
UNIVERSITÉ DE MONTRÉAL

A NOVEL APPROACH TO TIGHTENING SEMIDEFINITE RELAXATIONS FOR
CERTAIN COMBINATORIAL PROBLEMS

ELSPETH ADAMS
DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

THÈSE PRÉSENTÉE EN VUE DE L’OBTENTION
DU DIPLÔME DE PHILOSOPHIÆ DOCTOR

(MATHÉMATIQUES DE L’INGÉNIEUR)
AOÛT 2015

c© Elspeth Adams, 2015.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyPublie

https://core.ac.uk/display/213619753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÉ DE MONTRÉAL

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

Cette thèse intitulée :

A NOVEL APPROACH TO TIGHTENING SEMIDEFINITE RELAXATIONS FOR
CERTAIN COMBINATORIAL PROBLEMS

présentée par : ADAMS Elspeth
en vue de l’obtention du diplôme de : Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

M. LE DIGABEL Sébastien, Ph. D., président
M. ANJOS Miguel F., Ph. D., membre et directeur de recherche
M. PERRIER Michel, Ph. D., membre
Mme SOTIROV Renata, Ph. D., membre externe

iii

DEDICATION

To all the voices that kept me sane. . .

iv

ACKNOWLEDGEMENTS

First and foremost I would like to sincerely thank my supervisor Miguel Anjos for his support
and guidance. It is hard to sum the past seven years up in a few words but you have helped
me find the researcher within me and I’m infinitely grateful.

I also want to thank Franz Rendl and Angelika Wiegele for their insight and for inviting me
to Klagenfurt for a week. I learned so much from our discussions and from seeing the problem
from a different perspective.

To my family, your love, support and understanding with my unpredictable schedule is extre-
mely appreciated. Juan Pablo, thank you for the adventures and the encouragement. Max,
thank you for (literally) being by my side throughout this process.

To all my friends on the 5th floor, thank you, merci and gracias. You’re a great group of
friends; the laughs, lunches, games, MATLAB tips and practice presentations made this the-
sis possible. I officially pass on my window seat to the next person in line.

Andrew, thank you for learning about triangle inequalities; spending many nights listening
to code run; and for accepting a world you did not always understand. Words cannot describe
how much your support, respect and unwavering belief in me and my math means to me.
Knowing you are on my side makes everything easier.

Most importantly Andrew, thanks for using the word ‘optimization’ correctly!

v

RÉSUMÉ

Ce mémoire présente une nouvelle famille de coupes nommées contraintes polytopiques k-
projection (kPPCs) qui peuvent être utilisées pour résoudre certains problèmes quadratiques
binaires. Notamment les problèmes qui satisfont une propriété de projection pour les solu-
tions réalisables sur un sous-graphe induit ont la même structure que les solutions faisables
sur le graphe entier. Parmi ces problèmes se trouvent le problème max-cut et le problème
d’ensemble stable (stable set problem).

Les coupes sont généralement des inégalités, cependant les kPPCs s’en distinguent par le
fait qu’elles sont formées d’un ensemble d’inégalités. De plus, elle peuvent être définies pour
un seul sous-graphe induit ou pour un ensemble de sous-graphes induits, et sont utilisées
pour resserrer les relaxations en programmation semi-définie. Trois aspects des kPPCs sont
examinés dans ce mémoire : une hiérarchie qui converge vers une formulation exacte, une
formulation pour trouver la contrainte kPPC la plus violée, et l’amélioration de la borne
supérieure (pour un problème de maximisation) d’une implémentation pratique de kPPCs
pour le problème max-cut.

La relaxation SDP avec kPPCs forme une hiérarchie. Le kème niveau de la hiérarchie est la
relaxation SDP avec kPPCs pour tous les sous-graphes induits de taille k. Lorsque k aug-
mente, l’intensité de la relaxation augmente également puisque CUTk ⊆ CUTk+1 où CUTk

est le polytope de coupe de taille k. Au nème niveau, la formulation n’est plus une relaxation
et rejoint exactement le problème d’origine CUTn. Il existe

(
n
k

)
sous-graphes induits uniques

pour un graphe à n nœuds. Par conséquent, il n’est possible d’énumérer explicitement les
niveaux de la hiérarchie que pour de petits exemples. Cependant, la force de la hiérarchie
des kPPCs est que la matrice semi-définie positive, qui est variable dans la relaxation SDP,
n’augmente pas en taille lorsque le niveau augmente, contrairement aux hiérarchies de Las-
serre.

Pour un sous-graphe induit donné I, un modèle d’optimisation (nommé distance-au-polytope)
est présenté pour déterminer si la solution optimale de la relaxation SDP viole les kPPCs
pour I et, dans l’affirmative, pour quantifier la violation. Le modèle distance-au-polytope a
une fonction objectif quadratique, des contraintes linéaires et se résout rapidement. La so-
lution optimale est la distance euclidienne entre le mineur principal de la solution optimale

vi

de la relaxation (X∗I) et le polytope de coupe (CUT|I|). Si la distance est égale à zéro, alors
l’inclusion de kPPCs pour I dans la relaxation SDP ne resserrera pas la borne. Si la distance
est strictement supérieure à zéro, alors les kPPCs pour I ne sont pas satisfaites par la so-
lution courante. Par conséquent, leur inclusion dans la relaxation SDP changera la solution
courante X∗ (bien qu’une amélioration de la borne ne soit pas garantie).

Ce mémoire présente un modèle d’optimisation binaire-mixte dans un cône de second ordre
(SOC) qui, pour un k donné, trouve la kPPC la plus éloignée du polytope de coupe. Le pro-
blème interne est le modèle distance-au-polytope. Le problème externe comporte des variables
binaires qui prennent en compte tous les sous-graphes induits de taille k. Les problèmes à
deux niveaux sont intrinsèquement difficiles à résoudre. Une reformulation est donc présentée
qui change le problème à deux niveaux en un problème SOC équivalent à un seul niveau. La
reformulation utilise des techniques telles que les conditions KKT, les contraintes disjointes
et le saut de dualité. De plus, nous montrons comment renforcer le modèle à un seul niveau
en incluant des contraintes de bris de symétrie et en incluant des variables binaires addition-
nelles qui réduisent la taille de l’arbre d’énumération. MOSEK est utilisé pour résoudre le
problème et les résultats sont présentés jusqu’à la taille 20.

À chaque itération d’une méthode de plan sécant, une relaxation est résolue et, si un critère
d’arrêt n’est pas atteint, une procédure de séparation cherche les coupes violées ou valides
à ajouter à la relaxation. Ce mémoire présente un algorithme de plan sécant utilisant les
kPPCs pour le problème max-cut. Notre méthode de plan sécant comporte 3 étapes. La pre-
mière résout la relaxation SDP simple pour fournir une solution optimale initiale. La seconde
résout itérativement la relaxation SDP simple à laquelle s’ajoute des inégalités triangulaires.
À chaque itération, l’ensemble des inégalités triangulaires est composé, d’une part, de cer-
taines inégalités triangulaires qui sont violées par la solution précédente et, d’autre part, des
inégalités triangulaires actives de l’itération précédente. Les inégalités non actives ne sont pas
saturées et ne sont par conséquent pas conservées. La troisième étape débute quand l’étape
2 n’apporte plus d’amélioration significative : des kPPCs sont ajoutées au modèle (relaxa-
tion SDP simple avec inégalités triangulaires fournies par la dernière itération de l’étape 2).
Pour trouver les kPPCs violées, la procédure de séparation résout le problème distance-au-
polytope pour les indices générés à partir des inégalités triangulaires violées. Cette méthode
donne de meilleurs résultats que la sélection aléatoire des sous-graphes induits pour en tester
la violation. En particulier, nous montrons que davantage de kPPCs violées sont trouvées
et que la violation est plus grande. Finalement, nous présentons des résultats numériques
(pour n = 500− 1000) montrant que, lorsque l’amélioration de la borne à partir d’inégalités

vii

triangulaires est faible, les kPPCs sont encore capables de resserrer la relaxation.

viii

ABSTRACT

This thesis introduces a new family of cuts called k-projection polytope constraints (kPPCs)
that can be used to solve certain binary quadratic problems. Specifically those problems
that satisfy a projection property in which feasible solutions on an induced subgraph have
the same structure as feasible solutions on the full graph, such as the max-cut problem and
the stable set problem.

Typically cuts (also called valid inequalities) are inequalities, however kPPCs differ as they
are a set of equalities. Furthermore they can be defined for a single induced subgraph or a set
of induced subgraphs and are used to tighten semidefinite programming (SDP) relaxations.
Three aspects of kPPCs are examined in this thesis: a hierarchy that converges to an exact
formulation, a formulation to find the most violated kPPC and a practical implementation
of a cutting plane algorithm using kPPCs that improves the upper bound (of a maximization
problem) for the max-cut problem.

The SDP relaxation with kPPCs forms a hierarchy. The kth level of the hierarchy is the
SDP relaxation with kPPCs for all induced subgraphs of size k. As k increases, the strength
of the relaxation also increases since CUTk ⊆ CUTk+1 where CUTk is the cut polytope of
size k. At the nth level the formulation is no longer a relaxation and defines the original
problem, CUTn, exactly. There are

(
n
k

)
unique induced subgraphs for a graph with n ver-

tices. Therefore explicitly producing the levels of the hierarchy is only possible for small
examples. However the strength of the hierarchy of kPPCs is that the positive semidefinite
matrix variable in the SDP relaxation does not grow in size as the level is increased. This is
in contrast to other hierarchies including the Lasserre hierarchy.

For a given induced subgraph I, an optimization model (denoted distance-to-polytope) is
presented to determine if the optimal solution to an SDP relaxation violates the kPPC for
I and, if so, to quantify the violation. The distance-to-polytope model has a quadratic ob-
jective function, linear constraints and solves quickly. The optimal solution is the euclidean
distance between the principal minor of the optimal solution to the relaxation (X∗I) and the
cut polytope (CUT|I|). If the distance equals zero then including the kPPC for I in the
SDP relaxation will not tighten the bound. If the distance is strictly greater than zero then
the kPPC for I is not satisfied by the current solution. Therefore including it in the SDP

ix

relaxation will change the current solution X∗ (although a strict improvement in the bound
is not guaranteed).

The maximally violated valid inequality problem (MVVIP) determines the valid inequality
from a family of cuts that is most violated. This thesis examines this problem for kPPCs.
Specifically we present a mixed-binary second order cone optimization model that, for a
given k, finds the kPPC that is furthest from the cut polytope. The inner problem is the
distance-to-polytope model. The outer problem includes binary variables that consider all
induced subgraphs of size k. Bilevel problems are inherently hard to solve. A reformulation
is presented that changes the bilevel model into an equivalent single level second order cone
problem. The reformulation uses techniques such as KKT conditions, disjunctive constraints
and the duality gap. Moreover we show how to strengthen the single level model by including
symmetry breaking constraints and including additional binary variables that reduce the size
of the enumeration tree. MOSEK is used to solve the problem and results are presented up
to size 20.

At each iteration of a cutting plane method a relaxation is solved and if a stopping criteria
is not met a separation procedure looks for violated and valid cuts to add to the relaxation.
This thesis presents a cutting plane algorithm using kPPCs for the max-cut problem. There
are 3 stages in our cutting plane method. The first solves the basic SDP relaxation to give
an initial optimal solution. The second stage iteratively solves the basic SDP relaxation
plus some triangle inequalities. At each iteration the set of triangle inequalities is composed
of some triangle inequalities that are violated by the previous solution and the triangle
inequalities from the previous iteration that are active. The non-active inequalities are not
binding and therefore are not kept. When there are no more violated triangle inequalities
(or the improvement has stalled) we begin the third stage in which kPPCs are added to the
model (basic SDP relaxation plus triangle inequalities from the last iteration of stage 2).
The separation procedure to find violated kPPCs solves the distance-to-polytope problem
for indices generated from violated triangle inequalities. Compared to randomly selecting
induced subgraphs to test for violation, generating them from the indices used in triangle
inequalities gives better results. Specifically we show that more violated kPPCs are found
and that the amount of violation is larger. Finally we examine dense graphs of size 500 to
1000 and present computational results showing that kPPCs are able to improve the bound
even after triangle inequalities can no longer tighten the relaxation.

x

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

RÉSUMÉ . v

ABSTRACT . viii

TABLE OF CONTENTS . x

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

LIST OF SYMBOLS AND ABBREVIATIONS . xv

LIST OF APPENDIXES . xvi

CHAPTER 1 INTRODUCTION . 1
1.1 Notation . 2
1.2 k-projection polytope constraints . 2

CHAPTER 2 CRITICAL LITERATURE REVIEW 4
2.1 The max-cut problem . 4

2.1.1 Exact max-cut formulations . 4
2.1.2 Max-cut relaxations . 6
2.1.3 Binary quadratic program . 7
2.1.4 Leading solvers . 8

2.2 Hierarchies . 10
2.2.1 Lifting of Anjos and Wolkowicz . 10
2.2.2 Lasserre hierarchy . 11

2.3 Exact separation . 13
2.3.1 Maximally violated inequalities . 14

2.4 Cutting plane algorithms . 15
2.4.1 Valid inequalities . 16
2.4.2 Non traditional cuts . 16

xi

CHAPTER 3 HIERARCHY OF SEMIDEFINITE RELAXATIONS USING
k-PROJECTION POLYTOPE CONSTRAINTS 18
3.1 Introduction . 18
3.2 The projection property . 18

3.2.1 Projection property for the max-cut problem 19
3.2.2 Projection property for the stable set problem 20
3.2.3 Projection property failure . 20

3.3 A hierarchy of relaxations based on kPPCs 20
3.3.1 kPPC hierarchy of relaxations for the max-cut problem 22
3.3.2 kPPC hierarchy of relaxations for the stable set problem 23

3.4 Max-cut examples . 24
3.4.1 Small max-cut examples . 24
3.4.2 Larger max-cut examples . 26

3.5 Small stable set examples . 27
3.6 Conclusion . 28

CHAPTER 4 EXACT SEPARATION OF K-PROJECTION POLYTOPE
CONSTRAINTS . 30
4.1 Introduction . 30
4.2 Finding maximally violated kPPCs . 30

4.2.1 Validity . 30
4.2.2 Membership . 31

4.3 Formulation of the MVkPPCP as a bilevel problem 32
4.4 Reformulation of the MVkPPCP as a single-level problem 33

4.4.1 Reformulating steps . 35
4.4.2 Equivalence of the bilevel and single level models 39

4.5 Strengthening the single level model . 40
4.5.1 Symmetry . 40
4.5.2 Reformulation with fewer binary variables 41

4.6 Computational performance of the formulations 42
4.6.1 Comparison of the single level models 43
4.6.2 Performance of DPfewerBinary formulation 43

4.7 Conclusion . 44

CHAPTER 5 K-PROJECTION POLYTOPE CONSTRAINTS IN A CUTTING PLANE
ALGORITHM . 46
5.1 Introduction . 46

xii

5.1.1 Notation . 47
5.1.2 SDP relaxation . 48

5.2 Triangle cutting plane stage . 48
5.2.1 Triangle cutting plane stage details 49

5.3 kPPC cutting plane stage . 50
5.3.1 kPPC cutting plane stage details . 51
5.3.2 Generating violated kPPCs algorithm 53
5.3.3 Comparing generation and selection methods 56

5.4 Computational Results . 58
5.4.1 Results for gkaf test instance . 59
5.4.2 Results for cmc test instances . 62

5.5 Conclusion . 65

CHAPTER 6 CONCLUSION . 67
6.1 Advancement of knowledge . 67
6.2 Limits and constraints . 68
6.3 Recommendations . 68

REFERENCES . 69

APPENDICES . 74

xiii

LIST OF TABLES

Table 3.1 Bounds for the Grishukhin inequality of CUT7 with n = 7 25
Table 3.2 Bounds for the clique web inequality with n = 9. 26
Table 3.3 Bounds for the clique web inequality with n = 11. 26
Table 3.4 Bounds for larger unweighted graphs with n = 80 28
Table 3.5 Bounds for larger weighted graphs with n = 100 29
Table 3.6 Results for instances of stable-set problems of various sizes and densities 29
Table 4.1 Bounds for adding different k = 5 PPCs to the SDP relaxation C ∩M

which has bound 6.0584. 32
Table 5.1 Comparing generation and selection methods for gkaf5 instance . . . 57
Table 5.2 Results of kPPC cutting plane stage for instance gkaf5 60
Table 5.3 Time for kPPC cutting plane stage for instance gkaf5 61
Table 5.4 Objective value of kPPC cutting plane stage for cmc_n600 63
Table 5.5 Iteration time of kPPC cutting plane stage for cmc_n600 64
Table 5.6 Comparison of results for all instances 65
Table A.1 Time for kPPC cutting plane stage for instance cmc_n700 74
Table A.2 Results for kPPC cutting plane stage for instance cmc_n700 75
Table A.3 Results for kPPC cutting plane stage for instance cmc_n800 76
Table A.4 Results for kPPC cutting plane stage for instance cmc_n900 77
Table A.5 Results for kPPC cutting plane stage for instance cmc_n1000 78

xiv

LIST OF FIGURES

Figure 4.1 Comparison of computational time for distance-to-polytope formulations 44
Figure 4.2 Computation time to solve DPfewerBinary 44
Figure 4.3 Computational time to solve DPsingle 45
Figure 5.1 Overview of cutting plane method . 46

xv

LIST OF SYMBOLS AND ABBREVIATIONS

kPPC k Projection Polytope Constraint
SDP Semidefinite Programming
MVVIP Maximally Violated Valid Inequality Problem
CPM Cutting Plane Method
CUTn cut polytope of size n
Cr cut matrix
C correlation matrix
M metric polytope

xvi

LIST OF APPENDIXES

ANNEXE A CUTTING PLANE METHOD RESULTS FOR CMC INSTANCES . 74

1

CHAPTER 1 INTRODUCTION

Many important combinatorial problems are NP-hard to solve. Due to the inherent difficulty
of these problems finding tighter convex relaxations that are tractable is of great interest.
Semidefinite programming (SDP) relaxations often produce strong bounds for these combi-
natorial optimization problems. Surveys by Goemans (1997) and Lovász (2003) outline the
connection between SDP and NP-hard problems. SDP relaxations exist for a variety of such
problems and many ways to tighten them have been proposed, e.g. see the book of Anjos
and Lasserre (2012).

Let F := {X1, . . .} be the set of feasible solutions to a combinatorial problem and the
polyhedron P := conv{F} be the convex hull of the feasible solutions. Then the combinatorial
optimization problem (P) is max{f(X) : X ∈ F} where f(X) is a convex function defined on
the variable X and the relaxed optimization problem (R) is max{f(X) : X ∈ R} where P ⊆
R. Problem (R) is called a relaxation of problem (P) and is assumed to also be a polyhedron.
Relaxations provide bounds for optimal solutions (upper bounds for maximization problems)
and are critical components of many algorithms used to solve integer programs such as
branch-and-bound, branch-and-cut and cutting plane methods.

The key features of the latter two algorithms are valid inequalities or ‘cuts’. These are ad-
ditional constraints (typically inequalities) that tighten the relaxation. In this thesis we will
use the word ‘cut(s)’ since the new family of cuts we will define (called k-projection polytope
constraints) is not an inequality. A family of cuts is a group or class of cuts that shares a
special (and/or similar) structure. The separation problem determines ‘good’ cuts (from a
family of cuts) that will tighten the relaxation.

This thesis introduces the new family of cuts called k-projection polytope constraints (kPPCs).
Specifically three concepts related to kPPCs will be examined:

1. the construction of a hierarchy of relaxations using kPPCs,

2. the formulation of a model to solve the maximally violated valid inequality problem
(MVVIP) for kPPCs and

3. the impact that kPPCs have on the bound in a cutting plane method for large dense
max-cut problems.

