5 research outputs found

    Cerebellar Transcranial Direct Current Stimulation (ctDCS) Effect in Perception and Modulation of Pain

    Get PDF
    Transcranial direct stimulation (tDCS) in the treatment of intractable or marginally tractable pain is experiencing an increasing diffusion in many fields worldwide. Recently, new modality of tDCS application has been proposed and applied, as cerebellar transcranial direct current stimulation (ctDCS). Indeed, the cerebellum has been proved to play a role in pain processing and to be involved in a wide number of integrative functions. In this chapter, we encompass the history of the technique, analysis of principles, a general description, including the methodological procedures of ctDCS; then, main clinical applications and their main effects in perceptive threshold of pain and other sensation, pain intensity, and laser evoked potentials (LEPs) changes

    Cerebellar transcranial direct current stimulation in neurological disease

    Get PDF
    Several studies have highlighted the therapeutic potential of transcranial direct current stimulation (tDCS) in patients with neurological diseases, including dementia, epilepsy, post-stroke dysfunctions, movement disorders, and other pathological conditions. Because of this technique's ability to modify cerebellar excitability without significant side effects, cerebellar tDCS is a new, interesting, and powerful tool to induce plastic modifications in the cerebellum. In this report, we review a number of interesting studies on the application of cerebellar tDCS for various neurological conditions (ataxia, Parkinson's disease, dystonia, essential tremor) and the possible mechanism by which the stimulation acts on the cerebellum. Study findings indicate that cerebellar tDCS is a promising therapeutic tool in treating several neurological disorders; however, this method's efficacy appears to be limited, given the current data

    ΠŸΠ°Ρ‚ΠΎΡ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ Π΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ синдрому Π·Π° ΡƒΠΌΠΎΠ² Ρ‚Ρ€Π°Π½ΡΠΊΡ€Π°Π½Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ подразнСння постійним струмом (Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π΅ дослідТСння)

