77,623 research outputs found

    Short-recurrence Krylov subspace methods for the overlap Dirac operator at nonzero chemical potential

    Full text link
    The overlap operator in lattice QCD requires the computation of the sign function of a matrix, which is non-Hermitian in the presence of a quark chemical potential. In previous work we introduced an Arnoldi-based Krylov subspace approximation, which uses long recurrences. Even after the deflation of critical eigenvalues, the low efficiency of the method restricts its application to small lattices. Here we propose new short-recurrence methods which strongly enhance the efficiency of the computational method. Using rational approximations to the sign function we introduce two variants, based on the restarted Arnoldi process and on the two-sided Lanczos method, respectively, which become very efficient when combined with multishift solvers. Alternatively, in the variant based on the two-sided Lanczos method the sign function can be evaluated directly. We present numerical results which compare the efficiencies of a restarted Arnoldi-based method and the direct two-sided Lanczos approximation for various lattice sizes. We also show that our new methods gain substantially when combined with deflation.Comment: 14 pages, 4 figures; as published in Comput. Phys. Commun., modified data in Figs. 2,3 and 4 for improved implementation of FOM algorithm, extended discussion of the algorithmic cos

    Order reduction methods for solving large-scale differential matrix Riccati equations

    Full text link
    We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies, by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces, as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers

    Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection

    Get PDF
    Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi method, but we also discuss the nonorthogonal generalized Leja point (or PAIN) method. The issue of optimal pole selection for rational Krylov methods applied for approximating the resolvent and exponential function, and functions of Markov type, is treated in some detail

    Fast Color Space Transformations Using Minimax Approximations

    Full text link
    Color space transformations are frequently used in image processing, graphics, and visualization applications. In many cases, these transformations are complex nonlinear functions, which prohibits their use in time-critical applications. In this paper, we present a new approach called Minimax Approximations for Color-space Transformations (MACT).We demonstrate MACT on three commonly used color space transformations. Extensive experiments on a large and diverse image set and comparisons with well-known multidimensional lookup table interpolation methods show that MACT achieves an excellent balance among four criteria: ease of implementation, memory usage, accuracy, and computational speed

    Spectrum optimization in multi-user multi-carrier systems with iterative convex and nonconvex approximation methods

    Full text link
    Several practical multi-user multi-carrier communication systems are characterized by a multi-carrier interference channel system model where the interference is treated as noise. For these systems, spectrum optimization is a promising means to mitigate interference. This however corresponds to a challenging nonconvex optimization problem. Existing iterative convex approximation (ICA) methods consist in solving a series of improving convex approximations and are typically implemented in a per-user iterative approach. However they do not take this typical iterative implementation into account in their design. This paper proposes a novel class of iterative approximation methods that focuses explicitly on the per-user iterative implementation, which allows to relax the problem significantly, dropping joint convexity and even convexity requirements for the approximations. A systematic design framework is proposed to construct instances of this novel class, where several new iterative approximation methods are developed with improved per-user convex and nonconvex approximations that are both tighter and simpler to solve (in closed-form). As a result, these novel methods display a much faster convergence speed and require a significantly lower computational cost. Furthermore, a majority of the proposed methods can tackle the issue of getting stuck in bad locally optimal solutions, and hence improve solution quality compared to existing ICA methods.Comment: 33 pages, 7 figures. This work has been submitted for possible publicatio

    New Laplace and Helmholtz solvers

    Full text link
    New numerical algorithms based on rational functions are introduced that can solve certain Laplace and Helmholtz problems on two-dimensional domains with corners faster and more accurately than the standard methods of finite elements and integral equations. The new algorithms point to a reconsideration of the assumptions underlying existing numerical analysis for partial differential equations

    High-Performance Passive Macromodeling Algorithms for Parallel Computing Platforms

    Get PDF
    This paper presents a comprehensive strategy for fast generation of passive macromodels of linear devices and interconnects on parallel computing hardware. Starting from a raw characterization of the structure in terms of frequency-domain tabulated scattering responses, we perform a rational curve fitting and a postprocessing passivity enforcement. Both algorithms are parallelized and cast in a form that is suitable for deployment on shared-memory multicore platforms. Particular emphasis is placed on the passivity characterization step, which is performed using two complementary strategies. The first uses an iterative restarted and deflated rational Arnoldi process to extract the imaginary Hamiltonian eigenvalues associated with the model. The second is based on an accuracy-controlled adaptive sampling. Various parallelization strategies are discussed for both schemes, with particular care on load balancing between different computing threads and memory occupation. The resulting parallel macromodeling flow is demonstrated on a number of medium- and large-scale structures, showing good scalability up to 16 computational core
    • …
    corecore