This thesis is organized as follows: the remainder of this chapter is devoted to introducing
kPPCs for the max-cut problem. Chapter 2 covers an in-depth literature review on the max-
cut problem and the three themes in this thesis : hierarchies, MVVIP and cutting plane

2

methods. Then each of these themes is examined in turn (Chapters 3, 4 and 5 respectively).
Finally Chapter 6 summarizes the theory and results related to kPPCs.

1.1 Notation

We use the following notation throughout this thesis. Let Sn be the set of symmetric matrices
of size n ; e is the vector of all ones of the appropriate size and let X be a matrix of size n×n
and let Xij denote the element in matrix X at row i and column j. For matrices A,B ∈ Sn,
〈A,B〉 := tr(AB) is the matrix inner product and diag(A) is a vector of the elements on
the diagonal of matrix A. Conversely, Diag(a) is a matrix with the elements of the vector a
on the diagonal of an |a| × |a| matrix and zeros on the off-diagonal. Finally we define the
laplacian matrix as L := Diag(We)−W .

1.2 k-projection polytope constraints

This section introduces the family of cuts called kPPCs specifically for the max-cut problem.
Details will not be presented here but are instead contained in Section 3.3.1.

Consider the following exact formulation of the max-cut problem:

zMC = max{〈L,X〉 : X ∈ {diag(X) = e, X ∈ Sn, rank(X) = 1}

and the following initial relaxation:

max{〈L,X〉 : diag(X) = e, X ∈ Sn}. (1.1)

The definition of kPPCs for the subset I where |I| = k is:

Cλ = triu(XI),
2k−1∑
i=1

λi = 1, λ ≥ 0 (1.2)

where triu(XI) =
[
Xi1,i2 Xi1,i3 Xi2,i3 . . . Xik−1,ik

]T
is the strictly upper triangular part

of matrix XI indexed by I = (i1, i2, . . . , ik), the variable λ is a vector of length 2k−1 and
C := crc

T
r with cr ∈ {−1, 1}k denotes the 2k−1 feasible max-cut solutions on k vertices.

This is equivalent to:
XI ∈ CUTk

3

which requires XI to be in the convex hull of the vertices of CUTk where CUTk is the cut
polytope of size k. By definition, the cut polytope of size n is the convex hull of feasible
max-cut solutions on a graph with n vertices.

Including kPPCs in a max-cut relaxation such as (1.1) will tighten the relaxation. This
thesis addresses questions related to including kPPCs to tighten a relaxation such as which
ones to include and how to find them. In addition we examine why kPPCs work for the
max-cut problem and generalize kPPCs to more general combinatorial problems. Finally
computational results are presented showing that kPPCs can tighten max-cut relaxations.
We focus on large (n = 500 to 1000), dense examples.

4

CHAPTER 2 CRITICAL LITERATURE REVIEW

The literature review will cover the following topics in turn: the max-cut problem, hierarchies
of relaxations, exact separation of violated cuts and cutting plane algorithms.

2.1 The max-cut problem

Let G = (V,E) be an undirected graph with no loops where V = {1, . . . , n} is the vertex
set and the set of edges is E. For every edge ij ∈ E we define a weight wij and denote the
weighted adjacency matrix A such that (A)ij = wij ∀ij ∈ E. A cut is defined as a partitioning
of the vertices into two sets denoted S and V \ S. The cut weight of partition S is

∑
i∈S,j /∈S

wij.

The max-cut problem is to find the partition that maximizes the cut weight. The applications
of the max-cut problem include circuit layout design and the ising spin problem in statistical
physics (Barahona, Grötschel, Jünger, and Reinelt (1988), Lengauer (1990), Liers, Jünger,
Reinelt, and Rinaldi (2004)).

2.1.1 Exact max-cut formulations

There are two formulations for the max-cut problem: vertex based and edge based. The
vertex based approach determines if vertex i is in the set S or not while the edge based
approach partitions the vertices by determining if the endpoints of an edge are in the same
set or not. The edge-based max-cut formulation is used in this thesis, however we present
both approaches.

Vertex based formulation

Let x ∈ {−1, 1}n such that

xi =

1 if i ∈ S

0 if i /∈ S
∀i ∈ V.

5

The Laplacian is defined as L := Diag(Ae)− A and can be used to define the cut weight :

1
4x

TLx =
∑

i∈S,j /∈S
wij.

Then the vertex based max-cut formulation is:

(MC) zMC = max{1
4x

TLx : x ∈ {−1, 1}n}. (2.1)

This formulation is a quadratic binary problem.

Edge based formulation

Recall that the edge based max-cut formulation determines if the endpoints of an edge are
in the same set or not. If vertices i and j are in different partitions then we say that the edge
ij is cut. Specifically,

Xij :=

1 if i, j ∈ S or i, j /∈ S

−1 otherwise
∀ij ∈ E.

Therefore
X = xxT and 1

4x
TLx = 〈L,X〉.

Furthermore the 2n−1 feasible solutions to the max-cut problem can be written as the vector
ci ∈ {−1, 1}n or as a cut matrix Ci where Ci = cic

T
i . The term ‘cut’ in cut matrix refers to

feasible max-cut solutions. The cut polytope, CUTn := {Ci : ∀i = 1, . . . , 2n−1}, is the convex
hull of all 2n−1 feasible solutions Ci.

With this notation the edge-based max-cut formulation is:

(MC) zMC = max{〈L,X〉 : X ∈ CUTn}. (2.2)

This is equivalent to the formulation given in (2.1).

The max-cut problem is known to be NP-complete (Karp, 1972). However certain classes of
graphs can be solved in polynomial time (Poljak and Tuza, 1995). Results of the cut polytope
are extensively studied in the book by Deza and Laurent (1997a). This includes a complete
list of the facets defining inequalities for the cut polytope of size up to 8. Other work on

6

the cut polytope includes Barahona (1993), Poljak and Tuza (1994) and Deza, Laurent, and
Poljak (1992).

2.1.2 Max-cut relaxations

A survey of max-cut relaxations can be found in Hansen (1979) (prior to 1980) and more
recently in Wiegele (2006). Linear programming relaxations (for example Barahona and La-
danyi (2006) ; Barahona, Jünger, and Reinelt (1989) ; and Liers, Jünger, Reinelt, and Rinaldi
(2004)) and semidefinite programming relaxations have both been extensively studied. We
focus on SDP relaxations as that is the basis of the relaxation presented in this thesis. Poljak
and Rendl (1995) introduced the primal version of the basic SDP relaxation and the streng-
thened SDP relaxation over the metric polytope. Delorme and Poljak (1993) presented the
dual version. The following sets are used in the two most common SDP relaxations.

The set C of correlation matrices is:

C := {X ∈ Sn : diag(X) = e, X � 0}

and the metric polytopeM is the set of all symmetric matrices with diagonal equal one and
satisfying the triangle inequalities,

M := {X ∈ Sn : diag(X) = e, Xij +Xik +Xjk ≥ −1, Xij −Xik −Xjk ≥ −1 ∀i, j, k ∈ V } .

For n = 3 or 4 the set of 4
(
n
3

)
triangle inequalities defines the cut polytope of size n.

Additional inequalities (or an inner description using extreme points) is required to define
the cut polytope for n > 4. The idea behind the triangle inequalities is that on each clique
of size 3 either two edges or no edges are cut.

These two sets yield two popular semidefinite optimization relaxations of the max-cut pro-
blem:

zC := max{〈L,X〉 : X ∈ C} (2.3)

zC∩M := max{〈L,X〉 : X ∈ C ∩M} (2.4)

Furthermore,
zMC ≤ zC∩M ≤ zC

since CUTn ⊆ C ∩M ⊆ C.

7

The major theoretical result from Goemans and Williamson (1995) showed that the gap
between the exact max-cut formulation and the SDP relaxation is bounded, specifically,

zC
zMC

≤ 1.1382.

There are 4
(
n
3

)
triangle inequalities. An interior-point method for solving this relaxation is

provided in Helmberg, Rendl, Vanderbei, and Wolkowicz (1996). This semidefinite optimiza-
tion problem can be solved in polynomial time up to a fixed prescribed precision. However it
contains O(n3) inequality constraints, and hence it is a challenge for standard SDP solvers. A
computationally efficient way to deal with this relaxation was introduced by Fischer, Gruber,
Rendl, and Sotirov (2006). It combines interior-point methods with the bundle method to
deal with the triangle inequalities. Exact methods where this relaxation is used in a branch-
and-bound setting have been proposed by Rendl, Rinaldi, and Wiegele (2010) and Krislock,
Malick, and Roupin (2014).

2.1.3 Binary quadratic program

The most basic binary quadratic programming problem that we will study has the following
form:

min{yTQy + cTy : y ∈ {0, 1}n}

where Q is a symmetric matrix of order n and c is a vector of length n.

It can be shown that the binary quadratic problem is equivalent to the max-cut problem (for
instance see Barahona, Jünger, and Reinelt (1989)). The following outlines the equivalence
between the binary quadratic problem and the max-cut problem.

Let

x = 2y − e, x̄ =
1
x

 and L = −1
4

(Qe+ 2c)T e (Qe+ c)T

(Qe+ c) Q


Using these definitions the following shows that the objective function of the binary quadratic

8

problem and the max-cut problem are equal:

x̄TLx̄ =
 1

2y − e

T 1
4

(Qe+ 2c)T e (Qe+ c)T

(Qe+ c) Q

 1
2y − e


= 1

4
(
(Qe+ 2c)T e+ 2(Qe+ c)T (2y − e) + (2y − e)TQ(2y − e)

)
= 1

4
(
4cTy + 4yTQy

)
= yTQy + cTy

2.1.4 Leading solvers

There are two main solvers for binary quadratic problems : BiqCrunch and BiqMac. We
consider them in turn.

BiqCrunch

BiqCrunch was developed by Krislock, Malick, and Roupin (2014). It is a branch-and-bound
algorithm for binary quadratic problems including max-cut that introduces an improved
bounding procedure. The algorithm uses the following regularized problem:

(SDP)α4 max 〈Q,X〉+ α

2
(
n2 − ||X||2F

)
s.t. diag(X) = e

X � 0

A4(X) ≤ −e

and the following bound that is defined using the dual function of (SDP)α4:

Fα
4(y, z) := max

X�0

(
〈Q−Diag(y) +A∗4(z), X〉 − α

2 ||X||
2
F + eTTy + eT z + α

2n
2
)

where A4(X) ≤ −e defines the triangle inequalities for the set 4.

Furthermore, the following relationship holds between the optimal objective value of the

9

aforementioned problems:

z(MC) ≤ z(SDP)4 ≤ z(SDP)α4 ≤ Fα
4(y, z)

where z(∗) is the optimal objective value of model (∗) and (SDP)4 is the SDP relaxation
with triangle inequality set 4. Note that the first inequality is from the relaxation of the
original (MC) problem and the third inequality is due to weak duality. The second inequality
is less obvious and is derived from the following fact (see Krislock et al. (2014) for the proof):

if X � 0 and diag(X) = e then n ≤ ||X||2F ≤ n2.

Therefore in (SDP)α4 the regularized term is always non-negative for α ≥ 0.

The parameter α penalizes the loss of tightness in the bound and the parameter ε controls
the tolerance of the quasi-Newton method. Both are reduced when the number of violated
triangle inequalities is small. Adjusting these parameters dynamically changes the set of
triangle inequalities and is used to efficiently give improved bounds. The bounding procedure
is incorporated into a branch-and-bound.

BiqMac

BiqMac was developed by Rendl, Rinaldi, and Wiegele (2010). It is a branch-and-bound al-
gorithm in which the bounding procedure is a dynamic version of the bundle method and is
used to solve semidefinite max-cut relaxations and can find exact solutions for instances of
size up to n = 100.

The disjunction for the branching decision is if two vertices i and j are ‘joined’ (i and j are
on the same side of the partition) or ‘split’ (i and j are on different sides of the partition).
Additional procedures include a bounding procedure to determine upper bounds ; a heuristic
to produce lower bounds by finding feasible solutions and a branching strategy to determine
the next i-j pair to be branched on.

Adding all 4
(
n
3

)
triangle inequalities is only tractable for very small problems therefore the

number of triangle inequalities added at each iteration is limited. The number of inequa-
lities to add is dynamically chosen using a bundle method. Inequalities are removed when
it is unlikely that they are active at the optimal solution. Non-active constraints have a
dual multiplier equal to 0. Therefore triangle inequalities with dual multiplier close to 0 are

10

removed.

2.2 Hierarchies

Semidefinite programming relaxations that provide strong bounds for combinatorial pro-
blems are of great interest. Several hierarchies of relaxations have been proposed that pro-
vide increasingly tighter bounds. These include the Sherali and Adams (1990) reformulation-
linearization technique (RLT); the Lovász and Schrijver (1991) lift-and-project ; the Lasserre
(2002) hierarchy ; and a lifting by Anjos and Wolkowicz (2002). For combinatorial problems
these hierarchies have the property that they converge to the global optimal solution in a
finite number of steps ; however they have the computational drawback that the numbers
of variables at each level grows exponentially. Even the first nontrivial lifting step leads to
matrices of order

(
n
2

)
which is prohibitive even for very modest values of n such as n ≈ 50.

We examine the lifting of Anjos and Wolkowicz and the Lasserre hierarchy in turn.

2.2.1 Lifting of Anjos and Wolkowicz

Anjos and Wolkowicz (2002) present two strengthened SDP relaxations for the max-cut
problem. The first of the two is:

(SDP2) v∗2 = max
Y

trHQY

s.t. diag(Y) = e

Y0,t(i) = 1 ∀i = 1, . . . , n

Y0,T (i,j) = 1
n

n∑
k=1

YT (i,k),T (k,j) ∀1 ≤ i < j ≤ n

Y � 0, Y ∈ St(n)+1

where

T (i, j) :=

t(j − 1) + i if i ≤ j

t(i− 1) + j otherwise
, HQ :=

 0 1
2dsvec(Q)T

1
2dsvec(Q) 0

 ,
t(i) = T (i, i) ∀i = 1, . . . , n and dsvec(∗) forms the t(n)-vector by taking the elements of an
n× n matrix columnwise while ignoring the strictly lower triangular part of the matrix and
multiplying the off-diagonal elements by 2.

(SDP2) is constructed by adding redundant quadratic constraints ; taking the lagrangian
dual of the lagrangian dual ; and then removing the redundant constraints and projecting the

11

feasible set. The redundant constraints that are added to the basic SDP relaxation (2.3) are:
X ◦X = E and X2 − nX = 0 where ◦ is the Hadamard (elementwise) product of matrices
and E is the matrix of all ones.

The second SDP relaxation presented by Anjos and Wolkowicz is:

(SDP3) v∗2 = max traceHQY

s.t. diag(Y) = e

Y0,t(i) = 1 ∀i = 1, . . . , n

Y0,T (i,j) = YT (i,k),T (k,j) ∀k, ∀1 ≤ i < j ≤ n

Y � 0, Y ∈ St(n)+1

and is a strengthening of (SDP2). It comes from adding the additional redundant constraints
Xij = XikXkj ∀1 ≤ i, j, k ≤ n.

2.2.2 Lasserre hierarchy

Consider the optimization problem:

(Lass-P) p∗ = inf
x
{f(x) : x ∈ K}

for some function f : Rn → R and for the basic semi-algebraic set:

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}

where (gj) ⊂ R[x], j = 1, . . . ,m are polynomials. Let v := maxk=1,...,m νk where the degree of
the polynomial gj(x) is 2νk or 2νk − 1 depending on the parity.

Note that problem (Lass-P) is not necessarily convex. For example if gj(x) = x2
j − xj ≥

0, ∀j = 1, . . . , n and gj+n(x) = xj − x2
j ≥ 0,∀j = 1, . . . , n then (Lass-P) defines a general 0-1

program, which is clearly not convex. The following semidefinite program (Lass-Q) (which is
a function of d) is a relaxation of (Lass-P):

(Lass-Q) qd = min
y

Ly(f)

s.t. Md(y) � 0

Md−vj(gjy) � 0, j = 1, . . . ,m

y0 = 1

12

The model is constructed by defining variables y := (xα), α ∈ Nn
2d ; an objective function

Ly(f) such that Ly(f) = f(x) ∀ feasible y; and by constructing two matrices that act as the
constraints. The matrices have the form:

Md(y) =
∑
α∈Nn2d

yαBα and Md−vj(gjy) =
∑
α∈Nn2d

yαC
j
α, j = 1, . . . ,m

where Bα and Cj
α are real symmetric matrices such that:

vd(x)vd(x)T =
∑
α∈Nn2d

xαBα and gj(x)vd−vj(x)vd−vj(x)T =
∑
α∈Nn2d

xαCj
α.

The matrix variable Md(y) is induced from the support vector v = (xα), α ∈ Nn
2d. For d = n

the support vector has the following form:

v := [1, x1, . . . , xn, x1x2, x1x3, . . . , xn−1xn, x1x2x3, . . . ,
n∏
i=1

xi] = [xα],∀α ∈ Nn
2d

For all d ∈ N, (Lass−Q)d is a relaxation of (Lass-P) since

1. qd ≤ p∗

2. the constraints of (Lass-Q) are necessary conditions for y to be the support vector of
K.

In addition the associated feasible sets are nested within one another with (Lass−Q)d+1 ⊆
(Lass−Q)d with each subsequent program as least as strong as the previous one. As a result
the sequence of semidefinite programs (Lass−Q)d, d ∈ N form a hierarchy. Lasserre (2001)
then showed that the following property holds under certain assumptions on K:

inf(Lass−Q)d ↑ p∗ as d→∞

Now we will consider a special case of the general optimization problem in which all variables
are binary. The general quadratic binary optimization problem as studied by Lasserre is
defined as follows:

(QBO) p∗ = inf
x

f(x)

s.t. gj(x) ≥ 0 j = 1, . . . ,m

x2
i = xi i = 1, . . . , n

13

The binary condition xi ∈ {0, 1} can be written as the quadratic constraint x2
i −xi = 0, ∀i =

1, . . . , n. By expressing these equations as two inequalities (QBO) can be written in exactly
the same format as the general optimization problem(Lass-P). The sos-moment approach of
creating the Lasserre hierarchy naturally follows. When the Lasserre hierarchy is applied to
the quadratic binary optimization problem three special properties emerge:

1. All monomials can be simplified to monomials in which each term has degree 1 or 0. For
example x2

1x
3
2 = x1x2. This is a direct result from the fact that x2

i = xi ∀i = 1, . . . , n.

2. Identical monomials can be eliminated from the support vector without weakening the
relaxation.

3. There is a finite number of distinct monomials to include in the support vector, since
each distinct monomial has terms of degree 1 or 0. Therefore there exists at most 2n−1
monomials.

Furthermore the matrix variable constructed from the support vector X = vvT can be sim-
plified to only include monomials of degree 1 or 0 and as a result X contains at most 2n − 1
variables. We will now state the main result of Lasserre, the proof has been omitted:

Theorem 1 (Lasserre Theorem (Lasserre, 2002)) Let (QBO) be defined as above and
consider the hierarchy of semidefinite programs (Lass-Q). Then for every i ≥ n+ ν

1. (Lass−Q)i is solvable with p∗ = min(Lass−Q)i
2. Each optimal solution x∗ of (QBO) corresponds to the following optimal solution of

(Lass−Q)i :
y∗ :=

(
x∗1, . . . , x

∗
n, . . . , (x∗1)2i, . . . , (x∗n)2i

)

3. Each optimal solution y∗ of (Lass − Q)i is the (finite) vector supported on s optimal
solutions of (QBO) with

s = rank(Mi(y)) = rankMn(y)

2.3 Exact separation

Separation procedures (or constraint identification problems) are defined as follows: given a
point x and a family of valid constraints L, identify one or more constraints in L violated by
x, or prove that no such constraint exists (Padberg and Rinaldi, 1991). Note that although
separation procedures are typically used to identify inequalities, the framework is identical
for any set of valid constraints.