    Get PDF
    ДисСртаційна Ρ€ΠΎΠ±ΠΎΡ‚Π° присвячСна Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π½ΡŽ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² Π΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ синдрому Π½Π° Ρ‚Π»Ρ– Ρ‚Ρ€Π°Π½ΡΠΊΡ€Π°Π½Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ подразнСння постійним струмом (ВППБ) ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ° Ρ‚Π° ΠΊΠΎΡ€ΠΈ ΠΌΠΎΠ·ΠΊΡƒ Ρ‚Π° ΠΎΠ±Π³Ρ€ΡƒΠ½Ρ‚ΡƒΠ²Π°Π½Π½ΡŽ ΡƒΠΌΠΎΠ² досягнСння Π²ΠΈΡ€Π°Π·Π½ΠΎΠ³ΠΎ протисудомного Π²ΠΏΠ»ΠΈΠ²Ρƒ. ВстановлСно, Ρ‰ΠΎ ВППБ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ° Π½Π΅Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²Ρ–Π΄ полярності Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π° Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ” протисудомні Π²ΠΏΠ»ΠΈΠ²ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΏΠ΅Π½Ρ‚ΠΈΠ»Π΅Π½Π΅Ρ‚Π΅Ρ‚Ρ€Π°Π·ΠΎΠ» (ΠŸΠ’Π—)-Ρ–Π½Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΊΡ–Π½Π΄Π»Ρ–Π½Π³Ρƒ, які Ρ” Π±Ρ–Π»ΡŒΡˆ Π²ΠΈΡ€Π°Π·Π½ΠΈΠΌΠΈ порівняно Π΄ΠΎ ВППБ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΠΎΡ€ΠΈ. На ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²ΠΈΡ… судом встановлСно відмінності Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ протисудомних Π²ΠΏΠ»ΠΈΠ²Ρ–Π² Π·Π° ΡƒΠΌΠΎΠ² застосування ΠΊΠ°Ρ‚ΠΎΠ΄Ρƒ Ρ‚Π° Π°Π½ΠΎΠ΄Ρƒ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Ρ€ΠΎΠ»ΡŒ старої ΠΊΠΎΡ€ΠΈ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ° (долька VI) Ρƒ Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— протисудомних Π²ΠΏΠ»ΠΈΠ²Ρ–Π² Ρ‚Π° ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ Ρ—Ρ… акситинібом – Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠΌ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½-ΠΊΡ–Π½Π°Π·ΠΈ Π’. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΠΏΡ€ΠΎΠ΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΎΠ³Π΅Π½Π½Ρƒ Π΄Ρ–ΡŽ наночастинок срібла, яка Π±Π»ΠΎΠΊΡƒΡ”Ρ‚ΡŒΡΡ акситинібом Ρ‚Π° ВППБ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ°. ВстановлСно Ρ€ΠΎΠ»ΡŒ Ξ³-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π², які Π°ΠΊΡ‚ΠΈΠ²ΡƒΡ” пСроксисомний ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ‚ΠΎΡ€ (PPARΞ³), Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΡ€ΠΎΡ‚ΠΈΠ΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π² Ρ‚Π° Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Ρ—Ρ… посилСння Π·Π° ΡƒΠΌΠΎΠ² блокування NMDA Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π² ΠΊΠ΅Ρ‚Π°ΠΌΡ–Π½ΠΎΠΌ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ відновлСння ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½ΡŒ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² Ρ†ΠΈΠΊΠ»Ρƒ нСспання-спання Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΈΡ… ΠΊΡ–Π½Π΄Π»Ρ–Π½Π³ΠΎΠΌ ΠΏΡ–Π΄ Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ ВППБ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ°.ДиссСртация посвящСна ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ патогСнСтичСских ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² эпилСптичСского синдрома Π½Π° Ρ„ΠΎΠ½Π΅ Ρ‚Ρ€Π°Π½ΡΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ раздраТСния постоянным Ρ‚ΠΎΠΊΠΎΠΌ (ВРПВ) ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° ΠΈ ΠΊΠΎΡ€Ρ‹ ΠΌΠΎΠ·Π³Π° ΠΈ обоснованию условий достиТСния Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ противосудороТного дСйствия. УстановлСно, Ρ‡Ρ‚ΠΎ ВРПВ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° нСзависимо ΠΎΡ‚ полярности элСктрода Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ противосудороТныС влияния Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠ΅Π½Ρ‚ΠΈΠ»Π΅Π½Π΅Ρ‚Π΅Ρ‚Ρ€Π°Π·ΠΎΠ» (ΠŸΠ’Π—) - ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠΈΠ½Π΄Π»ΠΈΠ½Π³Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ВРПВ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹. На ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²Ρ‹Ρ… судорог установлСны различия Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ развития противосудороТных воздСйствий Π² условиях примСнСния ΠΊΠ°Ρ‚ΠΎΠ΄Π° ΠΈ Π°Π½ΠΎΠ΄Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Ρ€ΠΎΠ»ΡŒ старой ΠΊΠΎΡ€Ρ‹ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° (долька VI) Π² Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ противосудороТных воздСйствий ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ… акситинибом - Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠΌ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½-ΠΊΠΈΠ½Π°Π·Ρ‹ Π’. