4 research outputs found

    Exact Solution Methods for the kk-item Quadratic Knapsack Problem

    Full text link
    The purpose of this paper is to solve the 0-1 kk-item quadratic knapsack problem (kQKP)(kQKP), a problem of maximizing a quadratic function subject to two linear constraints. We propose an exact method based on semidefinite optimization. The semidefinite relaxation used in our approach includes simple rank one constraints, which can be handled efficiently by interior point methods. Furthermore, we strengthen the relaxation by polyhedral constraints and obtain approximate solutions to this semidefinite problem by applying a bundle method. We review other exact solution methods and compare all these approaches by experimenting with instances of various sizes and densities.Comment: 12 page

    From combinatorial optimization to real algebraic geometry and back

    Get PDF
    In this paper, we explain the relations between combinatorial optimization and real algebraic geometry with a special focus to the quadratic assignment problem. We demonstrate how to write a quadratic optimization problem over discrete feasible set as a linear optimization problem over the cone of completely positive matrices. The latter formulation enables a hierarchy of approximations which rely on results from polynomial optimization, a sub-eld of real algebraic geometry

    A Novel Approach to Tightening Semidefinite Relaxations for Certain Combinatorial Problems

    Get PDF
    RÉSUMÉ : Ce mĂ©moire prĂ©sente une nouvelle famille de coupes nommĂ©es contraintes polytopiques kprojection (kPPCs) qui peuvent ĂȘtre utilisĂ©es pour rĂ©soudre certains problĂšmes quadratiques binaires. Notamment les problĂšmes qui satisfont une propriĂ©tĂ© de projection pour les solutions rĂ©alisables sur un sous-graphe induit ont la mĂȘme structure que les solutions faisables sur le graphe entier. Parmi ces problĂšmes se trouvent le problĂšme max-cut et le problĂšme d’ensemble stable (stable set problem). Les coupes sont gĂ©nĂ©ralement des inĂ©galitĂ©s, cependant les kPPCs s’en distinguent par le fait qu’elles sont formĂ©es d’un ensemble d’inĂ©galitĂ©s. De plus, elle peuvent ĂȘtre dĂ©finies pour un seul sous-graphe induit ou pour un ensemble de sous-graphes induits, et sont utilisĂ©es pour resserrer les relaxations en programmation semi-dĂ©finie. Trois aspects des kPPCs sont examinĂ©s dans ce mĂ©moire : une hiĂ©rarchie qui converge vers une formulation exacte, une formulation pour trouver la contrainte kPPC la plus violĂ©e, et l’amĂ©lioration de la borne supĂ©rieure (pour un problĂšme de maximisation) d’une implĂ©mentation pratique de kPPCs pour le problĂšme max-cut. La relaxation SDP avec kPPCs forme une hiĂ©rarchie. Le kĂšme niveau de la hiĂ©rarchie est la relaxation SDP avec kPPCs pour tous les sous-graphes induits de taille k. Lorsque k augmente, l’intensitĂ© de la relaxation augmente Ă©galement puisque CUTk ⊆ CUTk+1 oĂč CUTk est le polytope de coupe de taille k. Au nĂšme niveau, la formulation n’est plus une relaxation et rejoint exactement le problĂšme d’origine CUTn. Il existe n/k sous-graphes induits uniques pour un graphe Ă  n noeuds. Par consĂ©quent, il n’est possible d’énumĂ©rer explicitement les niveaux de la hiĂ©rarchie que pour de petits exemples. Cependant, la force de la hiĂ©rarchie des kPPCs est que la matrice semi-dĂ©finie positive, qui est variable dans la relaxation SDP, n’augmente pas en taille lorsque le niveau augmente, contrairement aux hiĂ©rarchies de Lasserre. Pour un sous-graphe induit donnĂ© I, un modĂšle d’optimisation (nommĂ© distance-au-polytope) est prĂ©sentĂ© pour dĂ©terminer si la solution optimale de la relaxation SDP viole les kPPCs pour I et, dans l’affirmative, pour quantifier la violation. Le modĂšle distance-au-polytope a une fonction objectif quadratique, des contraintes linĂ©aires et se rĂ©sout rapidement. La solution optimale est la distance euclidienne entre le mineur principal de la solution optimale de la relaxation (X*I) et le polytope de coupe (CUT|I|). Si la distance est Ă©gale Ă  zĂ©ro, alors l’inclusion de kPPCs pour I dans la relaxation SDP ne resserrera pas la borne. Si la distance