14

Separation procedures have been studied from both the practical and theoretical perspectives
and are often discussed in the context of cuts which are used to tighten relaxations. Cuts
that share a special structure can be categorized into a specific family or class. Applegate,
Bixby, Chvàtal, and Cook (2006) called the paradigm of generating cuts from a given fa-
mily the template paradigm. Different types of cuts include Chvátal cuts (Chvátal, 1973),
Chvátal-Gomory (Nemhauser and Wolsey (1988), Bonami, Cornuéjols, Dash, Fischetti, and
Lodi (2008)), {0, 1

2}-Chvátal-Gomory cuts (Caprara and Fischetti, 1996), split cuts (Cook,
Kannan, and Schrijver, 1990), MIR-inequalities (Nemhauser and Wolsey, 1988) and lift-and-
project cuts (Balas, Ceria, and Cornuéjols, 1993).

Practically, the separation of valid inequalities (i.e. cuts) is a key component of cutting plane
algorithms. Cutting plane algorithms have been well studied and are fundamental in solving
integer (and mixed integer) optimization problems. For early research see Dantzig, Fulkerson,
and Johnson (1954), Gomory (1963) and Grötschel, Lovász, and Schrijver (1981). For more
recent advances see Mitchell (2002) and Marchand, Martin, Weismantel, and Wolsey (2002).

Different separation procedures are used for different families of cuts. Caprara and Letch-
ford (2003) examined the complexity of the separation procedure for various inequalities.
They proved strong NP-completeness for the separation of split cuts and strengthened NP-
completeness results for {0, 1

2}-cuts (initially in Caprara and Fischetti (1996)) and Chvàtal-
Gomory cuts (initially in Eisenbrand (1999)). Matrix cuts and lift-and-project cuts have been
shown to be separable in polynomial time (Balas, Ceria, and Cornuéjols (1993), Lovász and
Schrijver (1991)).

2.3.1 Maximally violated inequalities

Optimization models have been proposed that look for maximally violated cuts. Caprara,
Fischetti, and Letchford (2000) proposed a model that finds the mod-k cut that is maximally
violated for a given point x∗. They also show that for any given k for which a prime factori-
zation is known maximally violated mod-k cuts can be found efficiently in O(mnmin{m,n})
time.

Lodi, Ralphs, and Woeginger (2012) proposed a mixed-integer bilevel model for a general
separation problem which finds the maximally violated valid inequality. They emphasize
the conceptual nature of this formulation as challenges exist to explicitly write a compact
description of the inner problem in addition to the practical issues surrounding solving bile-
vel problems. However for certain examples (split cuts and generalized subtour elimination
constraints (GSECs) for the capacitated vehicle routing problem) the bilevel model can be
converted to a single level linear optimization problem. Two key components in MVVIPs are

15

validity and membership. We address them in turn.

The validity verification problem determines if all points in a polyhedron satisfy the constraint.
Lodi et al. (2012) formalize this concept for linear inequalities. For a given polyhedron
P = {x ∈ Rn

+ | Ax ≥ b}, (α, β) defines a valid inequality if and only if there exists u ∈ Rm
+

such that α ≥ uTA and β ≤ uT b. The inequality αTu ≥ β is valid for the polyhedron P since
all x ∈ P satisfy αTx ≥ β.

The membership problem is a decision problem that asks whether a given point x̂ is contained
in a polyhedron P or the intersection of the polyhedron P and a given cut. This problem has
been looked at in the context of many different families of cuts, for example Gomory-Chvátal
cuts (Eisenbrand, 1999) and {0, 1

2} cuts (Caprara and Fischetti, 1997).

2.4 Cutting plane algorithms

Dantzig, Fulkerson, and Johnson (1954) presented the first cutting plane algorithm. They
applied the procedure to a traveling salesman problem with 54 cities. Gomory (1965) later
generalized cutting plane methods for general integer programming problems. Survey papers
include Helmberg and Rendl (1998), Mitchell (2003), Krishnan and Terlaky (2005) and Anjos
and Vannelli (2008).

Cutting plane methods are algorithms that repetitively solve relaxations, each time reducing
the feasible region. By reducing the feasible region in a special way so that the previous
optimal solution is not included and the new relaxation has a different optimal solution.
Relaxations act as upper bounds to the objective value of a maximization problem. As re-
laxations are tightened the upper bound is strengthened. Although numerous cutting plane
methods exist they generally have the following components:

Original problem This is an exact formulation of the problem that is too difficult to solve
directly.

Relaxations The first relaxation is often the most general. This would include, but is not
limited to, the LP relaxation of an integer program or the relaxation of the constraint
rank(X) = 1 in an SDP model.

Tightening method This process iterates between creating a tighter relaxation and solving
this tighter relaxation. The hope is that the optimal objective value of the relaxation
will improve thus improving the upper bound. The goal is to create a tighter relaxation
in such a way that the optimal solution of the previous model is no longer feasible. This
will ensure that the optimal solution will change, although it does not guarantee that
the optimal objective value will improve.

16

Separation procedure For some family of cuts a separation procedure finds valid and
violated cuts that can be used to tighten the relaxation.

Stopping Criteria The stopping criteria indicates when the iterative process mentioned
above stops. Ideally this is when the optimal solution to the current relaxation can be
proven to be the optimal solution to the original problem.

Closely related to cutting plane methods is branch-and-cut algorithms. These algorithms
combine branch-and-bound procedure while applying a cutting plane method at each node
of the enumeration tree. A survey of branch-and-cut algorithms specifically for combinatorial
problems is given in the chapter by Mitchell (2002).

2.4.1 Valid inequalities

Consider a combinatorial problem and let F = {X1, . . .} ⊆ Sn be the set of feasible so-
lutions where Sn is the set of symmetric matrices of size n. We can define the polytope
P := conv{X1, . . .} as the convex hull of the set of feasible solutions. Let Ri be some po-
lyhedral relaxation for the polytope P and let X∗ denote the optimal solution and z∗ the
optimal objective value obtained by solving Ri. To tighten the relaxation Ri we can find a
polyhedron T such that X∗ /∈ T and P ⊆ R ⊆ T .

Often a set of hyperplanes (i.e. valid inequalities) are used to tighten the relaxation. Hy-
perplanes can be used to tighten linear programs and SDPs. In both cases a new, tighter
relaxation Ri+1 := Ri∩T can be defined. In either case this process can be iteratively repea-
ted such that tighter and tighter relaxations are found P ⊆ · · · ⊆ Ri+1 ⊆ Ri. The process
stops when the polytope P is defined or a provably optimal solution is found.

2.4.2 Non traditional cuts

In this section we examine one example of a non traditional cut (i.e. a cut that does not define
a halfspace). Belotti, Góez, Pólik, Ralphs, and Terlaky (2013) define cuts called disjunctive
conic cuts for mixed integer second order cone optimization (MISOCO) problems. Although
these cuts are inequalities they do not define halfspaces (as traditional cuts do) but cones.
Consider the following MISOCO problem:

min
{
cTx : Ax = b, x ∈ K, x ∈ Zd × Rn−d

}

17

where A ∈ Rm×n with rank(A) = m; c ∈ Rn; b ∈ Rm and K is the intersection of a set of
second order cones.

Let E ⊂ Rn with n > 1 be a full dimensional closed convex set and consider two halfspaces
A = {x ∈ Rn : aTx ≥ α} and B = {x ∈ Rn : bTx ≤ β}. Then a closed convex cone K ⊆ Rn

with dim(K) > 1 is a disjunctive conic cut for E and the disjunctive set A ∪ B if

conv(E ∩ (A ∪ B)) = E ∩ K

Essentially for a feasible region, E and a disjunctive condition (x ∈ A or x ∈ B) the disjunctive
conic cut is a cone that reduces the feasible region of the relaxation so that both sides of the
disjunction (E ∩ A and E ∩ B) are still feasible. This tightens the relaxation without having
to branch on the disjunctive condition.

Depending on the type of disjunction a cylinder may be used as opposed to a cone. These
are called disjunctive cylindrical cuts and are defined in a similar way.

18

CHAPTER 3 HIERARCHY OF SEMIDEFINITE RELAXATIONS USING
k-PROJECTION POLYTOPE CONSTRAINTS

3.1 Introduction

Semidefinite programming relaxations exist for many combinatorial problems and several
hierarchies of relaxations have been proposed that provide increasingly tight bounds.

This chapter examines a new hierarchy of SDP relaxations composed of kPPCs. It is applied
to the classes of NP-hard graph problems that satisfies the projection property (specifically
the max-cut problem and the stable set problem).

The kth level of the proposed hierarchy consists of the basic SDP relaxation for the particular
problem plus kPPCs for every induced subgraph of size k. This hierarchy has the distingui-
shing feature that all the SDP relaxations are formulated in the space of the original SDP
relaxation.

The size of the relaxations increases rapidly with k because of the large number of induced
subgraphs that exist. For this reason we also briefly explore the possibility of adding the
projection polytope constraints for only selected subgraphs (a more detailed exploration of
this topic is the focus of Chapter 5).

We provide computational results showing that the proposed hierarchy yields improved
bounds when compared to the basic SDP relaxations for benchmark instances of the max-cut
and stable-set problems. We also report results showing that the improved bounds results in a
significantly smaller enumeration tree when the SDP relaxation is used in a branch-and-bound
scheme to solve the problems to optimality or near-optimality. We begin by generalizing the
definition of kPPCs presented in the Chapter 1.

3.2 The projection property

For a general description of our hierarchy of SDP relaxations, assume that V := {1, . . . , n}
denotes the vertex set of the graph of the combinatorial problem at hand and that the
combinatorial optimization problem under consideration is given through its set of feasible
solutions F = {X1, . . .} ⊆ Sn, where Sn denotes the set of symmetric matrices of order n.
Furthermore let P denote the convex hull of all feasible points, i.e. P = conv{X1, . . .}.

Given a cost matrix C, the optimization problem is to find the solution X ∈ P that maxi-

19

mizes 〈C,X〉 :
zP := max{〈C,X〉 : X ∈ P}.

For a set I ⊆ V , let
πI(X) = XI

denote the (orthogonal) projection mapping X to XI (i.e. the principal submatrix of X
indexed by I). Similarly

πI(P) = conv{πI(X1), . . .}

denotes the projection of P onto I. We are particularly interested in problems for which
πI(P) has a “simple” description. The simple description to be used is when solutions in
πI(P) have the same structure as solutions in P . In this chapter we consider optimization
problems where the convex hull of feasible solutions, defined on some graph G and denoted
by P(G), satisfies the following projection property:

πI(P(G)) = P(GI). (3.1)

To simplify notation we write P instead of P(G) and PI instead of P(GI). We call this the
projection property since the solutions in P project down to solutions in πI(P). Two combina-
torial problems that satisfy this property are the max-cut problem and the stable set problem.

3.2.1 Projection property for the max-cut problem

Consider first the max-cut problem on a graph with n nodes. Recall that the feasible solutions
are cut matrices of the form ccT with c ∈ {−1, 1}n. Let the convex hull of cut matrices be
denoted by CUTn. This is generally known as the cut polytope. It follows from the definition
that if |I| = k then

πI(CUTn) = conv{ccT : c ∈ {−1, 1}k} = CUTk.

Note that the projection property holds for the max-cut problem because cuts on the graph
G are induced cuts in the induced subgraph GI . In other words, a partitioning of the vertices
of G naturally leads to a partitioning of the subset of vertices in GI .

20

3.2.2 Projection property for the stable set problem

Recall that G = (V,E) is a given graph where |V | = n. A stable set

S := {I ⊆ V : ∀i, j ∈ I, (i, j) /∈ E}

is a subset of vertices where no two are connected by an edge of the graph. The stable set
problem is to find the stable set of maximum size for a given graph G. We consider

STAB(G) := conv{si : si is the incidence vector of a stable set in G}. (3.2)

Note that STAB(G) ⊆ Rn and that

πI(STAB(G)) = STAB(GI),

where GI denotes the subgraph induced by I. In a slight abuse of notation we also denote
by πI(x) the projection of the vector x onto the coordinates in I.

Similar to the max-cut problem we can observe that a stable set on the graph G is a stable
set on the induced subgraph GI .

3.2.3 Projection property failure

This property does not hold for combinatorial problems in general. For example the tra-
velling saleman problem does not satisfy the projection property since the restriction of a
hamiltonian cycle to a proper subgraph will not be a cycle. Similarly it does not hold for the
quadratic assignment problem since the restriction of an assignment to a subset of vertices
may not be an assignment.

3.3 A hierarchy of relaxations based on kPPCs

Recall that for a given cost matrix C, the general combinatorial optimization problem is:

zP := max{〈C,X〉 : X ∈ P}.

21

where P = conv{X1, . . .} (i.e. the convex hull of feasible combinatorial solutions). However
the difficulty lies in enumerating all the feasible solutions, Xi, and defining the polytope P .

A formal description of the new hierarchy of relaxations starts with an initial tractable
relaxation over the set R ⊇ P that can be solved efficiently. Let the initial relaxation be:

zR := max{〈C,X〉 : X ∈ R} (3.3)

We are particularly interested in cases where R is a spectrahedron (i.e. the intersection of
the cone of semidefinite matrices S+

n with an affine linear space) making the above problem
a semidefinite optimization problem.

For fixed k ∈ N, the relaxation (3.3) is tightened by adding the k-projection polytope
constraints:

πI(X) ∈ πI(P) ∀I ⊆ N, |I| = k.

Under the projection property (3.1), this simplifies to

XI ∈ PI∀I ⊆ N, |I| = k.

For small values of k, we can express this condition in a more convenient way by exploiting
the fact that the vertices vIi of PI can be enumerated explicitly and requiring that XI lay in
the convex hull of the vertices of PI :

XI =
∑
i

λIi v
I
i with λIi ≥ 0,

∑
i

λIi = 1. (3.4)

Thus level k of our hierarchy is:

zR,k := max
{
〈C,X〉 : X ∈ R,

XI =
∑
i

λIi v
I
i with λIi ≥ 0,

∑
i

λIi = 1 ∀I ⊆ V, |I| = k
}
.

It is clear from the definitions that

zR ≥ zR,1 ≥ . . . ≥ zR,n = zP .

– Remark 1 In our applications we focus mostly on relaxations where R is some spectra-

22

hedron. It is a nontrivial task to actually identify subsets I so that the current iterate x
violates x ∈ PI by a substantial amount.

– Remark 2 We select the cardinality of I in such a way that PI has a relatively small number
of vertices. In this case we prefer maintaining the vertex-based description (3.4) of πI(P),
which imposes much more structure than adding a single cutting plane.

– Remark 3 An important distinguishing feature of our hierarchy is that all of the relaxations
are formulated in the original space Sn meaning the size of the matrix variables does not
change. This is not the case in other generic hierarchies and SDP relaxations such as the
Anjos and Wolkowicz (2002) relaxation, Lasserre (2002), Lovász and Schrijver (1991) and
the Sherali and Adams (1990) hierarchies. In these constructions the dimension of the
matrix space grows exponentially making even the smallest levels challenging to compute.

3.3.1 kPPC hierarchy of relaxations for the max-cut problem

Recall that the max-cut problem is:

zMC = max{〈L,X〉 : X ∈ CUTn}

To apply our new hierarchy to the max-cut problem, we take the SDP relaxation over the
intersection R := C ∩M as our initial relaxation:

zR = max{〈L,X〉 : X ∈ R}.

where C is the set of correlation matrices andM is the metric polytope.

The motivation for this choice is that this relaxation provides one of the most competitive
bounds if both practical efficiency and strength of the relaxation are taken into account.

The kth level of the new hierarchy applied to the max-cut relaxation with R = C ∩M is:

zR,k = max{〈L,X〉 : X ∈ R, XI ∈ CUTk ∀I ⊆ N, |I| = k}. (3.5)

Recall the definition of kPPCs for the k-subset I:

Cλ = triu(XI),
2k−1∑
i=1

λi = 1, λ ≥ 0

where Cr = crc
T
r (with cr ∈ {−1, 1}n) is a feasible matrix solutions to the max-cut problem.

23

Therefore the new hierarchy (3.5) can be written as:

zR,k = max{〈L,X〉 : X ∈ R, Cλ = triu(XI),
2k−1∑
i=1

λi = 1, λ ≥ 0∀I ⊆ N, |I| = k}.

Trivially, this hierarchy yields zMC for k = n. We end this section with a few additional
remarks.

– Remark 1: kPPCs force XI ∈ CUTk. For k = 3 or 4, CUTk can be completely defined with
triangle inequalities (Barahona and Mahjoub, 1986). Therefore the smallest interesting
case is k = 5.

– Remark 2: The definition of kPPCs requires the complete enumeration of all 2k−1 feasible
solutions on a graph of size k. This is possible only for small values of k. As a result we
consider 5 ≤ k << n.

3.3.2 kPPC hierarchy of relaxations for the stable set problem

We now apply the kPPC hierarchy of relaxations to the stable set problem. The stable set
polytope STAB(G) (see (3.2)) of a graph G with |V | = n is contained in Rn. The stability
number α(G) of a graph G which gives the cardinality of the largest stable set, is given by

α(G) = max
{

n∑
i=1

xi : x ∈ STAB(G)
}
.

One of the most well-studied relaxations of STAB(G) is based on the theta body Þ(G)
introduced by Lovász (1979):

Þ(G) := {x ∈ Rn : ∃X ∈ Sn, x = diag(X), X − xxT � 0, xij = 0 ∀[i, j] ∈ E(G)}.

Note that any characteristic vector s ∈ {0, 1}n of a stable set in G yields a stable set matrix
S := ssT such that

s = diag(S), S − ssT � 0, (S)ij = sisj = 0 ∀ [i, j] ∈ E(G).

Hence STAB(G) ⊆ Þ(G).

A direct application of the projection approach would impose, for given x ∈ Rn, the constraint
xI ∈ STAB(GI) for subsets I ⊆ V . On the other hand, the set Þ(G) can also be viewed as
a matrix relaxation of the stable set problem projected to the main diagonal. We define

24

STAB2(G) to be the convex hull of stable set matrices :

STAB2(G) := conv{ssT : s characteristic vector of stable set}.

Thus the projection of STAB2(G) to the main diagonal gives STAB(G):

diag(STAB2(G)) = STAB(G).

We propose to apply the subgraph projection idea to STAB2(G). Our starting point is the
relaxation over Þ(G). It is also called the Lovász theta function and can be formulated as

θ(G) := max{tr(X) : X ∈ Sn, xij = 0 ∀[i, j] ∈ E, x = diag(X), X − xxT � 0}.

This relaxation is now strengthened by the k-projection polytope constraints:

XI ∈ STAB2(GI) ∀I ⊆ N, |I| = k.

We emphasize the fact that it is possible to haveXI /∈ STAB2(GI), but diag(XI) ∈ STAB(GI).
This could even happen for subsets I = {r, s} if xrs < 0.

3.4 Max-cut examples

This section presents computational results for max-cut problems. The goal is to illustrate two
key features of the kPPC hierarchy. First we compare our hierarchy with other hierarchies (i.e.
Lasserre and Anjos & Wolkowicz). Since all three hierarchies (kPPCs, Lasserre and Anjos-
Wolkowicz) can only be completely enumerated for small examples we consider examples of
size 7, 9 and 11. Secondly, we note that not all

(
n
k

)
kPPCs are required to improve the bound.

Section 3.4.2 examines larger examples (with n = 80 and 100) and shows that even when
only a limited number of violated kPPCs are iteratively added to the relaxation there is still
an improvement on the bound.

3.4.1 Small max-cut examples

In this subsection we illustrate the behaviour of the hierarchy (3.5) on selected small max-cut
instances. Because these instances are small, all the relaxations in the hierarchy can be solved
to optimality.