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΏΡ€ΠΎΠ΅ΠΏΠΈΠ»Π΅ΠΏΡ‚ΠΎΠ³Π΅Π½Π½ΠΎΠ΅ дСйствиС наночастиц сСрСбра, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ блокируСтся акситинибом ΠΈ ВРПВ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ°. УстановлСна Ρ€ΠΎΠ»ΡŒ PPARΞ³, Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ противоэпилСптичСских эффСктов ΠΈ отсутствиС ΠΈΡ… усилСния Π² условиях блокирования NMDA Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΊΠ΅Ρ‚Π°ΠΌΠΈΠ½ΠΎΠΌ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ восстановлСния Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ†ΠΈΠΊΠ»Π° бодрствованиС-сна Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΊΠΈΠ½Π΄Π»ΠΈΠ½Π³ΠΎΠΌ ΠΏΠΎΠ΄ влияниСм ВРПВ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ°.Transcranial direct current stimulation (tDCS) (600 mcA, 15,0min) induced the latency of seizures increase, which were produced via i.p. pentyelenetetrazol (PTZ) administration (30,0 mg/kg) – by 38,8 % - 47,5 % pertained to the control data (p<0,05). The prevention of generalized seizure fits along with the reduction of ictal seizure discharges by 42,1 % were registered as well (p<0,02). It was established that tDCS of the frontal cortex significantly reduced the number of rats with generalized seizure fits (p<0,05), while their averaged severity remained to be higher when compared with cerebellar tDCS rats (p<0,02). The increase of the seizures latency by 33,5 % - 44,4 % (p<0,05) caused by cerebellar tDCS was established on the model of acute PTZ-induced (60,0 mg/kg, i.p.) seizures. It was established that anode – induced antiseizure effects are observed in 0,25- 2,0 h after tDCS, while cathode – induced antiseizure effects are registered appeared at the end of the first poststimulative hour and were clearly defined up to the 10th hour on the model of maximal electroshock seizures. For the first time the heightening of antiseizure effects of cerebellar tDCS with axitinib, which blocks tyrosine – kinase B activity, have been established. Thus, the latency of kindled seizures after axitinib administration (10,0 mg/kg) and cerebellar tDCS exceeded such one in the control by 2,5 times (p<0,05) and was significantly differ from corresponded data in groups with separate usage of tDCS and axitinib - by 30,2 %-47,4 %, (p<0,05). The combined usage of five trial of electric stimulation (100 Hz) of paleocerebellar lobule VI and axitinib (5,0 mg/kg), which were separately not effective, reduced the severity of PTZ-induced seizures by 38,7 % (p<0,05) when compared with the control. This fact points on the role of lobule VI as a mediator of antiseizure effects of cerebellar tDCS. Administration of silver nanoparticles (30,0 nm) to rats with "submaximal" kindling induced the shortening of the seizure latency by 35,4 % (p<0,05) along with the increasing of their severity by 18,2 % (p<0,05). Such facilitation of seizures was blocked with axitinib (5,0 mg/kg, i.p., 7 days), or with cerebellar tDCS performed with cathode. The development of antiseizure effects was established under conditions of tDCS (5,0 min) performed after blocking of NMDA receptors with ketamine (75,0 mg/kg, i.p.). The blockade of peroxisomal proliferator-activated Ξ³-receptors (PPARΞ³) with bisphenol A diglycidyl ether (2,2’-[(1-methylethylidene) bis (4,1-phenyleneoxymethylene)] bis-oxirane, (BADGE, 100 mg/kg, i.p.) abolished the antiseizure effects of cerebellar tDCS on kindled seizures. For the first time it was established that anode cerebellar tDCS increased the duration of paradoxal sleep by 41,2 %, (p<0,05), decreased it fragmentation by 34,5 %, (p<0,05), as well as prolonged the latency of paradoxal sleep by 57,1 %, (p<0,05) in kindled rats. Cerebellar tDCS with cathode increased the latency of paradoxal sleep by 46,7 %, (p<0,05) and reduced it fragmentation by 23,7 % (p<0,05). It was established that cathode cerebellar tDCS reduced the power of alpha-band oscillations in the frontal brain cortex by 30,6 % (p<0,05), while anode tDCS reduced the power of both delta- and alpha- band power by 26,2 % (p<0,05) and by 38,6 % (p<0,05) correspondently. Anode tDCS also increased the power of beta- by 37,4 % (p<0,05) and gamma oscillations by 1,51 times (p<0,05)

