2,292 research outputs found

    Pandora: Description of a Painting Database for Art Movement Recognition with Baselines and Perspectives

    Full text link
    To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.Comment: 11 pages, 1 figure, 6 table

    History of art paintings through the lens of entropy and complexity

    Full text link
    Art is the ultimate expression of human creativity that is deeply influenced by the philosophy and culture of the corresponding historical epoch. The quantitative analysis of art is therefore essential for better understanding human cultural evolution. Here we present a large-scale quantitative analysis of almost 140 thousand paintings, spanning nearly a millennium of art history. Based on the local spatial patterns in the images of these paintings, we estimate the permutation entropy and the statistical complexity of each painting. These measures map the degree of visual order of artworks into a scale of order-disorder and simplicity-complexity that locally reflects qualitative categories proposed by art historians. The dynamical behavior of these measures reveals a clear temporal evolution of art, marked by transitions that agree with the main historical periods of art. Our research shows that different artistic styles have a distinct average degree of entropy and complexity, thus allowing a hierarchical organization and clustering of styles according to these metrics. We have further verified that the identified groups correspond well with the textual content used to qualitatively describe the styles, and that the employed complexity-entropy measures can be used for an effective classification of artworks.Comment: 10 two-column pages, 5 figures; accepted for publication in PNAS [supplementary information available at http://www.pnas.org/highwire/filestream/824089/field_highwire_adjunct_files/0/pnas.1800083115.sapp.pdf

    On Multifractal Structure in Non-Representational Art

    Get PDF
    Multifractal analysis techniques are applied to patterns in several abstract expressionist artworks, paintined by various artists. The analysis is carried out on two distinct types of structures: the physical patterns formed by a specific color (``blobs''), as well as patterns formed by the luminance gradient between adjacent colors (``edges''). It is found that the analysis method applied to ``blobs'' cannot distinguish between artists of the same movement, yielding a multifractal spectrum of dimensions between about 1.5-1.8. The method can distinguish between different types of images, however, as demonstrated by studying a radically different type of art. The data suggests that the ``edge'' method can distinguish between artists in the same movement, and is proposed to represent a toy model of visual discrimination. A ``fractal reconstruction'' analysis technique is also applied to the images, in order to determine whether or not a specific signature can be extracted which might serve as a type of fingerprint for the movement. However, these results are vague and no direct conclusions may be drawn.Comment: 53 pp LaTeX, 10 figures (ps/eps

    Computer Analysis of Architecture Using Automatic Image Understanding

    Full text link
    In the past few years, computer vision and pattern recognition systems have been becoming increasingly more powerful, expanding the range of automatic tasks enabled by machine vision. Here we show that computer analysis of building images can perform quantitative analysis of architecture, and quantify similarities between city architectural styles in a quantitative fashion. Images of buildings from 18 cities and three countries were acquired using Google StreetView, and were used to train a machine vision system to automatically identify the location of the imaged building based on the image visual content. Experimental results show that the automatic computer analysis can automatically identify the geographical location of the StreetView image. More importantly, the algorithm was able to group the cities and countries and provide a phylogeny of the similarities between architectural styles as captured by StreetView images. These results demonstrate that computer vision and pattern recognition algorithms can perform the complex cognitive task of analyzing images of buildings, and can be used to measure and quantify visual similarities and differences between different styles of architectures. This experiment provides a new paradigm for studying architecture, based on a quantitative approach that can enhance the traditional manual observation and analysis. The source code used for the analysis is open and publicly available
    • …
    corecore