est strictement supĂ©rieure Ă  zĂ©ro, alors les kPPCs pour I ne sont pas satisfaites par la solution courante. Par consĂ©quent, leur inclusion dans la relaxation SDP changera la solution courante X* (bien qu’une amĂ©lioration de la borne ne soit pas garantie). Ce mĂ©moire prĂ©sente un modĂšle d’optimisation binaire-mixte dans un cĂŽne de second ordre (SOC) qui, pour un k donnĂ©, trouve la kPPC la plus Ă©loignĂ©e du polytope de coupe. Le problĂšme interne est le modĂšle distance-au-polytope. Le problĂšme externe comporte des variables binaires qui prennent en compte tous les sous-graphes induits de taille k. Les problĂšmes Ă  deux niveaux sont intrinsĂšquement difficiles Ă  rĂ©soudre. Une reformulation est donc prĂ©sentĂ©e qui change le problĂšme Ă  deux niveaux en un problĂšme SOC Ă©quivalent Ă  un seul niveau. La reformulation utilise des techniques telles que les conditions KKT, les contraintes disjointes et le saut de dualitĂ©. De plus, nous montrons comment renforcer le modĂšle Ă  un seul niveau en incluant des contraintes de bris de symĂ©trie et en incluant des variables binaires additionnelles qui rĂ©duisent la taille de l’arbre d’énumĂ©ration. MOSEK est utilisĂ© pour rĂ©soudre le problĂšme et les rĂ©sultats sont prĂ©sentĂ©s jusqu’à la taille 20. À chaque itĂ©ration d’une mĂ©thode de plan sĂ©cant, une relaxation est rĂ©solue et, si un critĂšre d’arrĂȘt n’est pas atteint, une procĂ©dure de sĂ©paration cherche les coupes violĂ©es ou valides Ă  ajouter Ă  la relaxation. Ce mĂ©moire prĂ©sente un algorithme de plan sĂ©cant utilisant les kPPCs pour le problĂšme max-cut. Notre mĂ©thode de plan sĂ©cant comporte 3 Ă©tapes. La premiĂšre rĂ©sout la relaxation SDP simple pour fournir une solution optimale initiale. La seconde rĂ©sout itĂ©rativement la relaxation SDP simple Ă  laquelle s’ajoute des inĂ©galitĂ©s triangulaires. À chaque itĂ©ration, l’ensemble des inĂ©galitĂ©s triangulaires est composĂ©, d’une part, de certaines inĂ©galitĂ©s triangulaires qui sont violĂ©es par la solution prĂ©cĂ©dente et, d’autre part, des inĂ©galitĂ©s triangulaires actives de l’itĂ©ration prĂ©cĂ©dente. Les inĂ©galitĂ©s non actives ne sont pas saturĂ©es et ne sont par consĂ©quent pas conservĂ©es. La troisiĂšme Ă©tape dĂ©bute quand l’étape 2 n’apporte plus d’amĂ©lioration significative : des kPPCs sont ajoutĂ©es au modĂšle (relaxation SDP simple avec inĂ©galitĂ©s triangulaires fournies par la derniĂšre itĂ©ration de l’étape 2). Pour trouver les kPPCs violĂ©es, la procĂ©dure de sĂ©paration rĂ©sout le problĂšme distance-aupolytope pour les indices gĂ©nĂ©rĂ©s Ă  partir des inĂ©galitĂ©s triangulaires violĂ©es. Cette mĂ©thode donne de meilleurs rĂ©sultats que la sĂ©lection alĂ©atoire des sous-graphes induits pour en tester la violation. En particulier, nous montrons que davantage de kPPCs violĂ©es sont trouvĂ©es et que la violation est plus grande. Finalement, nous prĂ©sentons des rĂ©sultats numĂ©riques (pour n = 500 − 1000) montrant que, lorsque l’amĂ©lioration de la borne Ă  partir d’inĂ©galitĂ©s triangulaires est faible, les kPPCs sont encore capables de resserrer la relaxation.----------ABSTRACT : This thesis introduces a new family of cuts called k-projection polytope constraints (kPPCs)that can be used to solve certain binary quadratic problems. Specifically those problems that satisfy a projection property in which feasible solutions on an induced subgraph have the same structure as feasible solutions on the full graph, such as the max-cut problem and the stable set problem. Typically cuts (also called valid inequalities) are inequalities, however kPPCs differ as they are a set of equalities. Furthermore they can be defined for a single induced subgraph or a set of induced subgraphs and are used to tighten semidefinite programming (SDP) relaxations. Three aspects of kPPCs are examined in this thesis: a hierarchy that converges to an exact formulation, a formulation to find the most violated kPPC and a practical implementation of a cutting plane algorithm using kPPCs that improves the upper bound (of a maximization problem) for the max-cut problem. The SDP relaxation with kPPCs forms a hierarchy. The kth level of the hierarchy is the