261 research outputs found

    Computational Approaches to Lattice Packing and Covering Problems

    Full text link
    We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronoi's reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of Z^d. In practice, our implementations reproduce known results in dimensions d <= 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice (E6)*. For d = 7, 8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.Comment: (v3) 40 pages, 5 figures, 6 tables, some corrections, accepted in Discrete and Computational Geometry, see also http://fma2.math.uni-magdeburg.de/~latgeo

    Locally optimal Delaunay-refinement and optimisation-based mesh generation

    Get PDF
    The field of mesh generation concerns the development of efficient algorithmic techniques to construct high-quality tessellations of complex geometrical objects. In this thesis, I investigate the problem of unstructured simplicial mesh generation for problems in two- and three-dimensional spaces, in which meshes consist of collections of triangular and tetrahedral elements. I focus on the development of efficient algorithms and computer programs to produce high-quality meshes for planar, surface and volumetric objects of arbitrary complexity. I develop and implement a number of new algorithms for mesh construction based on the Frontal-Delaunay paradigm - a hybridisation of conventional Delaunay-refinement and advancing-front techniques. I show that the proposed algorithms are a significant improvement on existing approaches, typically outperforming the Delaunay-refinement technique in terms of both element shape- and size-quality, while offering significantly improved theoretical robustness compared to advancing-front techniques. I verify experimentally that the proposed methods achieve the same element shape- and size-guarantees that are typically associated with conventional Delaunay-refinement techniques. In addition to mesh construction, methods for mesh improvement are also investigated. I develop and implement a family of techniques designed to improve the element shape quality of existing simplicial meshes, using a combination of optimisation-based vertex smoothing, local topological transformation and vertex insertion techniques. These operations are interleaved according to a new priority-based schedule, and I show that the resulting algorithms are competitive with existing state-of-the-art approaches in terms of mesh quality, while offering significant improvements in computational efficiency. Optimised C++ implementations for the proposed mesh generation and mesh optimisation algorithms are provided in the JIGSAW and JITTERBUG software libraries

    Optimal area triangulation

    Get PDF
    Given a set of points in the Euclidean plane, we are interested in its triangulations, i.e., the maximal sets of non-overlapping triangles with vertices in the given points whose union is the convex hull of the point set. With respect to the area of the triangles in a triangulation, several optimality criteria can be considered. We study two of them. The MaxMin area triangulation is the triangulation of the point set that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. In the case when the point set is in a convex position, we present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in O(n2logn)O(n^2log{n}) time and O(n2)O(n^2) space. These algorithms are based on dynamic programming. They use a number of geometric properties that are established within this work, and a variety of data structures specific to the problems. Further, we study polynomial time computable approximations to the optimal area triangulations of general point sets. We present geometric properties, based on angular constraints and perfect matchings, and use them to evaluate the approximation factor and to achieve triangulations with good practical quality compared to the optimal ones. These results open new direction in the research on optimal triangulations and set the stage for further investigations on optimization of area

    Bibliographie

    Get PDF

    Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy

    Get PDF
    Crack propagation in brittle materials with anisotropic surface energy is important in applications involving single crystals, extruded polymers, or geological and organic materials. Furthermore, when this anisotropy is strong, the phenomenology of crack propagation becomes very rich, with forbidden crack propagation directions or complex sawtooth crack patterns. This problem interrogates fundamental issues in fracture mechanics, including the principles behind the selection of crack direction. Here, we propose a variational phase-field model for strongly anisotropic fracture, which resorts to the extended Cahn-Hilliard framework proposed in the context of crystal growth. Previous phase-field models for anisotropic fracture were formulated in a framework only allowing for weak anisotropy. We implement numerically our higher-order phase-field model with smooth local maximum entropy approximants in a direct Galerkin method. The numerical results exhibit all the features of strongly anisotropic fracture and reproduce strikingly well recent experimental observations.Peer ReviewedPostprint (author’s final draft

    Structural Analysis Algorithms for Nanomaterials

    Get PDF

    Discrete Geometry

    Get PDF
    The workshop on Discrete Geometry was attended by 53 participants, many of them young researchers. In 13 survey talks an overview of recent developments in Discrete Geometry was given. These talks were supplemented by 16 shorter talks in the afternoon, an open problem session and two special sessions. Mathematics Subject Classification (2000): 52Cxx. Abstract regular polytopes: recent developments. (Peter McMullen) Counting crossing-free configurations in the plane. (Micha Sharir) Geometry in additive combinatorics. (József Solymosi) Rigid components: geometric problems, combinatorial solutions. (Ileana Streinu) • Forbidden patterns. (János Pach) • Projected polytopes, Gale diagrams, and polyhedral surfaces. (Günter M. Ziegler) • What is known about unit cubes? (Chuanming Zong) There were 16 shorter talks in the afternoon, an open problem session chaired by Jesús De Loera, and two special sessions: on geometric transversal theory (organized by Eli Goodman) and on a new release of the geometric software Cinderella (Jürgen Richter-Gebert). On the one hand, the contributions witnessed the progress the field provided in recent years, on the other hand, they also showed how many basic (and seemingly simple) questions are still far from being resolved. The program left enough time to use the stimulating atmosphere of the Oberwolfach facilities for fruitful interaction between the participants
    corecore