25

We first consider the 7× 7 matrix

Q = −1
2



0 1 1 1 −2 −1 0
1 0 1 1 −2 0 −1
1 1 0 1 −2 −1 0
1 1 1 0 −2 0 −1
−2 −2 −2 −2 0 1 1
−1 0 −1 0 1 0 −1

0 −1 0 −1 1 −1 0


. (3.6)

Grishukhin (1990) showed that 〈Q,X〉 ≥ 5 is a facet of the cut polytope CUT7. Hence
maximizing 〈Q,X〉 over various supersets of CUT7 shows how close we come to this facet
using the respective relaxations. The results are reported in Table 3.1.

Table 3.1 Bounds and relative gaps to optimality (%) obtained from various relaxations for
the Grishukhin inequality of CUT7

Relaxation (bound) Bound Gap (%)
C7 (zC) 6.9518 39.04
C7 ∩M7 (zR) 6.0584 21.17
C7 ∩M7 and all CUT5s (zR,5) 5.8000 16.00
C7 ∩M7 and all CUT6s (zR,6) 5.6667 13.33
Anjos & Wolkowicz 5.7075 14.15
Lasserre level 2 5.6152 12.30
CUT7 (zP) 5.0000 0.00

A similar distinction between the relaxations occurs in case of the clique web inequali-
ties (Deza and Laurent, 1997b). Recall that these inequalities are defined as follows : Let
n, p, q, r be integers such that n = p+q, p−q = 2r+1, q ≥ 2 and let b := (1, . . . , 1,−1, . . . ,−1)T

be a vector of length n where the first p coefficients are equal to +1 and the last q coefficients
are equal to −1. AWr

p defines the antiweb as the graph with vertex set Vp = {1, 2, . . . , p} and
edge set defined by the pairs (i, i + 1), (i, i + 2), . . . , (i, i + r), ∀i ∈ Vp. Then the clique web
inequalities are ∑

1≤i<j≤n
bibjxij −

∑
ij∈AWr

p

xij ≤ 0

We consider the cases n = 9 and n = 11 and compare again the various levels of our new
hierarchy. These inequalities are parametrized by the integer r with 0 ≤ r ≤ n−5

2 . The results
are reported in Tables 3.2 and 3.3.

26

Table 3.2 Bounds for the clique web inequality with n = 9.

Relaxation (bound) r = 1 r = 2
C9 (zC) 8.40 8.99
C9 ∩M9 (zR) 7.12 7.12
C9 ∩M9 and all CUT5s (zR,5) 6.86 7.07
C9 ∩M9 and all CUT6s (zR,6) 6.86 7.07
C9 ∩M9 and all CUT7s (zR,7) 6.75 6.57
C9 ∩M9 and all CUT8s (zR,8) 6.64 6.56
Anjos & Wolkowicz 6.72 6.79
Lasserre level 2 6.59 6.55
CUT9 (zP) 6.00 6.00

Table 3.3 Bounds for the clique web inequality with n = 11.

Relaxation (bound) r = 1 r = 2 r = 3
C11 (zC) 10.83 13.31 12.10
C11 ∩M11 (zR) 9.28 10.62 9.28
C11 ∩M11 and all CUT5s (zR,5) 9.21 10.62 9.25
C11 ∩M11 and all CUT6s (zR,6) 9.21 10.62 9.25
C11 ∩M11 and all CUT7s (zR,7) 9.00 9.96 8.87
C11 ∩M11 and all CUT8s (zR,8) 8.86 9.96 8.87
C11 ∩M11 and all CUT9s (zR,9) 8.79 9.59 8.52
C11 ∩M11 and all CUT10s (zR,10) 8.56 9.50 8.44
Anjos & Wolkowicz 8.87 10.02 8.93
Lasserre level 2 8.72 9.62 8.59
CUT11 (zP) 8.00 9.00 8.00

These first examples (Tables 3.1-3.3) show that our new hierarchy is competitive, even com-
pared to the 2nd level of the Lasserre hierarchy. Even though we have included the kPPCs
for all subsets of cardinality k in these computations, a closer look at the computational
results shows that in fact only a small fraction of these constraints are necessary to obtain
the given bounds. It is also quite striking that going down to level k = n − 1 still leaves a
rather large gap in these instances. Since the objective function corresponds to a facet of the
cut polytope, this is an illustration of the worst case behaviour of our hierarchy.

3.4.2 Larger max-cut examples

This section reports the results of our computational experiments with the new hierarchy on
larger instances of max-cut. The inclusion of all kPPCs for some k ≥ 5 is computationally

27

prohibitive. Instead, we run through all 5-projection polytope constraints and include only
the 100 most violated ones, iterating this process. To check whether or not XI ∈ CUT|I|
we could compute the projection of XI to CUT|I|. This requires in general the solution of a
convex quadratic problem in 2k−1 variables if |I| = k.

For the case k = 5 we exploit the fact that the facets of CUT5 are given by the triangle
inequalities, which are always satisfied as we assume X ∈M, and the pentagonal inequalities
fTXIf ≥ 1 for all f ∈ {−1, 1}5. We scan through all pentagonal inequalities and select the
100 subsets I corresponding to the largest violations. We add the corresponding projection
constraints to the SDP relaxation, solve the resulting relaxation using SDPT3, and iterate
this process. In the tables below, the number of these iterations is limited to 10. The final
bound approximates zC∩M,5 from above. The following tables contain representative results
from our experiments.

We first look at max-cut examples of random unweighted graphs from the Erdős-Renyi model
where each edge appears with probability p independent of the other edges. We consider
graphs on n = 80 nodes with p = 1

2 . These instances can be found in the BiqMac Library
(see http://biqmac.uni-klu.ac.at/biqmaclib.html). For a comparison, we also provide
the number of nodes used to prove optimality by the software package BiqMac (Rendl,
Rinaldi, and Wiegele, 2010). The results are reported in Table 3.4.

We observe that our new bound is strong enough to solve most of the instances either at the
root node or at the first two levels of the branching tree. In sharp contrast with the results
for BiqMac, only two out of the ten instances could not be solved within the first two levels
of a branch-and-bound procedure when using the new bound. (Note that for the instance
g05_80.1, the relaxation C ∩M already closes the gap.)

We also look at larger instances of size n = 100. We consider graphs with both positive and
negative edge weights and collect a sample of results in Table 3.5. Again these instances can
be found in the BiqMac Library. Here we report the percentage gap between the optimal cut
value and each of the bounds (with respect to the optimal). We again see that our rather
simple-minded improvement strategy limited to k = 5 yields a significant improvement of
the bound.

3.5 Small stable set examples

To further emphasize the potential of our new bounding procedure, this section includes com-
putational results of the new hierarchy applied to the stable set problem. Here we iteratively
include only the most violated kPPCs for k ≤ 6. We consider random graphs with edge den-

http://biqmac.uni-klu.ac.at/biqmaclib.html

28

Table 3.4 Bounds and number of nodes in a branch-and-bound tree for unweighted graphs
on n = 80 nodes.

Graph Optimal Optimizing over New Nodes with Nodes with
name cut value C C ∩M bound BiqMac new bound

g05_80.0 929 950.92 934.24 931.01 59 5
g05_80.1 941 957.25 941.76 – 3 –
g05_80.2 934 955.55 937.24 934.52 17 1
g05_80.3 923 947.59 932.32 929.15 523 >7
g05_80.4 932 955.31 936.53 933.83 39 3
g05_80.5 926 947.51 931.42 928.41 65 7
g05_80.6 929 948.68 933.24 930.40 31 3
g05_80.7 929 949.86 932.63 929.58 23 1
g05_80.8 925 946.67 930.53 927.42 73 7
g05_80.9 923 943.66 929.95 926.67 157 >7

sity 25% (g60-25, g80-25) and a graph with density 10% (g100-10). We also consider a cubic
graph with n = 74 (CubicVT74-9) available through the internet at http://www.matapp.
unimib.it/~spiga/census.html, and finally a 3-dimensional grid graph (spin5). For these
graphs there is a significant difference between θ and α.

In all cases the new bound (with 100 kPPCs) provides a clear improvement over the theta
number θ(G). This fact is particularly impressive for the cubic graph and the grid graph.

3.6 Conclusion

The focus of this chapter has been the definition of a hierarchy of relaxations for combinatorial
problems that satisfy the projection property. The key features of this hierarchy is that all
resulting relaxations are formulated in the original matrix space. The max-cut and the stable
set problem both satisfy the projection property. For both problems we:
– defined kPPCs,
– constructed the hierarchy of relaxations based on an initial relaxation specific to the pro-
blem, and

– presented computational results showing how iteratively adding 100 violated kPPCs can
significantly improve the bound.

The following observations can be made regarding our computational results for max-cut and
stable set instances:

1. The hierarchy may not reach optimality until the final level and in the worst case
situation the gap can still be quite large at the k = n− 1 level.

http://www.matapp.unimib.it/~spiga/census.html
http://www.matapp.unimib.it/~spiga/census.html

29

Table 3.5 Bounds and relative gaps to optimality (%) for dense graphs with positive and
negative weights on n = 100 nodes.

Graph Optimal Optimizing over New Gap for Gap for
name cut value C C ∩M bound C ∩M new bound

w09_100.0 2121 2500.30 2234.39 2189.54 5.35 3.23
w09_100.1 2096 2522.03 2263.82 2218.30 8.01 5.83
w09_100.2 2738 3129.99 2880.60 2833.92 5.21 3.50
w09_100.3 1990 2333.05 2131.55 2084.76 7.11 4.76
w09_100.4 2033 2424.98 2154.71 2109.86 5.99 3.78
w09_100.5 2433 2733.64 2454.66 2433.08 0.89 0.00
w09_100.6 2220 2552.11 2281.17 2241.92 2.76 0.99
w09_100.7 2252 2639.73 2355.48 2312.90 4.60 2.70
w09_100.8 1843 2213.12 1924.37 1882.62 4.42 2.15
w09_100.9 2043 2409.78 2161.63 2116.84 5.81 3.61

Table 3.6 Results for instances of stable-set problems of various sizes and densities

Graph n θ(G) New bound α(G)
g60-25 60 15.0058 14.71 14
cubic 74 34.8561 33.34 ≥ 32
g80-25 80 17.1670 17.01 17
g100-10 100 32.1166 31.52 ≥ 29
spin5 125 55.9017 51.61 ≥ 50

2. Significant improvements in the bound can be reached at the first level (k = 5) of the
hierarchy. This strong bound can greatly reduce the number of nodes BiqMac requires.

3. Although there are
(
n
k

)
kPPCs at each level of the hierarchy, we can attain a value

close to the bound for a level with only a small fraction of the kPPCs.

4. On the other hand, there is no guarantee that including all kPPCs from a level will
improve the bound from the previous level. However this outcome seems to be atypical.

The major limitations of the hierarchy arises in the practical implementation. The entire kth

level of the hierarchy cannot be explicitly enumerated for large n or large k. However, results
presented in this chapter show that the entire level of the hierarchy is not necessary to improve
the bound. Therefore a good separation algorithm is essential to a practical implementation.
The following chapters examine how to find the (limited number of) kPPCs that will improve
the bound for a given small k.

30

CHAPTER 4 EXACT SEPARATION OF K-PROJECTION POLYTOPE
CONSTRAINTS

4.1 Introduction

Cuts are often used as an efficient means to tighten continuous relaxations of (mixed) inte-
ger optimization problems and are a vital component of branch-and-cut and cutting plane
algorithms. A critical step of these algorithms is solving the separation problem to find valid
cuts (typically called valid inequalities), that are violated by the current solution but are sa-
tisfied by every feasible integer solution. The problem of finding a cut that achieves maximal
violation over all possible cuts for a given solution to the relaxation is called the maximally
violated valid inequality problem (MVVIP) (Lodi, Ralphs, and Woeginger, 2012).

This chapter presents a model for finding the most violated k-projection polytope constraint.
Because kPPCs are not inequalities we refer to the problem as the maximally violated k-
projection polytope constraint problem (MVkPPC).

Specifically we present a bilevel optimization model that fits into the MVVIP framework
and finds the maximally violated k-projection polytope constraint. We also show how to
reformulate the model as a single level mixed integer second order cone optimization problem,
and how the single level model can be strengthened by reformulating it using a different set
of binary variables and by breaking symmetry.

4.2 Finding maximally violated kPPCs

Two definitions critical to the MVVIP are validity and membership. We discuss them in the
context of kPPCs in turn.

4.2.1 Validity

Recall that the validity verification problem asks if all feasible solutions (F) are satisfied by
the cut(s) (i.e. constraint(s)) under consideration. The cut is valid if all feasible solutions are
satisfied. The kPPCs are always valid because they satisfy the projection property (i.e. for
all feasible solutions X ∈ F we know that XI ∈ CUTk ∀I ⊆ V with |I| = k), therefore the
validity verification problem will not be explicitly addressed for kPPCs .

31

4.2.2 Membership

Recall that the membership problem determines whether a given point is contained in the
intersection of a polyhedron and a given cut. Therefore the membership problem for a kPPC
is: for a given k × k submatrix X∗I of X∗, where X∗ is the optimal solution to a relaxation
and |I| = k, is X∗I ∈ CUT|I|? If X∗I /∈ CUT|I| then adding the kPPC for set I will tighten the
relaxation.

The following problem, denoted distance-to-polytope (D2P), not only determines if the point
X∗ is a member of the polyhedron CUT|I| but also quantifies the separation if X∗ is not a
member of CUT|I|:

(D2P) d∗ = min
{
||triu (X∗I)−Qλ|| : eTλ = 1, λ ≥ 0

}

where X∗I is the principal submatrix indexed by I of X∗, e is the vector of all ones of
the appropriate size, triu(X) is the vector formed from the elements in the strictly upper
triangular part of matrix X taken column-wise and Q is a

(
|I|
2

)
× 2|I|−1 matrix with the

column, Qi, being the feasible cut solution in vector form (i.e. Qi = triu(Ci)).

The optimal objective value d∗ equals the euclidean distance between X∗I and CUT|I|. The-
refore

If d∗ = 0 then X∗I ∈ CUT|I|
If d∗ > 0 then X∗I /∈ CUT|I|

(4.1)

To illustrate the definition we revisit the Grishukhin (1990) example of size 7 where 〈Q,X〉 is
maximized (see (3.6) for definition of Q). Let X∗ be the optimal solution when optimized over
C ∩M. For k = 5 we can find the distance-to-polytope (d∗) for each I ∈ V such that |I| = 5.
Table 4.1 shows the results of adding projection polytope constraints to the initial relaxation.
The 3rd column shows the bound when the projection polytope constraint associated with
the single induced subgraph I is added to C ∩M. The 4th and 5th column show the bound
when multiple kPPCs are added.

The bound of the relaxation C ∩M is 6.0584 and the final optimal objective value is 5.0.
Further bounds for this problem can be seen in Table 3.1.

Note that for any induced subgraph I where the distance-to-polytope is equal to (approxi-
mately) 0 adding the corresponding kPPC does not change the optimal objective value or
optimal solution. We observe that even if we add all the kPPCs corresponding to the 14
induced subgraphs with d∗ ≤ .0008 the optimal objective value does not change since for

32

Table 4.1 Bounds for adding different k = 5 PPCs to the SDP relaxation C ∩M which has
bound 6.0584.

d∗ I bound bound bound

0.1274 [1 3 5 6 7] 5.9800 5.9000

5.8000

[2 4 5 6 7] 5.9800

0.0800

[1 2 3 5 6] 6.0371

5.9412[1 2 4 5 7] 6.0371
[1 3 4 5 6] 6.0371
[2 3 4 5 7] 6.0371

0.0563 [1 2 3 4 5] 6.0485
≤ 0.0008 the remaining 14 subsets 6.0584

each of these sets of indices X∗I ∈ CUT|I| and the optimal solution X∗ is still feasible. Adding
all k = 5 projection polytope constraints improves the bound to 5.8000.

4.3 Formulation of the MVkPPCP as a bilevel problem

The MVVIP can now be easily extended to find the maximally violated kPPC . The following
is the MVkPPCP formulation:

(DPBilevel) max
B,d

d

s.t. Ben = ek (4.2)

Bek ≤ en (4.3)

B ∈ {0, 1}n×k (4.4)

d =
{

min
eTλ=1, λ≥0

||triu
(
BTXB

)
−Qλ||

}
(4.5)

where en is a n × 1 vector of all ones ; triu(X) is the vector formed from the elements in
the strictly upper triangular part of matrix X taken column-wise. The inner problem solves
the (D2P) problem for a certain k-projection polytope constraint. The variables of the outer
problem define the parameters of the kPPC , namely the k indices that define the submatrix
XI .

In (DPBilevel) the outer problem variable B is a n × k row selection matrix. Recall that Bij

is the element of the matrix B at row i and column j. Constraints (4.2)-(4.4) require that

33

exactly k rows are selected, these rows correspond to the vertices of the induced subgraph
that defines the kPPC. The inner problem (4.5) is (D2P) where the principal submatrix XI

is written more generally as BTXB. Since the outer variable B is assumed to be given in the
inner problem (hence assumed to be a row selection matrix) this product selects the principal
submatrix indexed by the rows selected in B. Namely,

XI = BTXB where (4.2)-(4.4) are satisfied and
k∑
j=1

Bij =

1 if i ∈ I

0 if i /∈ I
.

4.4 Reformulation of the MVkPPCP as a single-level problem

In this section we reformulate (DPBilevel) to a single level mixed binary second order cone op-
timization problem. We begin by presenting the full single level problem and in the remainder
of this section we show the equivalence between the two problems.

34

(DPsingle) max
B,d,λ,µ,y,z,α,β,γ

d

s.t. (4.2)− (4.4)

eTλ = 1 (4.6)

µjt +Qλ−
∑

i=1...n

∑
s=1...n:s 6=i

Xisβijst = 0 ∀1 ≤ j < t ≤ k (4.7)

λ ≥ 0 (4.8)d
µ

 ∈ SOC1+(k2) (4.9)

ye+QT z ≤ 0 (4.10) 1
−z

 ∈ SOC1+(k2) (4.11)

d− y −
∑
ijst∈Γ

Xisγijst = 0 (4.12)

α ∈ {0, 1}2k−1 (4.13)

αi − λi ≥ 0 ∀i = 1 . . . 2k−1 (4.14)(
2
k+1

2
)
αi − y −QT

i z ≤
(
2
k+1

2
)

∀i = 1 . . . 2k−1 (4.15)

βijst −Bij ≤ 0 ∀ ijst ∈ Γ (4.16)

βijst −Bst ≤ 0 ∀ ijst ∈ Γ (4.17)∑
ijst∈Γ

βijst =
(
k

2

)
(4.18)

0 ≤ βijst ≤ 1 ∀ ijst ∈ Γ (4.19)

γijst + βijst ≥ 0 ∀ ijst ∈ Γ (4.20)

γijst − βijst ≤ 0 ∀ ijst ∈ Γ (4.21)

γijst − zjt − βijst ≥ −1 ∀ ijst ∈ Γ (4.22)

γijst − zjt + βijst ≤ 1 ∀ ijst ∈ Γ (4.23)

where Γ = {ijst | i, s = 1, . . . , n, i 6= s, 1 ≤ j < t ≤ k}

35

4.4.1 Reformulating steps

In this section we present the steps to transform (DPBilevel) into (DPsingle). For clarity we
split the reformulation into the following three steps:

1. replace the inner problem by its optimality conditions,

2. rewrite the complementary slackness conditions and

3. linearize the nonlinear terms.

We consider the steps in turn.

Step 1 : Rewrite the inner problem

The first step in the reformulation is to transform the bilevel problem to a single level problem.
Recall the definition of second order cones (SOC):

xo
x̄

 ∈ SOC1+n ⇔ xo ≥ ||x̄||

where xo is a scalar and x̄ is a vector of length n.
Using this property we can reformulate the inner problem (4.5) to the following SOC problem:

(PInner) min
d,λ,µ

d

s.t. (4.6), (4.8), (4.9)

µjt +Qλ−
n−1∑
i=1

n∑
s=i+1

XisBijBst = 0 ∀1 ≤ j < t ≤ k (4.24)

where constraint (4.24) ensures that µ = triu
(
BTXB

)
− Qλ, and the minimization of d

implies d = ||µ|| at optimality. Recall that B is given (and not a variable) in this formulation.
The dual of PInner is:

(DInner) max
y,z

y +
∑
ijst∈Γ

XisBijBstzjt

s.t. (4.10), (4.11)

where y ∈ R and z ∈ R(k2) are variables.

