7 research outputs found

    New Areas of Contributions and New Addition of Security

    Get PDF
    Open Journal of Big Data (OJBD) (www.ronpub.com/ojbd) is an open access journal, which addresses the aspects of Big Data, including new methodologies, processes, case studies, poofs-of-concept, scientific demonstrations, industrial applications and adoption. This editorial presents two articles published in the first issue of the second volume of OJBD. The first article is about the investigation of social media for the public engagement. The second article looks into large-scale semantic web indices for six RDF collation orders. OJBD has an increasingly improved reputation thanks to the support of research communities. We will set up the Second International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), in Porto, Portugal, between 24 and 26 April 2017. OJBD is published by RonPub (www.ronpub.com), which is an academic publisher of online, open access, peer-reviewed journals

    Authentication mechanism of network communication nodes based on information safety of the Internet of Vehicles

    Get PDF
    The Internet of Vehicles (IoV) is an important part of intelligent traffic, and the problem of information safety is an essential task that has to be solved urgently. In this study, the main focus is on the authentication mechanism of communication nodes in the IoV. Based on elliptic curve cryptography, an authentication method was designed; the processes of system establishment, pseudonym generation and message authentication were introduced; and the safety of the system was analysed. The results indicate that the proposed method has passed the correctness verification and has significant advantages compared to SPECS and b-SPECS in terms of time cost and authentication delay. The experimental results verify the reliability of the method, which makes some contributions to the authentication of communication nodes in the IoV and is beneficial to the further improvement of information security of the IoV

    A lightweight and secure multilayer authentication scheme for wireless body area networks in healthcare system

    Get PDF
    Wireless body area networks (WBANs) have lately been combined with different healthcare equipment to monitor patients' health status and communicate information with their healthcare practitioners. Since healthcare data often contain personal and sensitive information, it is important that healthcare systems have a secure way for users to log in and access resources and services. The lack of security and presence of anonymous communication in WBANs can cause their operational failure. There are other systems in this area, but they are vulnerable to offline identity guessing attacks, impersonation attacks in sensor nodes, and spoofing attacks in hub node. Therefore, this study provides a secure approach that overcomes these issues while maintaining comparable efficiency in wireless sensor nodes and mobile phones. To conduct the proof of security, the proposed scheme uses the Scyther tool for formal analysis and the Canetti–Krawczyk (CK) model for informal analysis. Furthermore, the suggested technique outperforms the existing symmetric and asymmetric encryption-based schemes

    Computationally Efficient Privacy Preserving Anonymous Mutual and Batch Authentication Schemes for Vehicular Ad Hoc Networks

    No full text
    In the near future, it is envisioned that vehicular Ad hoc networks (VANETs) will be making use of long-distance communication techniques, such as cellular networks and Worldwide Interoperability for Microwave Access (WiMAX), to get instant Internet access for making the communication between vehicles and fixed road side infrastructure. Moreover, VANETs will also make use of short-distance communication methods, such as Dedicated Short-Range Communications (DSRC) and Wireless Fidelity (Wi-Fi) to perform short range communication between vehicles in an ad hoc manner. This Internet connection can provide facility to other vehicles to send traffic related messages, collisions, infotainment messages other useful safety alerts. In such a scenario, providing authentication between vehicle to infrastructure and vehicle to vehicle is a challenging task.In order to provide this facility, in this paper, we propose a computationally efficient privacy preserving anonymous authentication scheme based on the use of anonymous certificates and signatures for VANETs in making them an important component of Internet of Things (IoT) and the development of smart cities. Even though there are several existing schemes available to provide such anonymous authentication based on anonymous certificates and signatures in VANETs, the existing schemes suffer from high computational cost in the certificate revocation list (CRL) checking process and in the certificate and the signature verification process. Therefore, it is not possible to meet the requirement of verifying a large number of messages per second in VANETs which would lead to increased message loss. Hence, we use a computationally efficient anonymous mutual authentication scheme to validate the message source as well as to ensure the integrity of messages along with a conditional tracking mechanism to trace the real identity of misbehaving vehicles and revoke them from VANET in the case of dispute. In this paper, we also introduce an efficient anonymous batch authentication protocol to be used in IoT for Road Side Units (RSUs) to authenticate multiple vehicles simultaneously rather than one after the other such that the total authentication time can be dramatically reduced. This proposed scheme is implemented and the performance analysis shows that our scheme is more efficient in terms of certificate and signature verification cost, while preserving conditional privacy in VANETs.<br/

    5G-based V2V broadcast communications: A security perspective

    Get PDF
    The V2V services have been specified by the 3GPP standards body to support road safety and non-safety applications in the 5G cellular networks. It is expected to use the direct link (known as the PC5 interface), as well as the new radio interface in 5G, to provide a connectivity platform among vehicles. Particularly, vehicles will use the PC5 interface to broadcast safety messages to inform each other about potential hazards on the road. In order to function safely, robust security mechanisms are needed to ensure the authenticity of received messages and trustworthiness of message senders. These mechanisms must neither add significantly to message latency nor affect the performance of safety applications. The existing 5G-V2V standard allow protection of V2V messages to be handled by higher layer security solutions defined by other standards in the ITS domain. However having a security solution at the 5G access layer is conceivably preferable in order to ensure system compatibility and reduce deployment cost. Accordingly, the main aim of this paper is to review options for 3GPP access layer security in future 5G-V2V releases. Initially, a summary of 5G-V2V communications and corresponding service requirements is presented. An overview of the application level security standards is also given, followed by a review of the impending options to secure V2V broadcast messages at the 5G access layer. Finally, paper presents the relevant open issues and challenges on providing 3GPP access layer security solution for direct V2V communication

    Project BeARCAT : Baselining, Automation and Response for CAV Testbed Cyber Security : Connected Vehicle & Infrastructure Security Assessment

    Get PDF
    Connected, software-based systems are a driver in advancing the technology of transportation systems. Advanced automated and autonomous vehicles, together with electrification, will help reduce congestion, accidents and emissions. Meanwhile, vehicle manufacturers see advanced technology as enhancing their products in a competitive market. However, as many decades of using home and enterprise computer systems have shown, connectivity allows a system to become a target for criminal intentions. Cyber-based threats to any system are a problem; in transportation, there is the added safety implication of dealing with moving vehicles and the passengers within
    corecore