33,996 research outputs found

    An Agent-Based Distributed Coordination Mechanism for Wireless Visual Sensor Nodes Using Dynamic Programming

    No full text
    The efficient management of the limited energy resources of a wireless visual sensor network is central to its successful operation. Within this context, this article focuses on the adaptive sampling, forwarding, and routing actions of each node in order to maximise the information value of the data collected. These actions are inter-related in a multi-hop routing scenario because each nodeā€™s energy consumption must be optimally allocated between sampling and transmitting its own data, receiving and forwarding the data of other nodes, and routing any data. Thus, we develop two optimal agent-based decentralised algorithms to solve this distributed constraint optimization problem. The first assumes that the route by which data is forwarded to the base station is fixed, and then calculates the optimal sampling, transmitting, and forwarding actions that each node should perform. The second assumes flexible routing, and makes optimal decisions regarding both the integration of actions that each node should choose, and also the route by which the data should be forwarded to the base station. The two algorithms represent a trade-off in optimality, communication cost, and processing time. In an empirical evaluation on sensor networks (whose underlying communication networks exhibit loops), we show that the algorithm with flexible routing is able to deliver approximately twice the quantity of information to the base station compared to the algorithm using fixed routing (where an arbitrary choice of route is made). However, this gain comes at a considerable communication and computational cost (increasing both by a factor of 100 times). Thus, while the algorithm with flexible routing is suitable for networks with a small numbers of nodes, it scales poorly, and as the size of the network increases, the algorithm with fixed routing is favoured

    The Current State of Normative Agent-Based Systems

    Get PDF
    Recent years have seen an increase in the application of ideas from the social sciences to computational systems. Nowhere has this been more pronounced than in the domain of multiagent systems. Because multiagent systems are composed of multiple individual agents interacting with each other many parallels can be drawn to human and animal societies. One of the main challenges currently faced in multiagent systems research is that of social control. In particular, how can open multiagent systems be configured and organized given their constantly changing structure? One leading solution is to employ the use of social norms. In human societies, social norms are essential to regulation, coordination, and cooperation. The current trend of thinking is that these same principles can be applied to agent societies, of which multiagent systems are one type. In this article, we provide an introduction to and present a holistic viewpoint of the state of normative computing (computational solutions that employ ideas based on social norms.) To accomplish this, we (1) introduce social norms and their application to agent-based systems; (2) identify and describe a normative process abstracted from the existing research; and (3) discuss future directions for research in normative multiagent computing. The intent of this paper is to introduce new researchers to the ideas that underlie normative computing and survey the existing state of the art, as well as provide direction for future research.Norms, Normative Agents, Agents, Agent-Based System, Agent-Based Simulation, Agent-Based Modeling

    Agent-Based Modeling of the El Farol Bar Problem

    Get PDF
    In this paper, we study the self-coordination problem as demonstrated by the well-known El Farol problem (Arthur, 1994), which has later become what is known as the minority game in the econophysics community. While the El Farol problem or the minority game has been studied for almost two decades, existing studies are mostly only concerned with efficiency. The equality issue, however, has been largely neglected. In this paper, we build an agent-based model to study both efficiency and equality and ask whether a decentralized society can ever possibly self-coordinate a result with the highest efficiency while also maintaining the highest degree of equality. Our agent-based model shows the possibility of achieving this social optimum. The two key determinants to make this happen are social preferences and social networks. Hence, not only doe institutions (networks) matter, but individual characteristics (preferences) also matter. The latter are open to human-subject experiments for further examination.El Farol Bar problem, Social Preferences, Social Networks, Self-Organization, Emergence of Coordination.

    Automated Negotiation for Provisioning Virtual Private Networks Using FIPA-Compliant Agents

    No full text
    This paper describes the design and implementation of negotiating agents for the task of provisioning virtual private networks. The agents and their interactions comply with the FIPA specification and they are implemented using the FIPA-OS agent framework. Particular attention is focused on the design and implementation of the negotiation algorithms

    Algorithms for Graph-Constrained Coalition Formation in the Real World

    Get PDF
    Coalition formation typically involves the coming together of multiple, heterogeneous, agents to achieve both their individual and collective goals. In this paper, we focus on a special case of coalition formation known as Graph-Constrained Coalition Formation (GCCF) whereby a network connecting the agents constrains the formation of coalitions. We focus on this type of problem given that in many real-world applications, agents may be connected by a communication network or only trust certain peers in their social network. We propose a novel representation of this problem based on the concept of edge contraction, which allows us to model the search space induced by the GCCF problem as a rooted tree. Then, we propose an anytime solution algorithm (CFSS), which is particularly efficient when applied to a general class of characteristic functions called m+am+a functions. Moreover, we show how CFSS can be efficiently parallelised to solve GCCF using a non-redundant partition of the search space. We benchmark CFSS on both synthetic and realistic scenarios, using a real-world dataset consisting of the energy consumption of a large number of households in the UK. Our results show that, in the best case, the serial version of CFSS is 4 orders of magnitude faster than the state of the art, while the parallel version is 9.44 times faster than the serial version on a 12-core machine. Moreover, CFSS is the first approach to provide anytime approximate solutions with quality guarantees for very large systems of agents (i.e., with more than 2700 agents).Comment: Accepted for publication, cite as "in press
    • ā€¦
    corecore