The inner problem (PInner) is convex (since it is a SOC problem) and both the objective

36

function and constraints are differentiable. In addition the problem satisfies Slater’s condition.
An example of a strictly feasible primal solution is given by µ, λ and d that satisfy the
following:

λi = 1
2k−1 , µjt = −Qλ+

n−1∑
i=1

n∑
s=i+1

XisBijBst ∀1 ≤ j < t ≤ k; d > ||µ||

and a strictly feasible dual solution is given by the following y and z:

zjt = 0 ∀1 ≤ j < t ≤ k; y < 0

Therefore the KKT conditions are both necessary and sufficient for the optimality of (PInner)
and we can replace the rewritten inner problem (4.5) with the primal feasibility constraints
(4.6), (4.8), (4.9) and (4.24); the dual feasibility constraints (4.10) and (4.11) and the com-
plementary slackness constraints:

λi(y +QT
i z) = 0 ∀i = 1, . . . ,

(
k

2

)
(4.25)

d− µT z = 0 (4.26)

The resulting problem is no longer bilevel but is exact (and not a relaxation).

Step 2 : Rewrite complementary slackness conditions

The next step in the reformulation process is to substitute linear/binary constraints for the
quadratic complementary slackness constraints (4.25) and (4.26). Constraint (4.25) implies
λi = 0 or y + QT

i z = 0 for each i. Lemma 1 shows how this disjunction is modeled with the
binary variables α.

Lemma 1
There exists a feasible solution to constraints (4.8), (4.10), (4.13)-(4.15) if and only if there
exists a feasible solution to (4.25).

Proof
(⇒) Assume constraints (4.8), (4.10), (4.13)-(4.15) are satisfied. For each i (4.13) implies
αi = 0 or 1. Consider these cases in turn.
If αi = 0 then (4.8) and (4.14) imply λi = 0.
If αi = 1 then (4.10) and (4.15) imply y +QT

i z = 0

37

(⇐) Assume there exists a feasible solution (λ, y, z) such that (4.25) is satisfied. Then either
λi = 0 or y + QT

i z = 0. For all i such that λi = 0 set αi = 0 and for all i such that
y+QT

i z = 0 set αi = 1. If λi = 0 and y+QT
i z = 0 then αi = 0 or 1 will satisfy the constraints.

�

Moreover constraints (4.14) and (4.15) are constructed so that they do not introduce any
additional restrictions on λi or y + QT

i z. If αi = 0 then (4.15) implies y + QT
i z ≥ −

(
2
k+1

2
)

which is unrestrictive and if αi = 1 then (4.14) implies λ ≤ 1 which is also unrestrictive.

The following constraint is added to the model so that the quadratic constraint (4.26) is
implicitly enforced.

d− y −
∑
ijst∈S

XisBijBstzjt = 0 (4.27)

Lemma 2 details how (4.27) plus constraints already in the model imply (4.26), however we
begin by discussing the motivation for this constraint. Constraint (4.27) states strong duality
of the inner problem holds, namely that the gap between the primal and dual objective values
is 0. For strong duality to hold for a pair of conic optimization problems a constraint qualifi-
cation must be satisfied (Slater’s condition was verified in the previous step). It is important
to note the difference between the observation that Slaters condition implies that strong
duality holds and Lemma 2. Lemma 2 shows that the strong duality equation with primal
and dual feasibility constraints together imply the complementary slackness constraint (4.26).

Lemma 2
If a feasible solution exists for (4.8), (4.10), (4.13)-(4.15) and (4.24) then
(4.26) is satisfied if and only if (4.27) is satisfied.

Proof
Assume constraints (4.8), (4.10) (4.13)-(4.15) and (4.24) are satisfied. By Lemma 1 we know
that λi(y +QT

i z) = 0 ∀i. Summing over all i we get that λT (ye+QT z) = 0. We use this fact
in the following equivalences:

(4.27) is satisfied⇔ d− yeTλ− (µ+Qλ)T z = 0 (since (4.6) and (4.24) are satisfied)

⇔ d− µT z − λT (ye+QT z) = 0

⇔ (4.26) is satisfied (since λT (ye+QT z) = 0) �

38

Step 3 : Linearization

The final step of the reformulation is to linearize BijBst in (4.24) with the variable βijst to
get (4.7) and to linearize BijBstzjt in (4.27) with the variable γijst to get (4.12). We consider
these in turn.

Recall that Bij is defined ∀i = 1, . . . , n ∀j = 1, . . . , k. Constraints (4.2)-(4.4) imply that
exactly k of the nk variables are equal to 1 and that the remaining are equal to 0. These
constraints imply certain BijBst products will always be 0. Namely,

(4.2)⇒ BijBit = 0 ∀i = 1, . . . , n ∀j, t = 1, . . . , k

(4.3)⇒ BijBsj = 0 ∀i, s = 1, . . . , n ∀j = 1, . . . , k

Therefore there is no need to linearize the terms in which i = s or j = t. Since BijBst = BstBij

we can further limit the number of products we linearize to only those with j < t. Note that
of the (nk)2 products only n(n−1)

(
k
2

)
of them need to be linearized. The indices of the terms

that are linearized are denoted by Γ where

Γ = {ijst | i, s = 1, . . . , n, i 6= s, 1 ≤ j < t ≤ t}

Furthermore since exactly k elements of b are 1 then exactly
(
k
2

)
of the products equal 1 with

the remaining products equal to 0. Lemma 3 formalizes this idea and show the constraints
necessary to enforce it.
Lemma 3
If constraints (4.2)-(4.4) are satisfied then there exists a feasible solution to constraints (4.16)-
(4.19) if and only if BijBst = βijst ∀ijst ∈ Γ.

Proof
Assume constraints (4.2)-(4.4) are satisfied and consider the cases in turn.

(⇒) Let (B̂, β̂) be any feasible solution to constraints (4.16)-(4.19). Constraint (4.4) implies
B̂ij, B̂st ∈ {0, 1}. Consider the cases in turn.
If B̂ij = 0 (resp. B̂st = 0) then (4.16) (resp. (4.17)) and (4.19) imply β̂ijst = 0.
If B̂ij = b̂st = 1 then constraints (4.2)-(4.4) imply that exactly k of the nk elements in B̂ will
be equal to 1 (with the rest equal to 0). Therefore all but

(
k
2

)
of the terms in ∑ijst∈S β̂ijst

will be forced to 0 because B̂ij or B̂st equals 0. Since β̂ijst ≤ 1 ∀ijst ∈ S and the sum of the
nonzero elements of β̂ equals

(
k
2

)
then the remaining β̂’s are forced to 1.

Therefore β̂ijst = B̂ijB̂st ∀ijst ∈ Γ as required.

39

(⇐) Let BijBst = βijst ∀ijst ∈ Γ. Constraint (4.4) implies Bij, Bst ∈ {0, 1}. Therefore (4.19)
is feasible since βijst ∈ {0, 1}.
Constraint (4.16) implies BijBst−Bij = Bij(Bst−1) ≤ 0∀Bij, Bst ∈ {0, 1}. Constraint (4.17)
follows similarly.
Finally constraint (4.2) implies that if Bij = 1 then Bit = 0 ∀t 6= j and (4.3) implies that
there exists exactly one i for each 1 ≤ j ≤ k such that Bij = 1 and that if Bij = 1 then
Bsj = 0 ∀s 6= i. Therefore there exists exactly

(
k
2

)
β’s equal to 1 and (4.18) is feasible.

�

Note that although βijst is binary this does not need to be included as an explicit constraint
in (DPsingle).

The final step is to linearize BijBstzjt in constraint (4.27) using the variable γijst. The linea-
rization happens over the same set Γ. Lemma 4 and its proof provide the details.
Lemma 4
If constraints (4.2)-(4.4) are satisfied then there exists a feasible solution to (4.20)-(4.23) if
and only if BijBstzjt = γijst ∀ijst ∈ Γ.

Proof
Assume constraints (4.2)-(4.4) are satisfied. Consider the directions in turn.

(⇒) Let there exist a feasible solution to (4.20)-(4.23). Constraint (4.4) implies Bij, Bst ∈
{0, 1}. Consider the cases in turn.
If Bij = 0 or Bst = 0 then βijst = 0 (by Lemma 3). Constraints (4.20) and (4.21) then imply
γijst = 0 ∀ijst ∈ Γ.
If Bij = Bst = 1 then βijst = 1 (by Lemma 3). Constraints (4.22) and (4.23) then imply
γijst − zjt = 0 ∀ijst ∈ Γ.
Therefore in both cases γijst = BijBstzjt ∀ijst ∈ Γ as required.

(⇐) Constraints (4.20)-(4.23) follow immediately from the fact that γijst = BijBstzjt, βijst =
BijBst and Bij, Bst ∈ {0, 1}.

�

4.4.2 Equivalence of the bilevel and single level models

Recall that the purpose of this section was to show that the bilevel model (DPBilevel) can be
reformulated to a single level problem. The following theorem combines the steps and lemmas
presented previously to formally prove the equivalence of the (DPBilevel) and (DPsingle).

40

Theorem 2 (DPBilevel) is equivalent to (DPsingle).

Proof
Since the objective function in both models is the same it is sufficient to show that the feasible
regions of (DPBilevel) and (DPsingle) are equivalent. Namely that (d,B) is a feasible solution
to (DPBilevel) if and only if there exists a (µ, β, γ, α, y, z, λ) so that (d,B) is a feasible solution
to (DPsingle).

By the KKT theorem and convexity (4.5) can be replaced by the KKT conditions and the
feasible region is the same. Therefore

(4.5)⇔ (4.6), (4.8)− (4.11), (4.24)− (4.26).

(4.25)⇔ (4.8), (4.10), (4.13)− (4.15)

(4.26)⇔ (4.27)

(4.24) and βijst = BijBst ⇔ (4.7), (4.16)− (4.19)

(4.27) and γijst = BijBstzjt ⇔ (4.12), (4.20)− (4.23)

∴ (d,B)is feasible for (4.2)− (4.5)⇔ there exists a (µ, β, γ, α, y, z, λ) so that

(d,B) is a feasible solution to

(4.2)− (4.4), (4.6)− (4.23) �

4.5 Strengthening the single level model

4.5.1 Symmetry

Symmetry exists within the exact separation problem because a subset of k indices will induce
the same projection polytope regardless on the order. To eliminate this symmetry we can
enforce lexicographical order on B with the following set of constraints:

Bs,j−1 +
s∑
i=1

Bij ≤ 1 ∀s = 2, . . . , n, j = 2, . . . , k. (4.28)

Lemma 5
If constraints (4.2)-(4.4) and (4.28) are satisfied then lexicographical order must hold.

Proof
Assume constraints (4.2)-(4.4) and (4.28) are satisfied. Variable B is a row selection ma-
trix in which each column contains exactly 1 element equal to 1, with the rest equal to 0

41

(constraints (4.2)-(4.4)). Going through the columns in order we will show that the index of
the row selected can only strictly increase.
Considering Bi1∀i (i.e. column 1 of B) we know there exists an i′ such that Bi′1 = 1 and Bi1 =
0∀i ∈ {1, . . . , n}\{i′}. Therefore (4.28) implies Bi2 = 0∀i ≤ i′ and since each column sums to
1 (and each row sums to at most 1) then there exists i′′ > i′ such thatBi′′2 = 1. By a similar ar-
gument Bi3 = 0∀i ≤ i′′ and there exists i′′′ > i′′ such that Bi′′′3 = 0. Repeating the argument k
times implies that if Bi′1, Bi′′2, . . . , Bī,k are the k elements of B equal to 1 then i′ < i′′ < · · · <
ī. �

4.5.2 Reformulation with fewer binary variables

We reduce the number of binary variables from 2k−1+nk to 2k−1+n by adding constraints (4.29)-
(4.33). The proof later in this section shows that the feasible region of the model does not
change and that we no longer need to require binarity of the variables Bij. The benefit of
these constraints is seen in the computational results which are examined in Section 4.6.

n∑
i=1

ai = k (4.29)

ai −
k∑
j=1

Bij = 0 (4.30)

ai −
i=1∑
i′=1

ai′ −Bi1 ≤ 0 ∀i = 1 . . . n (4.31)

ai +
i−1∑
i′=1

Bi′,j−1 −
i−1∑
i′=1

Bi′,j −Bij ≤ 1 ∀i = 2 . . . n,∀j = 2 . . . k (4.32)

ai ∈ {0, 1} ∀i = 1 . . . n (4.33)

These constraints along with the symmetry constraints (4.28) are included in the (DPsingle)
model. Constraint (4.4) (binarity ofB) is removed as it is automatically enforced by constraints
(4.29)-(4.33). The model (DPfewerBinary) is defined as follows:

(DPfewerBinary) max d

s.t. (4.2), (4.3), (4.6)− (4.23), (4.28)− (4.33).

Lemma 6 certifies that the given set of constraints (including a ∈ {0, 1}n) implies that
B ∈ {0, 1}n×k.

42

Lemma 6
If constraints (4.2), (4.3), (4.29)-(4.33) and 0 ≤ Bij ≤ 1 ∀i = 1 . . . n, j = 1 . . . k are satisfied
then Bij ∈ {0, 1}.

Proof
Let (4.2), (4.3), (4.29)-(4.33) and 0 ≤ Bij ≤ 1 ∀i = 1 . . . n, j = 1 . . . k be satisfied.
Constraints (4.29) and (4.33) imply there exists exactly k ai’s equal to 1 with the remaining
n− k ai’s equal to 0. Let ai = 1 for i ∈ A := {i1 < i2 < · · · < ik}
For all i = 1 . . . n, ∑i−1

i′=1 ai′ ∈ {0, 1, 2, . . . , k} and ai ∈ {0, 1} therefore constraint (4.31) is
unrestrictive (since Bij ≥ 0 is already enforced) unless ai = 1 and ∑i−1

i′=1 ai′ = 0. This is only
the case for i = i1. Therefore Bi1,1 = 1.

For j = 2, ∑i−1
i′=1 bi′1 =

0 if i ≤ i1

1 if i > i1
(since Bi1,1 = 1 and Bi,1 = 0 ∀i 6= i1)

ai =

1 if i ∈ Γ

0 if i /∈ Γ
and ∑i−1

i′=1Bi′2 =

0 if i ≤ i2

1 otherwise
(since Bi2 = 0 ∀i ≤ i1)

Combining the above in (4.32) we get :

Bi2 ≥ ai +∑i−1
i′=1Bi′,j−1 −

∑i−1
i′=1Bi′,j − 1 =



1 + 0− 0− 1 = 0 if i ∈ A, i ≤ i1

1 + 1−H − 1 = 1−H if i ∈ A, i > i2

1 + 1− 0− 1 = 1 if i ∈ A, i > i1, i ≤ i2

0 + 0− 0− 1 = −1 if i /∈ A, i ≤ i1

0 + 1− 1− 1 = −1 if i /∈ A, i > i2

0 + 1− 0− 1 = 0 if i /∈ A, i > i1, i ≤ i2
Therefore when i ∈ A, i > i1 and i ≤ i2 (case 3) implies Bi2,2 = 1 (since i ∈ Γ, i1 < i ≤ i2 ⇒
i = i2). If Bi2,2 = 1 then H = 1 ∀i > i2 and all cases (except case 3) do not restrict Bij.
Repeating this process for j = 3 . . . k implies Bi1,1 = Bi2,2 = · · · = Bik,k = 1 and all other
Bij = 0.

�

4.6 Computational performance of the formulations

In Section 4.4 we presented the exact (DPsingle) model and in Section 4.5 we showed how
to strengthen the model with symmetry breaking constraints and by changing the binary
variable. This section presents computational results comparing the three formulations:

43

1. (DPsingle),

2. (DPsingle) + (4.28) and

3. (DPfewerBinary).

The purpose of these results is to see how the different approaches compare with respect to
computational time.

The data comes from max-cut problems from the BiqMac Library (Wiegele, 2007). Speci-
fically the g05_80_i and pm1d_100_i examples, each with 10 instances. All models were
formulated in MATLAB (2011) and solved with MOSEK ApS (2013).

The original solution X∗ is the solution of solving the full size n problem over C ∩ M.
Computationally finding the deepest cut over a problem of this size is not yet possible.
Therefore we consider a principal minors of size n̄ and find the deepest cut of size k for
this smaller problem. Results are shown for varying n̄ and varying k in order to see how the
models perform.

4.6.1 Comparison of the single level models

We begin by looking at the specific instance pm1d_100_i0 and comparing the three different
formulations for different problem sizes (i.e. different values of n̄ and k). Figure 4.1 shows
the computational time (in seconds) vs the problem size (n̄) for k = 6. Note that we only
consider k < n̄ and only run formulations (DPsingle), (DPsingle) + (4.28) on smaller examples.
The results for k = 5, . . . , 9 are similar. We observe that (DPfewerBinary) is faster and able to
solve larger problems. This observation is seen in all instances tested. The remaining results
in this section focus on the (DPfewerBinary) formulation.

4.6.2 Performance of DPfewerBinary formulation

Figure 4.2 shows the computational time to solve DPfewerBinary vs the problem size n̄ for k = 7.
The results are similar for all k = 5, . . . , 9 and for the g05_80 instances. We observe that
computational time increases as the size of the problem increases. This is as expected since
the size of the problem (both in terms of variables and constraints) increases as n increases.

Figure 4.3 shows the computational time for the 10 instances of g05_80. This plot shows
the instances for k = 5, . . . , 9 and n = 12. The key observation is that computational time
does not increase as k increases. This is most clearly seen in instances 0, 2, 4 and 6 where
a different value of k gives the case which took the most (k = 7, 8, 9 and 6, respectively)
and least (k = 5, 9, 6 & 7 (tied) and 8 respectively) time. The lack of pattern between
computational time and k is similar for all n̄ tested and both data sets.

44

6 8 10 12 14 16 18 20
0

2000

4000

6000

8000

10000

12000
k=6

n̄

tim
e

(s
ec

on
ds

)

Figure 4.1 Comparison of computational time for formulations DPsingle, DPsingle + (4.28) and
DPfewerBinary for max-cut instance pm1d_100_i0 with k = 6

6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
x 10

4 k=7

n̄

tim
e

(s
ec

on
ds

)

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9

Figure 4.2 Computation time to solve DPfewerBinary for instances pm1d_100_i0,. . . ,_i9 for
k = 7.

4.7 Conclusion

Finding the most violated valid inequality from a family of cuts is called the maximally vio-
lated valid inequality problem (MVVIP). This chapter presented a bilevel model to solve the
MVVIP for kPPCs (called the MVkPPCP). The bilevel model was reformulated to a single

45

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

instance

tim
e

(s
ec

on
ds

)

n=12

k=5
k=6
k=7
k=8
k=9

Figure 4.3 Computational time to solve DPsingle for max-cut instance g05_80 with n = 12.

level mixed integer second order cone problem so that is could be computationally solved in
MOSEK. The model was further reformulated to include symmetry breaking constraints and
additional binary variables. These changes both reduced the size of the enumeration tree and
therefore sped up the solving time.

The focus of this chapter was the formulation of a model to solve the MVkPPCP. The major
limitation of the model presented is that, even once reformulated the model can only be
solved for small instances. In the next chapter we will abandon the idea of finding the most
violated kPPC and focus on a practical implementation of a cutting plane method.

The distance-to-polytope model used to quantify the violated of a kPPC by calculating the
shortest euclidean distance between a projected solution and the appropriately sized cut
polytope will also be critical in the next chapter.