    ΠŸΠ°Ρ‚ΠΎΡ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ Π΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ синдрому Π·Π° ΡƒΠΌΠΎΠ² Ρ‚Ρ€Π°Π½ΡΠΊΡ€Π°Π½Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ подразнСння постійним струмом (Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π΅ дослідТСння)

    Get PDF
    ДисСртаційна Ρ€ΠΎΠ±ΠΎΡ‚Π° присвячСна Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π½ΡŽ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½ΠΈΡ… ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² Π΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ синдрому Π½Π° Ρ‚Π»Ρ– Ρ‚Ρ€Π°Π½ΡΠΊΡ€Π°Π½Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ подразнСння постійним струмом (ВППБ) ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ° Ρ‚Π° ΠΊΠΎΡ€ΠΈ ΠΌΠΎΠ·ΠΊΡƒ Ρ‚Π° ΠΎΠ±Π³Ρ€ΡƒΠ½Ρ‚ΡƒΠ²Π°Π½Π½ΡŽ ΡƒΠΌΠΎΠ² досягнСння Π²ΠΈΡ€Π°Π·Π½ΠΎΠ³ΠΎ протисудомного Π²ΠΏΠ»ΠΈΠ²Ρƒ. ВстановлСно, Ρ‰ΠΎ ВППБ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ° Π½Π΅Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²Ρ–Π΄ полярності Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Π° Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ” протисудомні Π²ΠΏΠ»ΠΈΠ²ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΏΠ΅Π½Ρ‚ΠΈΠ»Π΅Π½Π΅Ρ‚Π΅Ρ‚Ρ€Π°Π·ΠΎΠ» (ΠŸΠ’Π—)-Ρ–Π½Π΄ΡƒΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΊΡ–Π½Π΄Π»Ρ–Π½Π³Ρƒ, які Ρ” Π±Ρ–Π»ΡŒΡˆ Π²ΠΈΡ€Π°Π·Π½ΠΈΠΌΠΈ порівняно Π΄ΠΎ ВППБ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΡ— ΠΊΠΎΡ€ΠΈ. На ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²ΠΈΡ… судом встановлСно відмінності Π΄ΠΈΠ½Π°ΠΌΡ–ΠΊΠΈ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ протисудомних Π²ΠΏΠ»ΠΈΠ²Ρ–Π² Π·Π° ΡƒΠΌΠΎΠ² застосування ΠΊΠ°Ρ‚ΠΎΠ΄Ρƒ Ρ‚Π° Π°Π½ΠΎΠ΄Ρƒ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ Ρ€ΠΎΠ»ΡŒ старої ΠΊΠΎΡ€ΠΈ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ° (долька VI) Ρƒ Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— протисудомних Π²ΠΏΠ»ΠΈΠ²Ρ–Π² Ρ‚Π° ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ Ρ—Ρ… акситинібом – Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠΌ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½-ΠΊΡ–Π½Π°Π·ΠΈ Π’. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΠΏΡ€ΠΎΠ΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΎΠ³Π΅Π½Π½Ρƒ Π΄Ρ–ΡŽ наночастинок срібла, яка Π±Π»ΠΎΠΊΡƒΡ”Ρ‚ΡŒΡΡ акситинібом Ρ‚Π° ВППБ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ°. ВстановлСно Ρ€ΠΎΠ»ΡŒ Ξ³-Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π², які Π°ΠΊΡ‚ΠΈΠ²ΡƒΡ” пСроксисомний ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ‚ΠΎΡ€ (PPARΞ³), Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΡ€ΠΎΡ‚ΠΈΠ΅ΠΏΡ–Π»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π΅Ρ„Π΅ΠΊΡ‚Ρ–Π² Ρ‚Π° Π²Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Ρ—Ρ… посилСння Π·Π° ΡƒΠΌΠΎΠ² блокування NMDA Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ–Π² ΠΊΠ΅Ρ‚Π°ΠΌΡ–Π½ΠΎΠΌ. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ відновлСння ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½ΡŒ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² Ρ†ΠΈΠΊΠ»Ρƒ нСспання-спання Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΈΡ… ΠΊΡ–Π½Π΄Π»Ρ–Π½Π³ΠΎΠΌ ΠΏΡ–Π΄ Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ ВППБ ΠΌΠΎΠ·ΠΎΡ‡ΠΊΠ°.ДиссСртация посвящСна ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ патогСнСтичСских ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² эпилСптичСского синдрома Π½Π° Ρ„ΠΎΠ½Π΅ Ρ‚Ρ€Π°Π½ΡΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ раздраТСния постоянным Ρ‚ΠΎΠΊΠΎΠΌ (ВРПВ) ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° ΠΈ ΠΊΠΎΡ€Ρ‹ ΠΌΠΎΠ·Π³Π° ΠΈ обоснованию условий достиТСния Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ противосудороТного дСйствия. УстановлСно, Ρ‡Ρ‚ΠΎ ВРПВ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° нСзависимо ΠΎΡ‚ полярности элСктрода Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ противосудороТныС влияния Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠ΅Π½Ρ‚ΠΈΠ»Π΅Π½Π΅Ρ‚Π΅Ρ‚Ρ€Π°Π·ΠΎΠ» (ΠŸΠ’Π—) - ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠΈΠ½Π΄Π»ΠΈΠ½Π³Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ВРПВ Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΡ€Ρ‹. На ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡˆΠΎΠΊΠΎΠ²Ρ‹Ρ… судорог установлСны различия Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ развития противосудороТных воздСйствий Π² условиях примСнСния ΠΊΠ°Ρ‚ΠΎΠ΄Π° ΠΈ Π°Π½ΠΎΠ΄Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Ρ€ΠΎΠ»ΡŒ старой ΠΊΠΎΡ€Ρ‹ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ° (долька VI) Π² Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ противосудороТных воздСйствий ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΡ… акситинибом - Π±Π»ΠΎΠΊΠ°Ρ‚ΠΎΡ€ΠΎΠΌ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½-ΠΊΠΈΠ½Π°Π·Ρ‹ Π’. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΏΡ€ΠΎΠ΅ΠΏΠΈΠ»Π΅ΠΏΡ‚ΠΎΠ³Π΅Π½Π½ΠΎΠ΅ дСйствиС наночастиц сСрСбра, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ блокируСтся акситинибом ΠΈ ВРПВ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ°. УстановлСна Ρ€ΠΎΠ»ΡŒ PPARΞ³, Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ противоэпилСптичСских эффСктов ΠΈ отсутствиС ΠΈΡ… усилСния Π² условиях блокирования NMDA Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΊΠ΅Ρ‚Π°ΠΌΠΈΠ½ΠΎΠΌ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ восстановлСния Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ†ΠΈΠΊΠ»Π° бодрствованиС-сна Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹Ρ… ΠΊΠΈΠ½Π΄Π»ΠΈΠ½Π³ΠΎΠΌ ΠΏΠΎΠ΄ влияниСм ВРПВ ΠΌΠΎΠ·ΠΆΠ΅Ρ‡ΠΊΠ°.Transcranial direct current stimulation (tDCS) (600 mcA, 15,0min) induced the latency of seizures increase, which were produced via i.p. pentyelenetetrazol (PTZ) administration (30,0 mg/kg) – by 38,8 % - 47,5 % pertained to the control data (p<0,05). The prevention of generalized seizure fits along with the reduction of ictal seizure discharges by 42,1 % were registered as well (p<0,02). It was established that tDCS of the frontal cortex significantly reduced the number of rats with generalized seizure fits (p<0,05), while their averaged severity remained to be higher when compared with cerebellar tDCS rats (p<0,02). The increase of the seizures latency by 33,5 % - 44,4 % (p<0,05) caused by cerebellar tDCS was established on the model of acute PTZ-induced (60,0 mg/kg, i.p.) seizures. It was established that anode – induced antiseizure effects are observed in 0,25- 2,0 h after tDCS, while cathode – induced antiseizure effects are registered appeared at the end of the first poststimulative hour and were clearly defined up to the 10th hour on the model of maximal electroshock seizures. For the first time the heightening of antiseizure effects of cerebellar tDCS with axitinib, which blocks tyrosine – kinase B activity, have been established. Thus, the latency of kindled seizures after axitinib administration (10,0 mg/kg) and cerebellar tDCS exceeded such one in the control by 2,5 times (p<0,05) and was significantly differ from corresponded data in groups with separate usage of tDCS and axitinib - by 30,2 %-47,4 %, (p<0,05). The combined usage of five trial of electric stimulation (100 Hz) of paleocerebellar lobule VI and axitinib (5,0 mg/kg), which were separately not effective, reduced the severity of PTZ-induced seizures by 38,7 % (p<0,05) when compared with the control. This fact points on the role of lobule VI as a mediator of antiseizure effects of cerebellar tDCS. Administration of silver nanoparticles (30,0 nm) to rats with "submaximal" kindling induced the shortening of the seizure latency by 35,4 % (p<0,05) along with the increasing of their severity by 18,2 % (p<0,05). Such facilitation of seizures was blocked with axitinib (5,0 mg/kg, i.p., 7 days), or with cerebellar tDCS performed with cathode. The development of antiseizure effects was established under conditions of tDCS (5,0 min) performed after blocking of NMDA receptors with ketamine (75,0 mg/kg, i.p.). The blockade of peroxisomal proliferator-activated Ξ³-receptors (PPARΞ³) with bisphenol A diglycidyl ether (2,2’-[(1-methylethylidene) bis (4,1-phenyleneoxymethylene)] bis-oxirane, (BADGE, 100 mg/kg, i.p.) abolished the antiseizure effects of cerebellar tDCS on kindled seizures. For the first time it was established that anode cerebellar tDCS increased the duration of paradoxal sleep by 41,2 %, (p<0,05), decreased it fragmentation by 34,5 %, (p<0,05), as well as prolonged the latency of paradoxal sleep by 57,1 %, (p<0,05) in kindled rats. Cerebellar tDCS with cathode increased the latency of paradoxal sleep by 46,7 %, (p<0,05) and reduced it fragmentation by 23,7 % (p<0,05). It was established that cathode cerebellar tDCS reduced the power of alpha-band oscillations in the frontal brain cortex by 30,6 % (p<0,05), while anode tDCS reduced the power of both delta- and alpha- band power by 26,2 % (p<0,05) and by 38,6 % (p<0,05) correspondently. Anode tDCS also increased the power of beta- by 37,4 % (p<0,05) and gamma oscillations by 1,51 times (p<0,05)

    Computational model of cerebellar transcranial direct current stimulation

    No full text
    This work aimed to estimate the distribution of the electric field and current density generated by cerebellar tDCS using electromagnetics computational techniques applied to a realistic human models of different ages and gender. Results show that the stronger electric field and current density occur mainly in the cerebellar cortex, with a spread toward the occipital region of the cortex, while the current spread to other structures is negligible. Moreover, changes of about 1 cm in the position of the scalp electrode delivering tDCS did not influence the E and J distribution in the cerebellum
    corecore