627,347 research outputs found
Recommended from our members
Developing web services in a computational grid environment
Grid and Web services are both hot topics today. In this paper, we will present some ongoing work and planned future work at the Cambridge eScience Centre. After an introduction to these technologies in the context of Grid applications development, we describe two use-cases: a database
of results in computational fluid dynamics (CFD) and a small computational Grid for aircraft engineering design.
As Grid services are moving towards Web services, we continue
to make use of the Globus Toolkit v2.4 (GT2.4), without
adopting the Open Grid Services Architecture (OGSA)
wholesale. In our scenario, GT2.4 integrates distributed
computing resources including HPC and clusters while Web
services wrap the scientific code as a service.Proceedings of the IEEE International Conference on Services Computing, Shanghai, September 200
Adaptive Wavelet Collocation Method for Simulation of Time Dependent Maxwell's Equations
This paper investigates an adaptive wavelet collocation time domain method
for the numerical solution of Maxwell's equations. In this method a
computational grid is dynamically adapted at each time step by using the
wavelet decomposition of the field at that time instant. In the regions where
the fields are highly localized, the method assigns more grid points; and in
the regions where the fields are sparse, there will be less grid points. On the
adapted grid, update schemes with high spatial order and explicit time stepping
are formulated. The method has high compression rate, which substantially
reduces the computational cost allowing efficient use of computational
resources. This adaptive wavelet collocation method is especially suitable for
simulation of guided-wave optical devices
Managing Uncertainty: A Case for Probabilistic Grid Scheduling
The Grid technology is evolving into a global, service-orientated
architecture, a universal platform for delivering future high demand
computational services. Strong adoption of the Grid and the utility computing
concept is leading to an increasing number of Grid installations running a wide
range of applications of different size and complexity. In this paper we
address the problem of elivering deadline/economy based scheduling in a
heterogeneous application environment using statistical properties of job
historical executions and its associated meta-data. This approach is motivated
by a study of six-month computational load generated by Grid applications in a
multi-purpose Grid cluster serving a community of twenty e-Science projects.
The observed job statistics, resource utilisation and user behaviour is
discussed in the context of management approaches and models most suitable for
supporting a probabilistic and autonomous scheduling architecture
Integrated geometry and grid generation system for complex configurations
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle
Machine Learning for Observables: Reactant to Product State Distributions for Atom-Diatom Collisions
Machine learning-based models to predict product state distributions from a
distribution of reactant conditions for atom-diatom collisions are presented
and quantitatively tested. The models are based on function-, kernel- and
grid-based representations of the reactant and product state distributions.
While all three methods predict final state distributions from explicit
quasi-classical trajectory simulations with R > 0.998, the grid-based
approach performs best. Although a function-based approach is found to be more
than two times better in computational performance, the kernel- and grid-based
approaches are preferred in terms of prediction accuracy, practicability and
generality. The function-based approach also suffers from lacking a general set
of model functions. Applications of the grid-based approach to nonequilibrium,
multi-temperature initial state distributions are presented, a situation common
to energy distributions in hypersonic flows. The role of such models in Direct
Simulation Monte Carlo and computational fluid dynamics simulations is also
discussed
BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to Accelerate Gravitational Wave Discovery
We present a novel computational framework that connects Blue Waters, the
NSF-supported, leadership-class supercomputer operated by NCSA, to the Laser
Interferometer Gravitational-Wave Observatory (LIGO) Data Grid via Open Science
Grid technology. To enable this computational infrastructure, we configured,
for the first time, a LIGO Data Grid Tier-1 Center that can submit
heterogeneous LIGO workflows using Open Science Grid facilities. In order to
enable a seamless connection between the LIGO Data Grid and Blue Waters via
Open Science Grid, we utilize Shifter to containerize LIGO's workflow software.
This work represents the first time Open Science Grid, Shifter, and Blue Waters
are unified to tackle a scientific problem and, in particular, it is the first
time a framework of this nature is used in the context of large scale
gravitational wave data analysis. This new framework has been used in the last
several weeks of LIGO's second discovery campaign to run the most
computationally demanding gravitational wave search workflows on Blue Waters,
and accelerate discovery in the emergent field of gravitational wave
astrophysics. We discuss the implications of this novel framework for a wider
ecosystem of Higher Performance Computing users.Comment: 10 pages, 10 figures. Accepted as a Full Research Paper to the 13th
IEEE International Conference on eScienc
Potential application of artificial concepts to aerodynamic simulation
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters
- …