46

CHAPTER 5 K-PROJECTION POLYTOPE CONSTRAINTS IN A
CUTTING PLANE ALGORITHM

5.1 Introduction

Cutting plane algorithms are used to tighten the relaxations of integer programs. In general
cutting plane methods include a separation procedure to find violated cuts and a relaxation
that is solved to (potentially) update the upper bound. The purpose of the cutting plane
method presented in this chapter is to show how kPPCs can tighten upper bounds of large
max-cut problems once all triangle inequalities are satisfied. Therefore the cutting plane
method begins by focusing on triangle inequalities and then proceeds to kPPCs. Figure 5.1
outlines the cutting plane method that will be presented in this thesis.

solve
relaxation

input
stop

adding
triangles?

triangle
separation
procedure

solve
relaxation

stop
adding
kPPCs?

kPPC
separation
procedure

solve
relaxation

done

no

no

yes

yes

Figure 5.1 Overview of cutting plane method

The method is broken down into two stages based on the family of cuts found during the
separation procedure. The first row of the diagram shows the triangle cutting plane stage and
includes the initialization step. The second row of the diagram outlines the kPPC cutting
plane stage. The difference lies mainly in the separation procedure since violated triangle

47

inequalities and violated kPPCs are identified differently. The details of the triangle and
kPPC cutting plane stages are given in Sections 5.2 and 5.3, respectively. The relaxation is
presented in this section, however we begin with some relevant notation.

5.1.1 Notation

For a given positive integer k, let

�k := {I : ∀I ⊆ V, |I| = k}

be the set of all induced subgraphs of size k. Therefore |�k| =
(
n
k

)
where |V | = n.

Recall that a kPPC is defined for an induced subgraph, I ∈ �k where |I| = k. Then for any
set �̂k ⊆ �k let

PPC(�̂k) :=

X : Cλj = triu(XI),
2k−1∑
i=1

λji = 1, λj ≥ 0, ∀I ∈ �̂k


be the solution space where X satisfies all kPPCs defined by the induced subgraphs in �̂k.

Let

4 :=

 (I, c) : ∀ I = (i1, i2, i3) ∈ �3 and

∀ (c1, c2, c3) ∈ {(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)}


encode the set of all triangle inequalities. Namely each (I, c) ∈ 4 defines the triangle inequa-
lity c1Xi1,i2 + c2Xi1,i3 + c3Xi2,i3 ≤ 1.

Then for any 4̂ ⊆ 4 let

Tri(4̂) :=
{
X : c1Xi1,i2 + c2Xi1,i3 + c3Xi2,i3 ≤ 1, ∀ ((i1, i2, i3), (c1, c2, c3)) ∈ 4̂

}

be the solution space where X satisfies all triangles inequalities encoded in the set 4̂.

The purpose of sets �̂k and 4̂ is to encode the information needed to define the kPPCs
and triangle inequalities within the relaxation. For simplicity we will refer to 4̂ (4) as a
set of (all) triangle inequalities. Note that although it is not a set of inequalities it does
provide all the necessary information to define triangle inequalities (specifically a set of 3

48

vertices (i1, i2, i3) ∈ �3 and a set of coefficients (c1, c2, c3)). Similarly for a given k, we will re-
fer to �̂k (�k) as a set of (all) kPPCs even though it is technically a set of induced subgraphs.

We present the general relaxation in the next section.

5.1.2 SDP relaxation

For any 4̂ ⊆ 4 and �̂k ⊆ �k, ∀5 ≤ k << n the PPC-SDP optimization model is:

(PPC-SDP) max 〈L,X〉

s.t. X ∈ {X : diag(X) = e,X � 0}

X ∈ Tri(4̂)

X ∈ PPC(�̂k) ∀5 ≤ k << n

5.2 Triangle cutting plane stage

This section will present the triangle cutting plane stage and discuss the relevant details.
However, we begin with a few words about the motivation behind our approach.

The goal of our method is to show how kPPCs can improve the bound over triangle inequa-
lities. Therefore the idea is to get as much improvement as possible from triangle inequalities
so that we can then see how much further kPPCs can improve the bound. This means, the
primary focus of the triangle cutting plane stage is to get the best bound possible. The focus
is not computational time.

49

The algorithm for the triangle cutting plane stage is:

initialize t = 0, 4̂t = ∅ and �̂kt = ∅, ∀k, tol=.001;
solve (PPC-SDP), denote X0 as the optimal solution;
while triangle stopping criteria is not met do

t = t+ 1;
set (4̂t)viol (details discussed below);
if |(4̂t)viol| = ∅ then

stop
else

set
(4̂t)act :=

{
((i1, i2, i3), (c1, c2, c3)) ∈ 4̂t−1 : |c1X

t−1
i1,i2 + c2X

t−1
i1,i3 + c3X

t−1
i2,i3 − 1| ≤ tol

}
;

set 4̂t = (4̂t)viol ∪ (4̂t)act;
solve (PPC-SDP), denote X t as the optimal solution;
update upper bounds (details discussed below);

end
end

Algorithm 1: Triangle cutting plane stage

5.2.1 Triangle cutting plane stage details

Initialization

To begin the triangle cutting plane stage the basic SDP relaxation is solved (i.e. the model
(PPC-SDP) with 4̂0 = ∅ and �̂k0 = ∅ ∀k). We denote X0 as the optimal solution of the
relaxation and z0 as the optimal objective value of the relaxation.

Stopping criteria

The triangle cutting plane stage stops when at least one of the following conditions is satisfied:
– there are no violated triangle inequalities ((4̂t)viol = ∅)
– the solver is unable to appropriately solve the model. For example this happens when
SDPT3 (the solver used) has a termination code not equal to 0. These limitations of the
solver are minor but exist and are described in Toh, Todd, and Tütüncü (1999a).

50

Violated constraints

For any solution X t−1 (with t ≥ 1) and any triangle inequality represented by
((i1, i2, i3), (c1, c2, c3)) let

violation := c1X
t−1
i1,i2 + c2X

t−1
i1,i3 + c3X

t−1
i2,i3 − 1.

All 4
(
n
3

)
triangle inequalities are tested using the optimal solution X t−1 of the previous

relaxation. Constraints that are satisfied by X t−1 have violation less than or equal to 0.
Those constraints with positive violation are not satisfied (i.e. are violated constraints) and
are potential cuts to include into the next iteration to tighten the model. To account for
computational issues only those cuts with violation ≥ .001 are considered in the selection
stage. Then (4̂t)viol is defined as the 1000 triangle inequalities with the largest violation.

Active constraints

Active constraints, also called binding constraints, are those constraints that are satisfied with
equality at the optimal solution. The set (4̂t)act is defined in Algorithm 1 and denotes the
active triangle inequalities at iteration t. A tolerance of .001 is used to handle computational
issues (i.e. if |c1X

t−1
i1,i2 + c2X

t−1
i1,i3 + c3X

t−1
i2,i3 − 1| ≤ .001 then ((i1, i2, i3), (c1, c2, c3)) ∈ (4̂t)act).

Active constraints at iteration t are also used in the relaxation at iteration t+ 1. Non-active
constraints are not. This approach is common for triangle inequalities and has been shown to
be successful. It reduces the number of triangle inequalities in the relaxation by only focusing
on those that are at their limit at the solution.

Upper bound

The upper bound is updated if the current objective value is less than the current upper
bound (PPC-SDP is a maximization problem). Since triangle inequalities are removed (i.e.
those that are not active) it is possible for the current optimal objective value to be larger
(i.e. worse) than the current upper bound. However although it is possible it is rarely the
case.

5.3 kPPC cutting plane stage

This section will present the details of the kPPC cutting plane method, namely the part of
the cutting plane stage where kPPCs are added. It is assumed that in the final iteration of

51

the triangle cutting plane stage there are no violated triangle inequalities. The algorithm for
the kPPC cutting plane stage is:

From triangle cutting plane stage : t, X t, 4̂t and �̂t;
while kPPC stopping criteria is not met do

t = t+ 1;
choose k̄;
set (�̂k̄t)viol using algorithm 3;
if |(�̂k̄t)viol| = ∅ then

stop
else

set Ψk :=
{
I : ∀I ⊆ Î ∈ �̂k̄t)viol with |I| = k,∀k̄ > k

}
for k = 3 and k ≥ 5;

set 4̂t = 4̂t−1 \Ψ3;

set ∀k ≥ 5, �̂kt =

�̂
k
t−1 ∪ (�̂k̄t)viol if k = k̄

�̂kt−1 \Ψk otherwise
;

solve (PPC-SDP) denote X t as the optimal solution;
update upper bounds;

end
end

Algorithm 2: kPPC cutting plane stage

5.3.1 kPPC cutting plane stage details

Redundant cuts

Redundant constraints are constraints in the optimization model that can be removed wi-
thout changing the feasible region. Essentially they are constraints that are guaranteed to
be satisfied because of other constraints in the model. For example in the following simple
linear program:

max {x : x ≥ 0, x ≥ 2}

the constraint x ≥ 0 is redundant.

Recall that
CUT3 ⊆ CUT4 ⊆ · · · ⊆ CUTk ⊆ CUTk+1 ⊆ · · · ⊆ CUTn

52

therefore
if I1 ⊆ I2 ⊆ V and X ∈ PPC(I2) then X ∈ PPC(I1).

Meaning X ∈ PPC(I1) is a redundant constraint. Therefore a triangle inequality or kPPC
is a redundant constraint if it is defined on an induced subgraph that is a smaller induced
subgraph of another kPPC. In the algorithm Ψk is the set of all smaller kPPCs. The set
ensures that redundant triangle inequalities and kPPCs are not kept in the model. The
following example illustrates this concept.

Example:

Let (�̂5
t)viol = {(1, 2, 3, 4, 5), (2, 3, 4, 5, 6)}

and 4̂t−1 = {(1, 2, 3), (1, 2, 6), (1, 3, 6), (2, 3, 4), (3, 4, 5)}

then Ψ3 :=



(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5),

(1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5),

(2, 3, 4), (2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6),

(2, 5, 6), (3, 4, 5), (3, 4, 6), (3, 5, 6), (4, 5, 6)


and 4̂t := {(1, 2, 6), (1, 3, 6)} since (1, 2, 3), (2, 3, 4), (3, 4, 5) ∈ 4̂t−1 ∩Ψ3.

In this example three redundant triangle inequalities are removed between the (t− 1)th and
tth iteration.

Choosing k̄

For the results presented in the chapter the choice of k̄ is fixed throughout the entire algo-
rithm. Since triangle inequalities are completely satisfied k̄=3 or 4 will not yield any violated
kPPCs. Therefore we start with k̄=5.

Stopping criteria

The PPC-cutting plane stage stops when at least one of the following conditions is satisfied:
– there are no violated kPPCs ((�̂t)viol = ∅)
– the solver is unable to appropriately solve the model. For example this happens when
SDPT3 (the solver used) has a termination code not equal to 0. These limitations of the
solver are minor but exist and are described in Toh, Todd, and Tütüncü (1999a).

– a maximum number of iterations is reached.

53

Upper bounds

The upper bound is updated if the current objective value is less than the current upper
bound (recall we are solving a maximization problem). Since kPPCs are never removed it is
not possible for the current objective value to be larger (i.e. worse) than the current upper
bound. However it is possible for the upper bound to remain the same at two (or more)
consecutive iterations if the objective value stays the same. Note that even in the case where
the objective value stays the same the solution at consecutive iterations will always change.
This is because the solution is infeasible once kPPCs that were violated by that solution are
included in the model.

Violation

Complete enumeration is not used to identify violated kPPCs. The details of how violated
kPPCs are found and selected is covered in Section 5.3.2. For now one must simply know
that the set (�̂k̄)tviol contains at most nWant PPCs of size k̄.

5.3.2 Generating violated kPPCs algorithm

For any k there are
(
n
k

)
PPCs to consider. For large problems it is impractical (if not im-

possible) to test all kPPCs (as we did for triangle inequalities). This section presents the
algorithm used to find a set, (�̂kt)viol, of violated kPPCs. Let nWant be the parameter for
the maximum number of kPPCs to add to the relaxation. This section presents the details
of defining a set of at most nWant violated kPPCs.

For a given k̂ Algorithm 3 presents how the set (�̂k̂t)viol is constructed. The algorithm contains
three main parts :

1. construction of an induced subgraph, I, of size k̂,

2. solving the distance-to-polytope problem to identify if the k̂PPC for subgraph I is
violated and

3. once a set of induced graphs corresponding to violated k̂PPCs is found, at most nWant
of them are selected.

Prior to examining the final algorithm we define the following function for a given induced
subgraph I of size k and the set of triangle inequalities from the previous iteration, 4̂t−1 :

triangleList := {Î : Î ⊆ I, |Î| = 3} ∩ {Î : (Î , f) ∈ 4̂t−1}

54

Namely, this function identifies the induces subgraphs of size 3 within a given induced sub-
graph of size k for which triangle inequalities were used in the previous iteration. If no such
induced subgraphs exist the set is empty.

The algorithm is presented and then the details are discussed.

Input : X t−1, k, 4̂t−1 and parameters maxTime, tol, nWant ;
Output: (�̂kt)viol=a set of at most nWant violated kPPCs
initialize Φ = ∅;

set r =

2 if k ∈ {5, 6}

3 if k ∈ {7, 8, 9}
;

while runtime < maxTime do
choose unique α1, α2, . . . , αr ⊆ 4̂t−1

set I = ∪ri=1Iαi where 4αi = (Iαi , fαi);
if |I| = k then

solve (D2P) for X t−1
I to get d∗;

if d∗ > tol then
Φ = Φ ∪ (I, d∗);

end
end

end
Sort Φ so that Φ̂ :=

{
(I, d∗) ⊆ Φ : d∗i ≥ d∗i+1

}
;

if |Φ̂| < nWant then
�̂t = Φ̂

else
set ω = min{nWant, |Φ̂|} and i = 1;
set (�̂kt)viol = {I1 : (I1, d1) ∈ Φ̂} and Γ := triangleList(I1);
while (|(�̂kt)viol| < ω) and (i < |Φ̂|) do

i = i+ 1;
if Γ ∩ triangleList(Ii) = ∅ then

(�̂kt)viol = (�̂kt)viol ∪ Ii;
end

end
end

Algorithm 3: Generation and selection of violated kPPCs
We begin with a brief outline of the algorithm:
– The input X t−1 and 4̂t−1 come from the final stage of the triangle cutting plane stage.

55

The parameter maxTime limits the amount of time that the algorithm looks for violated
kPPCs at each iteration, tol=.001 and is used to approximate 0 and nWant is the maximum
number of violated kPPCs one wants to select.

– The first while loop is the generation stage where induced subgraphs are constructed and
tested to determine if they form a violated kPPC.

– The set Φ is sorted by distance (decreasing order) to give the sorted list Φ̂.
– The second while loop is the selection stage. The goal is to select at most nWant violated
kPPCs. If fewer than nWant violated kPPCs were found in the generation stage then all
the kPPCs in Φ̂ are selected. Otherwise kPPCs are selected according to the ‘triangle
coverage’ method. This is discussed in the Selection section below.

Construction

The induced subgraph I is constructed from r randomly selected triangle inequalities in
4̂t−1. If |I| = k then the (D2P) model (presented in Chapter 4) is used to determine the
distance (d∗) between X t−1

I and CUTk. If the distance is nonzero (i.e. X t−1
I /∈ CUTk) the

result (induced subgraph I and distance d∗) is stored in the set Φ.

In section 5.3.3 this method is compared to a random generation method. The results show
that generating kPPCs from 4̂t−1 produces more violated kPPCs than constructing PPCs
randomly.

Selection

This stage of the separation procedure selects which of the violated kPPCs in the sorted list
Φ̂ will actually be added to the relaxation. The set (�̂kt)viol denotes the set of violated kPPCs
that have been selected. Recall that nWant is the maximum number of violated kPPCs one
will select. If fewer than nWant violated kPPCs are found, one simply selects all of them.
Otherwise we base the selection off of the triangles contained in them. We call this process
‘triangle coverage’. It is explained in the following section.

Triangle coverage

Prior to describing this process we say a few words about the motivation. Typically cuts
with the greatest violation are selected at each iteration. This is what we did for triangle
inequalities. However, preliminary results (presented in Section 5.3.3) suggest that taking the
most violated kPPCs was not as good as taking kPPCs that were generated from different
triangle inequalities (recall that r randomly selected triangle inequalities were combined to

56

make each induced subgraph that was tested). Currently we do not know exactly why this
happens.

The violated kPPC with the largest distance is selected. The induced subgraphs of size three
contained in both the selected kPPC and 4̂t−1 are stored in Γ. Then we iteratively go through
the list of violated kPPCs (Φ̂) and the most violated kPPC is selected if it does not contain
an induced subgraph from 4̂t−1 already in Γ. The iterations stop once nWant kPPCs are
selected. An example is included to clarify this process.

Example:

Let k̂ = 5, nWant = 3

If 4̂t−1 := {(1, 2, 5), (1, 3, 7), (2, 3, 4), (5, 7, 9), (5, 6, 9)}

and Φ̂ :=
 ((2, 3, 4, 5, 6), 0.06); ((1, 2, 3, 4, 5), .05); ((1, 3, 5, 7, 9), .04);

((1, 2, 5, 6, 9), .035); ((1, 2, 5, 7, 9), .02)


then for i = 1 : (�̂5

t)viol = {(2, 3, 4, 5, 6)} and Γ = {(2, 3, 4), (3, 5, 6)}

i = 2 : (�̂5
t)viol = {(2, 3, 4, 5, 6)} since triangleList((1, 2, 3, 4, 5)) ∩ Γ 6= ∅

i = 3 : (�̂5
t)viol = {(2, 3, 4, 5, 6), (1, 3, 5, 7, 9)} and Γ = {(1, 3, 7), (2, 3, 4), (3, 5, 6), (5, 7, 9)}

i = 4 : (�̂5
t)viol = {(2, 3, 4, 5, 6), (1, 3, 5, 7, 9), (1, 2, 5, 6, 9)}

and Γ = {(1, 2, 5), (1, 3, 7), (2, 3, 4), (3, 5, 6), (5, 6, 9), (5, 7, 9)}

then stop because |(�̂5
t)viol| = nWant.

5.3.3 Comparing generation and selection methods

In this section we consider two methods of generating violated kPPCs and two methods for
selecting which violated kPPCs to include in the model. They are :

Generating violated kPPCS
This step results in a sorted list (Φ̂) of kPPCs of violation at least .001. The two
methods of generating violated kPPCs are :

1. random Select I ⊆ V so that |I| = k, then test if XI ∈ CUTk by solving the
distance-to-polytope model.

2. overlap triangles this method involves selecting enough triangle inequalities from
�̂kt−1, combining them and if the combined size equals k then testing for violation
by solving the distance-to-polytope model. The details were given in Algorithm 3.

Selecting violated kPPCs
Let nWant be the parameter denoting the maximum number of kPPCs that will be

57

selected from the list of violated kPPCs (Φ̂). This step results in a set (�̂kt)viol of at
most nWant violated kPPCs that will be new cuts in the tth iteration. The two methods
of selecting violated kPPCs are :

1. best distance The nWant kPPCs with the most violation are selected. If Φ̂| <
nWant then all kPPCs are selected ((�̂kt)viol = Φ̂).

2. triangle coverage No two selected kPPCs are generated from the same triangle
inequality. The details are given in Algorithm 3.

The four methods are compared on the gkaf5 instance with n = 500, density=1 (see Sec-
tion 5.4 for details about data sets) and with limited triangle inequalities (specifically after
10 iterations of the triangle cutting plane stage). Figure 5.1 shows the optimal objective value
for the four methods (columns 4 to 7). The best (i.e. lowest) objective value is shown in bold.
Columns 1 to 3 denote the parameters for the instance (maxTime, k and nWant).

