector fstiff over the

nodes of the stiff object, i. e. fhaptic =
∑

n
f
n

stiff.

V. RESULTS

In this section we present results of experiments demon-

strating the multi-rate method presented in this paper.

The first experiments highlight the action-reaction prin-

ciple. We propose a basic case which allows to verify that

the principle is preserved in simulation implemented by our

method. Two beam models with identical mechanical param-

eters are connected with a bilateral constraint. The other end

of the low rate beam model is fixed in the space, whereas the

free end of the high rate beam model is attached to the haptic

device. The experiment show that although being computed

on different frequencies, the beams undergoes symmetric

deformations for an arbitrary position of the haptic device

after the simulation is stabilized. Moreover, the dynamics of

the high rate beam allows for high rate vibrations observed

during the simulation.

Haptic
Device

Bilateral
Constraint

Friction contact
Constraints

Bilateral
Constraint

Haptic
device

Friction contact
constraints

Fig. 3. Illustration of the scene composed by a cylinder (simulated at
50 Hz) and a thread (simulated at 1 kHz).

To validate our approach, we created another simulation

scene where a cylinder is placed on a horizontal plane. The

cylinder is modelled by tetrahedral corotational FEM and is

simulated at 50 Hz. A wire is attached to the upper part of

the cyliner and the other endpoint of the thread is driven

by a haptic device as shown in Fig. 3. The wire is modelled

with 10 serially-linked beam elements based on Tymoshenko

formulation and its dynamics is computed at 1000 Hz. The

collisions between the plane, cylinder and the thread are

being detected and resolved during the simulation. During the

interaction, the simulation remains stable for any admissible

configuration: the position of the cylinder on the plane can

be changed by pulling the wire, or the cylinder can be even

pulled out of the plane, so it’s hanging freely in the space

been hung on the wire. At the same time, a detailed and

realistic haptic force-feedback is delivered to the user via

the mechanism described in section IV-B.

VI. CONCLUSIONS

In this paper a significant issue in haptic rendering of

deformable object is addressed. The main contribution of

the paper is in proposing a method that allows for dynamic

simulation of deformable objects being computed at different

frequencies: while the collisions between the objects are

handled correctly, a stable haptic feedback is delivered to the

user. While additional computational overhead is introduced

in the low rate loop in which three compliance matrices are

computed, the calculations in the high rate thread remain

compatible with frequency of 1000 Hz required by the haptic

rendering.

Examples are provided demonstrating that the action-

reaction principle is well preserved in the simulation and

further, the high rate response allows for correct rendering

of such phenomena as high-frequency vibration of the thread,



which rapidly increases quality of haptic rendering of light

and stiff objects such as wires and needles.

In the paper, a scenario employing two different frequen-

cies is presented. While we believe such scenario already

opens a wide possibilities for many applications in virtual

reality, extending our approach to scenario with more than

two frequencies should be investigated. Simulations that

include deformable objects with motion computed at their

optimal frequency would enable more complex simulations

without sacrificing the realism, accuracy and quality of

dynamic response. However, scaling our approach to many

simulation frequencies may drastically increase the compu-

tational burden as well as the volume of data shared between

the simulation loops. Therefore future work will aim at

providing a generic way to handle multi-rate simulations

while reducing the computational overhead to handle the

interactions.
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