SDP relaxation with kPPCs for all induced subgraphs of size k. As k increases, the strength of the relaxation also increases since CUTk ⊆ CUTk+1 where CUTk is the cut polytope of size k. At the nth level the formulation is no longer a relaxation and defines the original problem, CUTn, exactly. There are n/K unique induced subgraphs for a graph with n vertices. Therefore explicitly producing the levels of the hierarchy is only possible for small examples. However the strength of the hierarchy of kPPCs is that the positive semidefinite matrix variable in the SDP relaxation does not grow in size as the level is increased. This is in contrast to other hierarchies including the Lasserre hierarchy. For a given induced subgraph I, an optimization model (denoted distance-to-polytope) is presented to determine if the optimal solution to an SDP relaxation violates the kPPC for I and, if so, to quantify the violation. The distance-to-polytope model has a quadratic objective function, linear constraints and solves quickly. The optimal solution is the euclidean distance between the principal minor of the optimal solution to the relaxation (X*I ) and the cut polytope (CUT|I|). If the distance equals zero then including the kPPC for I in the SDP relaxation will not tighten the bound. If the distance is strictly greater than zero then the kPPC for I is not satisfied by the current solution. Therefore including it in the SDP relaxation will change the current solution X* (although a strict improvement in the bound is not guaranteed). The maximally violated valid inequality problem (MVVIP) determines the valid inequality from a family of cuts that is most violated. This thesis examines this problem for kPPCs. Specifically we present a mixed-binary second order cone optimization model that, for a given k, finds the kPPC that is furthest from the cut polytope. The inner problem is the distance-to-polytope model. The outer problem includes binary variables that consider all induced subgraphs of size k. Bilevel problems are inherently hard to solve. A reformulation is presented that changes the bilevel model into an equivalent single level second order cone problem. The reformulation uses techniques such as KKT conditions, disjunctive constraints and the duality gap. Moreover we show how to strengthen the single level model by including symmetry breaking constraints and including additional binary variables that reduce the size of the enumeration tree. MOSEK is used to solve the problem and results are presented up to size 20. At each iteration of a cutting plane method a relaxation is solved and if a stopping criteria is not met a separation procedure looks for violated and valid cuts to add to the relaxation. This thesis presents a cutting plane algorithm using kPPCs for the max-cut problem. There are 3 stages in our cutting plane method. The first solves the basic SDP relaxation to give an initial optimal solution. The second stage iteratively solves the basic SDP relaxation plus some triangle inequalities. At each iteration the set of triangle inequalities is composed of some triangle inequalities that are violated by the previous solution and the triangle inequalities from the previous iteration that are active. The non-active inequalities are not binding and therefore are not kept. When there are no more violated triangle inequalities (or the improvement has stalled) we begin the third stage in which kPPCs are added to the model (basic SDP relaxation plus triangle inequalities from the last iteration of stage 2). The separation procedure to find violated kPPCs solves the distance-to-polytope problem for indices generated from violated triangle inequalities. Compared to randomly selecting induced subgraphs to test for violation, generating them from the indices used in triangle inequalities gives better results. Specifically we show that more violated kPPCs are found and that the amount of violation is larger. Finally we examine dense graphs of size 500 to 1000 and present computational results showing that kPPCs are able to improve the bound even after triangle inequalities can no longer tighten the relaxation
    corecore