Table 5.1 Comparing generation and selection methods for gkaf5 instance

time random overlap triangle
(mins) k nAdd best distance triangle coverage best distance triangle coverage

5 5 50 201637.099 201618.446 201601.262 201602.352
5 5 100 201634.760 201617.002 201576.268 201572.980
5 6 50 201637.787 201620.268 201593.429 201593.523
5 6 100 201636.249 201612.953 201578.514 201578.188
5 7 50 201626.919 201606.989 201582.454 201579.909
5 7 100 201637.301 201607.113 201553.627 201547.666
5 8 50 201631.247 201608.991 201560.366 201561.397
5 8 100 201620.899 201587.218 201535.156 201525.378
10 5 50 201635.682 201619.938 201597.699 201594.448
10 5 100 201637.730 201607.166 201569.454 201565.771
10 6 50 201633.926 201615.462 201596.770 201592.774
10 6 100 201633.756 201595.055 201562.823 201560.161
10 7 50 201618.406 201606.445 201575.942 201575.841
10 7 100 201627.539 201595.319 201539.310 201530.459
10 8 50 201614.221 201601.036 201566.134 201561.326
10 8 100 201614.580 201579.087 201526.296 201519.796

Note that for each generation method and each case the selection process was run on the
same list of violated kPPCs. Therefore, for example a list of violated PPCs with k = 5(Φ̂)
were found using the random generation method with time limit of 5 minutes and then from
that single list the two selection methods were compared. When the 50 PPCs with k = 5 with
the largest violation (‘best distance’) were selected and included in the relaxation PPC-SDP

58

(with triangle inequalities from level 5) the optimal objective value was 201637.099 while
when the 50 PPCs with k = 5 containing different triangles (‘triangle coverage’) the optimal
objective value was 201618.446.

Generating kPPCs by overlapping triangles clearly results in better bounds compared to
randomly generating kPPCs. We suspect this is because previously violated triangles suggest
an area of the feasible region that could benefit from a tighter relaxation. However this is
only our intuition.

When maxTime=5 mins (i.e. 5 mins is spent generating and testing kPPCs for violation)
the results of the ‘best’ method for selecting violated kPPCs are mixed. However after 10
mins using the triangle coverage method results in a better bound in all instances tested.
Recall that kPPCs act on the principal minors of the matrix X corresponding the induced
subgraphs in �̂kt . Therefore the effect of the triangle coverage method is that many different
parts of the matrix X are constrained. In essence ‘spreading out’ the kPPCs over the matrix
X yields tighter relaxations.

An additional benefit of the triangle coverage method is that more triangle inequalities are
redundant and removed from the model. While this has no effect on the bound (since the
triangles are removed because the constraints are contained within the kPPCs) it does effect
the size of the model. This quickens the computational time required to solve the model.

After considering these results we use the overlap triangle method for generating violated
kPPCs and the triangle coverage method for selecting which kPPCs to include in the model
in the kPPC cutting plane stage of our algorithm.

5.4 Computational Results

Triangle inequalities are strong and are typically able to make significant progress in tighte-
ning the relaxation. These computational results examine how kPPCs can be used to further
improve the bound for max-cut problems with density equal to 1 of size 500 to 1000.

Test problems We use two types of test instances:

1. ‘gkaf’ test set: these are binary quadratic optimization problems with n = 500
from the BiqMac Library (Wiegele, 2007). We only look at the gkaf5 instance
with density equal to 1. Note that this is the only large (n ≥ 500) instance with
density equal to 1 in the BiqMac Library.

2. ‘cmc’ test set: these are new randomly generated ‘c’omplete ‘m’ax-‘c’ut instances
of size 600 to 1000 generated with rudy. They are random complete graphs with

59

integer edge weights uniformly distributed from [−75, 75] with density=1 and n =
600, 700, 800, 900 and 1000. The specific rudy input is:

rudy -rnd_graph 600 100 601 -random -75 75 601 >cmc_n600

rudy -rnd_graph 700 100 701 -random -75 75 701 >cmc_n700

rudy -rnd_graph 800 100 801 -random -75 75 801 >cmc_n800

rudy -rnd_graph 900 100 901 -random -75 75 901 >cmc_n900

rudy -rnd_graph 1000 100 1001 -random -75 75 1001 >cmc_n1000

where the seed for the random instance is given by 601, 701, . . . , 1001.

Machine In our tests we use a Acer Aspire 4752 with 6 GB of memory running Windows 7.
We implemented our algorithm in MATLAB R2011b (MATLAB, 2011) and use version
4.0 of SDPT3 (Toh et al., 1999b) to solve the SDP relaxations.

The following two sections examine results from gkaf5 and cmc_600 in turn. We hold off our
conclusions until the final section.

5.4.1 Results for gkaf test instance

This section presents the results for the gkaf5 instance of size 500. Table 5.2 shows the
optimal objective value for the kPPC cutting plane stage. The final triangle cutting plane
stage (i.e. once there were no more violated triangle inequalities) is denoted as iteration 0.
Columns 2 and 3 show the objective value and number of PPCs with k = 5 (respectively)
at each iteration of the kPPC cutting plane algorithm. Columns 4-11 show similar results
when k = 6, 7 and 8 in the cutting plane algorithm. Note that for these results the entire
kPPC cutting plane stage uses the same value of k. Therefore four implementations of the
PPC cutting plane stage are shown (namely when k = 5, 6, 7 and 8). For the same four
implementations Table 5.3 shows the total iteration time and cputime (in minutes) for each
iteration. Cputime refers to the time SDPT3 takes to solve the model (PPC-SDP) at that
iteration. Iteration time includes generating and selecting violated kPPCs, formulation and
solving (PPC-SDP), updating the bound (if necessary) and checking the stopping criteria.

Note that the triangle cutting plane method terminated after 17 iterations since SDPT3 was
unable to successfully solve the problem (specifically the termination code was -5 i.e. “the
Schur complement matrix becomes too ill-conditioned for further progress”). Even if only the
single most violated triangle was added SDPT3 was still unable to solve the problem. It was
at this point that we moved to the kPPC cutting plane stage to further improve the bound.

60

Table 5.2 Results of kPPC cutting plane stage for instance gkaf5 with k = 5 to 8

k = 5 k = 6
iter objective # of # of objective # of # of

value kPPC ∆ value kPPC ∆
0 200271.941 0 6295 200271.941 0 6295
1 200248.934 50 6191 200248.611 50 6192
2 200225.794 100 6090 200227.835 100 6088
3 200206.197 150 5989 200210.781 150 5985
4 200186.827 200 5887 200190.635 200 5881
5 200168.202 250 5786 200173.727 250 5777
6 200153.306 300 5686 200155.137 300 5669
7 200134.212 350 5586 200139.970 350 5565
8 200117.241 400 5484 200123.713 400 5460
9 200104.633 450 5384 200110.155 450 5358
10 200091.290 500 5284 200096.633 500 5254

k = 7 k = 8
iter objective # of # of objective # of # of

value kPPC ∆ value kPPC ∆
0 200271.941 0 6295 200271.941 0 6295
1 200240.795 50 6131 200233.905 50 6134
2 200213.803 100 5976 200200.391 100 5966
3 200189.602 150 5819 200167.878 150 5810
4 200164.375 200 5666 200140.823 200 5650

The parameters were: maxTime=10 mins, tol=.001, nWant=50.

61

Table 5.3 Time (mins) per iteration for kPPC cutting plane stage for instance gkaf5 with
k = 5 to 8

k = 5 k = 6
iteration solver cpu iteration solver cpu

iteration time (mins) time (mins) time (mins) time (mins)
1 22.4 7.0 25.0 9.5
2 23.8 8.2 26.2 11.5
3 25.1 9.2 29.5 14.2
4 26.2 10.5 31.1 15.9
5 28.4 12.1 35.2 19.4
6 30.7 14.6 39.6 23.1
7 32.7 16.0 43.9 27.3
8 33.5 17.1 53.5 35.8
9 35.7 19.0 55.4 37.8
10 37.5 20.7 168.3 147.5

k = 7 k = 8
iteration solver cpu iteration solver cpu

iteration time (mins) time (mins) time (mins) time (mins)
1 23.8 9.5 25.4 12.3
2 27.7 13.0 31.1 17.7
3 31.8 16.6 40.2 26.1
4 37.1 21.6 49.4 34.9

62

5.4.2 Results for cmc test instances

This section includes results for one of the 5 cmc instances, specifically when n = 600. The
remaining results are included in Appendix A. There are two key differences between these
examples and the gkaf5 example previously examined. First the triangle cutting plane stage
terminated when there were no more violated triangle inequalities. Second it was much more
difficult to find violated kPPCs. As a result the parameter maxTime was set to 20 minutes.
nWant remained equal to 50, however this limit was never reached. The algorithm added all
the violated kPPCs that it found (violation ≥ .001).

Table 5.4 shows the optimal objective value for the kPPC cutting plane stage and Table 5.5
shows the computational time. These tables follow the same format as in the previous section.
The 7PPC cutting plane stage was terminated after 13 iterations due to the large cputime.

As previously mentioned the results for instances cmc 700 to 1000 are included in Appendix A.
For n = 1000 we had to make a few changes to the algorithm. Firstly, it was not possible to
check all triangle inequalities because of the shear number of induced subgraphs of size 3 (over
166 million). Therefore we randomly test 50 million induced subgraphs at each iteration. The
four possible coefficient combinations were tested for each induced subgraph. Then, as we
did previously, we added the 1000 inequalities that were most violated. This means when the
algorithm terminated because no violated triangle inequalities were found it does not mean
that there are no violated inequalities.

Secondly, the number of iterations was limited to 8 for k = 5 and 4 for k = 6. The computa-
tional time for each iteration was getting large (over 2 hours).

We did not test problems of size greater than 1000 as these issues with our implementation
of the cutting plane algorithm would have only gotten worse.

63

Table 5.4 Optimal objective value of kPPC cutting plane stage for instance cmc_n600 with
k = 5, 6 and 7

k = 5 k = 6 k = 7
iter objective # of # of objective # of # of objective # of # of

value kPPC ∆ value kPPC ∆ value kPPC ∆
0 293606.893 0 6438 293606.893 0 6438 293606.893 0 6438
1 293605.040 7 6425 293600.064 21 6395 293593.166 38 6319
2 293603.670 21 6400 293593.358 45 6344 293585.613 70 6217
3 293601.489 47 6359 293585.960 58 6317 293577.836 112 6086
4 293596.295 71 6311 293580.992 84 6264 293571.615 140 6000
5 293595.141 90 6272 293571.474 108 6214 293564.547 184 5862
6 293592.596 120 6228 293563.000 134 6161 293554.475 231 5713
7 293590.911 140 6198 293558.247 165 6097 293547.530 262 5614
8 293588.463 179 6146 293549.375 194 6039 293541.614 298 5502
9 293585.864 214 6099 293543.830 212 6003 293535.937 337 5379
10 293584.240 246 6055 293537.030 240 5946 293531.326 376 5259
11 293582.690 268 6011 293529.377 260 5905 293525.916 419 5123
12 293581.881 306 5963 293522.263 282 5858 293520.244 453 5017
13 293580.021 328 5930 293515.400 311 5798 293515.297 492 4898
14 293578.703 364 5885 293511.573 338 5744 - - -
15 293578.437 371 5874 293504.553 363 5690 - - -

64

Table 5.5 Time (mins) per iteration for kPPC cutting plane stage for instance
cmc_n600 with k = 5, 6 and 7

k = 5 k = 6 k = 7
iteration solver cpu iteration solver cpu iteration solver cpu

iter. time time time time time time
(mins) (mins) (mins) (mins) (mins) (mins)

1 27.4 6.4 48.2 7.4 49.3 8.2
2 28.1 6.7 49.1 8.1 51.6 10.2
3 29.7 7.4 49.6 8.5 55.8 13.9
4 31.5 7.4 50.7 9.3 56.8 14.6
5 32.6 8.0 51.9 10.3 61.4 18.9
6 32.3 8.8 53.6 11.6 66.7 23.6
7 31.9 9.1 55.7 13.4 70.3 26.9
8 34.8 10.6 58.3 15.7 75.7 32.2
9 35.7 11.4 59.1 16.4 82.2 38.3
10 36.7 12.2 61.2 18.2 156.2 111.1
11 39.1 13.5 62.7 19.5 308.0 262.1
12 40.1 14.8 64.8 21.4 366.1 319.6
13 40.4 15.5 67.6 23.9 526.0 480.5
14 44.7 18.8 70.0 26.1 - -
15 41.6 17.5 72.5 28.4 - -

65

5.5 Conclusion

Table 5.6 summarizes the results. The first two columns identify the instance and the third
gives the value of k. Let

Improvement := 100× zlast triangle − zlast kPPC

zlast triangle

where zlast triangle is the optimal objective value at the last iterations where triangle inequalities
were added and zlast kPPC is the optimal objective value at the last iterations of the kPPC
cutting plane stage. Column 5 gives the number of iterations in the kPPC cutting plane stage
(this does not include iterations from the triangle cutting plane stage) and the total time (in
minutes) of the entire kPPC cutting plane stage is given in the final column.

Table 5.6 Comparison of results for all instances

Data Set n k Improvement (%) # iterations time (mins)

gkaf

5 5 0.090 12 378.4
5 6 0.088 12 507.8
5 7 0.054 4 120.4
5 8 0.065 4 146.1

cmc

600 5 0.010 15 526.3
600 6 0.035 15 874.8
600 7 0.031 13 1926.1
700 5 0.009 15 536.2
700 6 0.024 15 853.1
700 7 0.025 15 1032.7
800 5 0.005 15 586.5
800 6 0.016 15 926.9
900 5 0.004 15 662.3
900 6 0.013 15 956.7
1000 5 0.002 8 615.9
1000 6 0.001 3 323.8

The following observations can be made:
– kPPCs continue to improve the bound once all triangle inequalities are satisfied. Although
the improvement is small the instances being tested are dense graphs. These represent
the most difficult instances because efficient techniques for solving sparse graphs exist
(Helmberg and Rendl, 1998).

– For the cmc instances the bound improves more the larger the value of k. This is as expected
since CUTk ⊆ CUTk+1. For the gkaf instance this is not always the case. It is unclear as

66

to why this happens.
– Furthermore the time to solve the SDP increases as k increases. Since the number of equa-
tions in each kPPC is dependent on k this is also what one would expect.

This chapters provides an algorithm for a cutting plane method that includes kPPCs. The
primary objective was to show that kPPCs can improve the bound once the benefit from
triangle inequalities is exhausted. We presented a separation procedure for kPPCs based on
combining triangle inequalities and testing them for violation using the distance-to-polytope
model.

Five new test instances with density equal to 1 were created with rudy. The sizes range from
600 to 1000. These instances were created to test kPPCs on larger max-cut problems (both
BiqMac and BiqCrunch present results for instances with n ≤ 500).

The following are limitations of the current cutting plane algorithm:
– We use the same k for all iterations in the kPPC cutting plane stage. Alternative methods
for deciding how and when to change the value of k should be considered.

– Since kPPCs are equalities, identifying active constraints is not relevant. The concept of
when kPPCs as a whole are active or nearly active (i.e. when XI is on or near the boundary
of CUTk) should be examined so that kPPCs that are no longer relevant can be removed
from future iterations.

67

CHAPTER 6 CONCLUSION

This thesis has presented a new family of cuts called k-projection polytope constraints. kPPCs
are defined for problems that satisfy the projection property (i.e. feasible solutions on the full
graph and projections of feasible solutions onto induced subgraphs have the same structure).
We considered two specific combinatorial problems: the max-cut problem and the stable set
problem. Three concepts related to kPPCs were explored: a hierarchy of relaxations, an exact
separation formulation for the MVVIP and a cutting plane implementation. Essentially all
of these concepts address the issue of how an initial relaxation is tightened. The difference is
just which kPPCs are added. Specifically, for any given k,

1. If all kPPCs are added to a relaxation the kth level of the hierarchy is defined. As k
increases the relaxations of the hierarchy get stronger. The nth level of the hierarchy
defines the exact problem.

2. For a given induced subgraph, the distance-to-polytope problem identifies if the kPPC is
violated. Adding any violated kPPC to the relaxation will change the solution and may
improve the bound. The most violated kPPC can be found by solving the MVkPPCP.

3. In practice, finding violated kPPCs can be done by combining triangle inequalities.
When included as the separation procedure of a cutting plane algorithm kPPCs can
continue to improve the bound even once the benefit of triangle inequalities is exhaus-
ted.

6.1 Advancement of knowledge

The following are the main advances made in this thesis:
– A new family of cuts called kPPCs was defined. This family differs from most cuts as it is
a set of equalities, not inequalities.

– kPPCs define a hierarchy that is in the same matrix space as the original problem. This
differs from other hierarchies for combinatorial problems which grow exponentially.

– A tractable model for the MVkPPCP was presented. Only a few families of cuts have
similar models for the MVVIP.

– Upper bounds have been presented for large, dense max-cut instances. The bounds are an
improvement over bounds obtained by just using triangle inequalities.

68

6.2 Limits and constraints

The following are the main limitations of kPPCs and the main drawbacks of the concepts
presented in this thesis:
– kPPCs can only be defined for small k since they require the enumeration of all feasible
solutions on an induced subgraph of size k. Specifically for the max-cut problem there are
2k−1 feasible solutions on an induced subgraph of size k.

– The hierarchy of kPPCs can only be explicitly enumerated for very small problems since
the number of kPPCs at each level grows exponentially. Specifically there are

(
n
k

)
kPPCs

included in the kth level of the hierarchy.
– The MVkPPCP can only be solved for small instances due to the size of the formulation.
Specifically there are O(k2n2) constraints, 2 second order cones of size 1+

(
k
2

)
and 2k−1 +n

binary variables in the final formulation.

6.3 Recommendations

The following are recommendations for future research concerning kPPCs:
– A cutting plane method that combines triangle inequalities and kPPCs of different sizes in a
more dynamic way should improve the quality of the upper bounds and the computational
time.

– A method, similar to the bundle method used for triangle inequalities, for identifying
kPPCs that can be removed from the model without worsening the bound would greatly
improve the computational time required to solve each SDP relaxation.

– It may be possible to extend kPPCs to problems that do not satisfy the projection property.
As opposed to looking at all feasible solutions on an induced subgraph one may need to
consider how to define the partial solutions that could exist.

69

REFERENCES

M. F. Anjos et J. B. Lasserre, éds., Handbook on Semidefinite, Conic and Polynomial Optimi-
zation, série International Series in Operations Research & Management Science. Springer-
Verlag, 2012.

M. F. Anjos et A. Vannelli, “Computing globally optimal solutions for single-row layout
problems using semidefinite programming and cutting planes”, INFORMS Journal on Com-
puting, vol. 20, no. 4, pp. 611–617, 2008.

M. F. Anjos et H. Wolkowicz, “Strengthened semidefinite relaxations via a second lifting
for the max-cut problem”, Discrete Applied Mathematics, vol. 119, no. 1, pp. 79–106, 2002.

D. Applegate, R. Bixby, V. Chvàtal, et W. Cook, “The traveling salesman problem : a
computational study”, 2006.

M. ApS, TheMOSEKoptimization toolbox for MATLAB manual. Version 7.0 (Revision
141)., 2013. En ligne : http://docs.mosek.com/7.0/toolbox/index.html

E. Balas, S. Ceria, et G. é. r. Cornuéjols, “A lift-and-project cutting plane algorithm for
mixed 0-1 programs”, Mathematical programming, vol. 58, no. 1-3, pp. 295–324, 1993.

F. Barahona, “On cuts and matchings in planar graphs”, Mathematical Programming,
vol. 60, no. 1-3, pp. 53–68, 1993.

F. Barahona et L. Ladanyi, “Branch and cut based on the volume algorithm : Steiner trees
in graphs and max-cut”, RAIRO-Operations Research, vol. 40, no. 01, pp. 53–73, 2006.

F. Barahona et A. R. Mahjoub, “On the cut polytope”, Math. Programming, vol. 36, no. 2,
pp. 157–173, 1986.

F. Barahona, M. Grötschel, M. Jünger, et G. Reinelt, “An application of combinatorial
optimization to statistical physics and circuit layout design”, Operations Research, vol. 36,
no. 3, pp. 493–513, 1988.

F. Barahona, M. Jünger, et G. Reinelt, “Experiments in quadratic 0–1 programming”, Ma-
thematical Programming, vol. 44, no. 1-3, pp. 127–137, 1989.

P. Belotti, J. C. Góez, I. Pólik, T. K. Ralphs, et T. Terlaky, “Disjunctive conic cuts for
mixed integer second order cone optimization”, preparation for publication, 2013.

http://docs.mosek.com/7.0/toolbox/index.html

70

P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, et A. Lodi, “Projected chvátal–gomory
cuts for mixed integer linear programs”, Mathematical Programming, vol. 113, no. 2, pp.
241–257, 2008.

A. Caprara et M. Fischetti, “{0, 1/2}-chvátal-gomory cuts”, Mathematical Programming,
vol. 74, no. 3, pp. 221–235, 1996.

——, “Branch-and-cut algorithms”, Annotated bibliographies in combinatorial optimization,
pp. 45–64, 1997.

A. Caprara et A. N. Letchford, “On the separation of split cuts and related inequalities”,
Mathematical Programming, vol. 94, no. 2-3, pp. 279–294, 2003.

A. Caprara, M. Fischetti, et A. N. Letchford, “On the separation of maximally violated
mod-k cuts”, Mathematical Programming, vol. 87, no. 1, pp. 37–56, 2000.

V. Chvátal, “Edmonds polytopes and a hierarchy of combinatorial problems”, Discrete ma-
thematics, vol. 4, no. 4, pp. 305–337, 1973.

W. Cook, R. Kannan, et A. Schrijver, “Chvátal closures for mixed integer programming
problems”, Mathematical Programming, vol. 47, no. 1-3, pp. 155–174, 1990.

G. Dantzig, R. Fulkerson, et S. Johnson, “Solution of a large-scale traveling-salesman pro-
blem”, Journal of the operations research society of America, vol. 2, no. 4, pp. 393–410,
1954.

C. Delorme et S. Poljak, “Laplacian eigenvalues and the maximum cut problem”, Mathe-
matical Programming, vol. 62, no. 1-3, pp. 557–574, 1993.

M. Deza et M. Laurent, Geometry of cuts and metrics. Springer Science & Business Media,
1997, vol. 15.

——,Geometry of Cuts and Metrics, série Algorithms and Combinatorics. Berlin : Springer-
Verlag, 1997, vol. 15.

M. Deza, M. Laurent, et S. Poljak, “The cut cone iii : on the role of triangle facets”, Graphs
and Combinatorics, vol. 8, no. 2, pp. 125–142, 1992.

F. Eisenbrand, “Note–on the membership problem for the elementary closure of a polyhe-
dron”, Combinatorica, vol. 19, no. 2, pp. 297–300, 1999.

71

I. Fischer, G. Gruber, F. Rendl, et R. Sotirov, “Computational experience with a bundle
approach for semidefinite cutting plane relaxations of Max-Cut and equipartition”, Math.
Programming, vol. 105, no. 2-3, Ser. B, pp. 451–469, 2006.

M. X. Goemans, “Semidefinite programming in combinatorial optimization”, Math. Pro-
gramming, vol. 79, pp. 143–161, 1997.

M. X. Goemans et D. P. Williamson, “Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming”, Journal of the ACM (JACM),
vol. 42, no. 6, pp. 1115–1145, 1995.

R. E. Gomory, “An algorithm for integer solutions to linear programs”, Recent advances in
mathematical programming, vol. 64, pp. 260–302, 1963.

——, “On the relation between integer and noninteger solutions to linear programs”, Pro-
ceedings of the National Academy of Sciences of the United States of America, vol. 53, no. 2,
p. 260, 1965.

V. P. Grishukhin, “All facets of the cut cone Cn for n = 7 are know.” European Journal of
Combinatorics, vol. 11(2), pp. 115–117, 1990.

M. Grötschel, L. Lovász, et A. Schrijver, “The ellipsoid method and its consequences in
combinatorial optimization”, Combinatorica, vol. 1, no. 2, pp. 169–197, 1981.

P. Hansen, “Methods of nonlinear 0-1 programming”, Annals of Discrete Mathematics, vol. 5,
pp. 53–70, 1979.

C. Helmberg et F. Rendl, “Solving quadratic (0, 1)-problems by semidefinite programs and
cutting planes”, Mathematical Programming, vol. 82, no. 3, pp. 291–315, 1998.

C. Helmberg, F. Rendl, R. J. Vanderbei, et H. Wolkowicz, “An interior-point method for
semidefinite programming”, SIAM J. Optim., vol. 6, no. 2, pp. 342–361, 1996.

R. M. Karp, Reducibility among combinatorial problems. Springer, 1972.

K. Krishnan et T. Terlaky, “Interior point and semidefinite approaches in combinatorial
optimization”, dans Graph theory & combinatorial optimization. Springer, 2005, pp. 101–
157
.

72

N. Krislock, J. Malick, et F. é. é. Roupin, “Improved semidefinite bounding procedure for
solving max-cut problems to optimality”, Mathematical Programming, vol. 143, no. 1-2, pp.
61–86, 2014.

J. B. Lasserre, “An explicit exact sdp relaxation for nonlinear 0-1 programs”, dans Integer
Programming and Combinatorial Optimization. Springer, 2001, pp. 293–303.

——, “An explicit equivalent positive semidefinite program for nonlinear 0-1 programs”,
SIAM J. Optim., vol. 12, no. 3, pp. 756–769 (electronic), 2002.

T. Lengauer, Combinatorial algorithms for integrated circuit layout. John Wiley & Sons,
Inc., 1990.

F. Liers, M. Jünger, G. Reinelt, et G. Rinaldi, “Computing exact ground states of hard
ising spin glass problems by branch-and-cut”, New Optimization Algorithms in Physics, pp.
47–68, 2004.

A. Lodi, T. K. Ralphs, et G. J. Woeginger, “Bilevel programming and the separation pro-
blem”, Mathematical Programming, pp. 1–22, 2012.

L. Lovász, “On the Shannon capacity of a graph”, IEEE Trans. Inform. Theory, vol. 25,
no. 1, pp. 1–7, 1979.

——, “Semidefinite programs and combinatorial optimization”, dans Recent advances in
algorithms and combinatorics, série CMS Books Math./Ouvrages Math. SMC. New York :
Springer, 2003, vol. 11, pp. 137–194.

L. Lovász et A. Schrijver, “Cones of matrices and set-functions and 0-1 optimization”, SIAM
Journal on Optimization, vol. 1, no. 2, pp. 166–190, 1991.

H. Marchand, A. Martin, R. Weismantel, et L. Wolsey, “Cutting planes in integer and mixed
integer programming”, Discrete Applied Mathematics, vol. 123, no. 1, pp. 397–446, 2002.

MATLAB, version 7.10.0 (R2011b). Natick, Massachusetts : The MathWorks Inc., 2011.

J. E. Mitchell, “Branch-and-cut algorithms for combinatorial optimization problems”, Hand-
book of Applied Optimization, pp. 65–77, 2002.

——, “Polynomial interior point cutting plane methods”, Optimization Methods and Soft-
ware, vol. 18, no. 5, pp. 507–534, 2003.

73

G. L. Nemhauser et L. A. Wolsey, Integer and combinatorial optimization. Wiley New
York, 1988, vol. 18.

M. Padberg et G. Rinaldi, “A branch-and-cut algorithm for the resolution of large-scale
symmetric traveling salesman problems”, SIAM review, vol. 33, no. 1, pp. 60–100, 1991.

S. Poljak et F. Rendl, “Solving the max-cut problem using eigenvalues”, Discrete Applied
Mathematics, vol. 62, no. 1, pp. 249–278, 1995.

S. Poljak et Z. Tuza, “The expected relative error of the polyhedral approximation of the
max-cut problem”, Operations Research Letters, vol. 16, no. 4, pp. 191–198, 1994.

——, “Maximum cuts and large bipartite subgraphs”, DIMACS Series, vol. 20, pp. 181–244,
1995.

F. Rendl, G. Rinaldi, et A. Wiegele, “Solving Max-Cut to optimality by intersecting semi-
definite and polyhedral relaxations”, Math. Programming, vol. 121, no. 2, p. 307, 2010.

H. D. Sherali et W. P. Adams, “A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems”, SIAM Journal on Discrete
Mathematics, vol. 3, no. 3, pp. 411–430, 1990.

K. C. Toh, M. J. Todd, et R. H. Tütüncü, “Sdpt3 — a matlab software package
for semidefinite programming, version 1.3”, Optimization Methods and Software,
vol. 11, no. 1-4, pp. 545–581, 1999. DOI : 10.1080/10556789908805762. En ligne :
http://dx.doi.org/10.1080/10556789908805762

K.-C. Toh, M. J. Todd, et R. H. Tütüncü, “Sdpt3—a matlab software package for semide-
finite programming, version 1.3”, Optimization methods and software, vol. 11, no. 1-4, pp.
545–581, 1999.

A. Wiegele, Nonlinear optimization techniques applied to combinatorial optimization pro-
blems. na, 2006.

——, “Biq mac library—a collection of max-cut and quadratic 0-1 programming instances of
medium size”. Tech. rep., Alpen-Adria-Universit at Klagenfurt, Klagenfurt, Austria, 2007.

http://dx.doi.org/10.1080/10556789908805762
http://dx.doi.org/10.1080/10556789908805762

74

ANNEXE A CUTTING PLANE METHOD RESULTS FOR CMC
INSTANCES

Table A.1 Time for kPPC cutting plane stage for instance cmc_n700 with k = 5, 6 and 7

k = 5 k = 6 k = 7
iteration solver cpu iteration solver cpu iteration solver cpu

iteration time time time time time time
(mins) (mins) (mins) (mins) (mins) (mins)

1 29.6 8.3 49.2 8.4 49.7 8.6
2 30.3 8.4 49.4 8.3 50.7 9.3
3 30.9 8.9 51.3 10.1 53.3 11.7
4 33.1 9.5 52.1 10.7 55.9 13.9
5 35.8 10.8 53.0 11.3 57.1 14.8
6 33.2 10.5 54.1 12.2 59.7 17.1
7 34.5 11.1 55.1 13.0 62.1 19.4
8 35.6 11.8 56.7 14.4 64.2 21.4
9 36.1 12.4 57.5 15.0 67.4 24.3
10 36.5 13.0 59.2 16.6 67.9 24.7
11 39.4 15.1 60.3 17.4 72.2 28.5
12 40.4 16.1 61.7 18.6 75.1 31.3
13 41.3 17.1 63.0 19.8 78.8 34.7
14 39.9 15.9 64.8 21.3 85.5 41.2
15 39.7 16.1 65.6 22.0 132.9 87.4

75

Table A.2 Results for kPPC cutting plane stage for instance cmc_n700 with k = 5, 6 and 7

k = 5 k = 6 k = 7
iter objective # of # of objective # of # of objective # of # of

value kPPC ∆ value kPPC ∆ value kPPC ∆
0 350675.242 0 6811 350675.242 0 6811 350675.242 0 6811
1 350672.138 8 6796 350670.126 10 6790 350667.132 15 6765
2 350668.687 22 6772 350664.181 24 6761 350659.291 34 6705
3 350666.244 37 6745 350657.411 46 6715 350653.935 68 6598
4 350661.532 75 6694 350650.418 59 6688 350650.873 88 6536
5 350657.239 98 6648 350645.574 75 6656 350640.893 115 6451
6 350655.835 113 6627 350638.080 97 6611 350632.128 134 6394
7 350654.627 140 6588 350631.150 114 6576 350626.354 156 6325
8 350652.685 167 6545 350624.511 134 6534 350622.081 173 6273
9 350652.550 187 6518 350618.513 149 6503 350618.383 195 6205
10 350650.534 204 6490 350614.086 168 6464 350615.998 214 6144
11 350649.003 228 6453 350610.463 188 6424 350608.919 241 6062
12 350647.526 250 6423 350605.076 206 6388 350601.838 260 6002
13 350645.925 268 6394 350599.716 227 6345 350596.736 282 5933
14 350645.102 280 6373 350594.648 248 6301 350593.186 305 5862
15 350644.254 285 6362 350591.914 261 6274 350589.266 332 5778

76

Table A.3 Results for kPPC cutting plane stage for instance cmc_n800 with k = 5 and 6

k = 5 k = 6
iter. objective num of num of objective num of num of

value kPPCs triangles value kPPCs triangles
0 456272.381 0 7777 456272.381 0 7777
1 456270.843 11 7759 456266.182 20 7736
2 456269.971 20 7742 456262.071 34 7704
3 456269.754 24 7734 456257.293 47 7678
4 456268.097 43 7705 456252.283 59 7654
5 456264.926 63 7677 456247.962 72 7627
6 456263.028 89 7640 456242.642 91 7588
7 456262.273 107 7613 456236.939 105 7559
8 456261.466 119 7596 456231.814 127 7513
9 456259.175 160 7551 456225.700 143 7480
10 456256.361 186 7518 456217.931 155 7453
11 456256.358 187 7516 456212.545 169 7425
12 456255.996 204 7491 456208.045 178 7407
13 456254.251 217 7470 456204.000 196 7370
14 456253.840 223 7460 456201.513 207 7348
15 456251.561 247 7429 456198.383 224 7313

k = 5 k = 6
iteration solver cpu iteration solver cpu

iteration time (mins) time (mins) time (mins) time (mins)
1 33.6 11.7 54.3 12.8
2 33.7 11.7 55.1 13.4
3 33.4 11.8 56.2 14.3
4 35.2 12.3 56.9 14.9
5 37.4 14.3 57.8 15.6
6 37.8 14.3 58.9 16.5
7 38.2 14.8 60.0 17.4
8 38.5 15.3 61.5 18.6
9 42.8 17.2 62.8 19.7
10 42.5 17.7 63.5 20.3
11 41.2 17.9 66.0 22.3
12 42.9 18.3 66.6 23.1
13 42.4 18.1 67.8 24.0
14 42.3 18.3 69.0 25.1
15 44.6 19.3 70.5 26.5

77

Table A.4 Results for kPPC cutting plane stage for instance cmc_n900 with k = 5 and 6

k = 5 k = 6
iter. objective num of num of objective num of num of

value kPPCs triangles value kPPCs triangles
0 519387.145 0 8251 519387.145 0 8251
1 519386.077 7 8237 519378.422 10 8231
2 519382.853 18 8216 519375.247 18 8215
3 519381.590 31 8195 519371.716 30 8190
4 519381.237 43 8177 519362.916 40 8168
5 519379.969 55 8160 519358.567 55 8137
6 519379.906 58 8154 519353.542 70 8107
7 519377.085 92 8111 519351.269 88 8071
8 519375.442 115 8090 519344.874 102 8042
9 519372.655 151 8044 519342.112 115 8016
10 519370.395 171 8020 519337.927 132 7982
11 519368.355 184 7999 519332.441 149 7947
12 519367.311 229 7953 519328.853 160 7925
13 519366.248 257 7914 519325.205 174 7897
14 519364.388 276 7886 519322.231 187 7871
15 519363.966 282 7874 519318.689 206 7833

k = 5 k = 6
iteration solver cpu iteration solver cpu

iteration time (mins) time (mins) time (mins) time (mins)
1 36.6 14.4 56.7 14.7
2 36.7 14.1 57.2 15.1
3 37.5 14.7 57.8 15.5
4 38.1 15.1 58.6 16.1
5 38.8 15.7 59.2 16.6
6 38.3 15.6 61.8 19.0
7 42.5 17.6 63.2 20.1
8 43.1 18.5 64.4 21.1
9 45.2 19.7 66.8 23.3
10 45.8 20.8 67.1 23.4
11 46.7 22.0 66.9 23.0
12 51.5 24.5 67.6 23.6
13 53.4 27.2 68.6 24.4
14 53.7 27.6 69.6 25.2
15 54.3 28.9 71.0 26.3

78

Table A.5 Results for kPPC cutting plane stage for instance cmc_n1000 with k = 5 and 6

k = 5 k = 6
iter. objective num of num of objective num of num of

value kPPCs triangles value kPPCs triangles
0 629940.170 0 12025 629940.170 0 12025
1 629938.675 10 11989 629938.355 11 12005
2 629938.434 16 11973 629934.157 26 11978
3 629937.711 20 11962 629931.983 64 11917
4 629936.748 27 11947 - - -
5 629935.080 35 11927 - - -
6 629934.038 41 11910 - - -
7 629932.424 47 11897 - - -
8 629929.503 71 11844 - - -

k = 5 k = 6
iteration solver cpu iteration solver cpu

iteration time (mins) time (mins) time (mins) time (mins)
1 65.2 41.2 83.3 39.9
2 66.9 42.7 88.1 44.4
3 67.0 43.0 152.4 107.2
4 65.6 41.3 - -
5 69.1 44.5 - -
6 71.5 47.0 - -
7 73.2 48.3 - -
8 137.5 110.0 - -

	DEDICATION
	ACKNOWLEDGEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	LIST OF APPENDIXES
	1 INTRODUCTION
	1.1 Notation
	1.2 k-projection polytope constraints

	2 CRITICAL LITERATURE REVIEW
	2.1 The max-cut problem
	2.1.1 Exact max-cut formulations
	2.1.2 Max-cut relaxations
	2.1.3 Binary quadratic program
	2.1.4 Leading solvers

	2.2 Hierarchies
	2.2.1 Lifting of Anjos and Wolkowicz
	2.2.2 Lasserre hierarchy

	2.3 Exact separation
	2.3.1 Maximally violated inequalities

	2.4 Cutting plane algorithms
	2.4.1 Valid inequalities
	2.4.2 Non traditional cuts

	3 Hierarchy of semidefinite relaxations using k-PROJECTION POLYTOPE CONSTRAINTS
	3.1 Introduction
	3.2 The projection property
	3.2.1 Projection property for the max-cut problem
	3.2.2 Projection property for the stable set problem
	3.2.3 Projection property failure

	3.3 A hierarchy of relaxations based on kPPCs
	3.3.1 kPPC hierarchy of relaxations for the max-cut problem
	3.3.2 kPPC hierarchy of relaxations for the stable set problem

	3.4 Max-cut examples
	3.4.1 Small max-cut examples
	3.4.2 Larger max-cut examples

	3.5 Small stable set examples
	3.6 Conclusion

	4 Exact separation of k-projection polytope constraints
	4.1 Introduction
	4.2 Finding maximally violated kPPCs
	4.2.1 Validity
	4.2.2 Membership

	4.3 Formulation of the MVkPPCP as a bilevel problem
	4.4 Reformulation of the MVkPPCP as a single-level problem
	4.4.1 Reformulating steps
	4.4.2 Equivalence of the bilevel and single level models

	4.5 Strengthening the single level model
	4.5.1 Symmetry
	4.5.2 Reformulation with fewer binary variables

	4.6 Computational performance of the formulations
	4.6.1 Comparison of the single level models
	4.6.2 Performance of DPfewerBinary formulation

	4.7 Conclusion

	5 k-projection polytope constraints in a cutting plane algorithm
	5.1 Introduction
	5.1.1 Notation
	5.1.2 SDP relaxation

	5.2 Triangle cutting plane stage
	5.2.1 Triangle cutting plane stage details

	5.3 kPPC cutting plane stage
	5.3.1 kPPC cutting plane stage details
	5.3.2 Generating violated kPPCs algorithm
	5.3.3 Comparing generation and selection methods

	5.4 Computational Results
	5.4.1 Results for gkaf test instance
	5.4.2 Results for cmc test instances

	5.5 Conclusion

	6 CONCLUSION
	6.1 Advancement of knowledge
	6.2 Limits and constraints
	6.3 Recommendations

	REFERENCES
	APPENDICES

