9,132 research outputs found

    Critical behavior of a bounded Kardar-Parisi-Zhang equation

    Full text link
    A host of spatially extended systems, both in physics and in other disciplines, are well described at a coarse-grained scale by a Langevin equation with multiplicative-noise. Such systems may exhibit non-equilibrium phase transitions, which can be classified into universality classes. Here we study in detail one of such classes that can be mapped into a Kardar-Parisi-Zhang (KPZ) interface equation with a positive (negative) non-linearity in the presence of a bounding lower (upper) wall. The wall limits the possible values taken by the height variable, introducing a lower (upper) cut-off, and induce a phase transition between a pinned (active) and a depinned (absorbing) phase. This transition is studied here using mean field and field theoretical arguments, as well as from a numerical point of view. Its main properties and critical features, as well as some challenging theoretical difficulties, are reported. The differences with other multiplicative noise and bounded-KPZ universality classes are stressed, and the effects caused by the introduction of ``attractive'' walls, relevant in some physical contexts, are also analyzed.Comment: Invited paper to a special issue of the Brazilian J. of Physics. 5 eps Figures. 9 pagres. Revtex

    Nonintegrability, Chaos, and Complexity

    Full text link
    Two-dimensional driven dissipative flows are generally integrable via a conservation law that is singular at equilibria. Nonintegrable dynamical systems are confined to n*3 dimensions. Even driven-dissipative deterministic dynamical systems that are critical, chaotic or complex have n-1 local time-independent conservation laws that can be used to simplify the geometric picture of the flow over as many consecutive time intervals as one likes. Those conserevation laws generally have either branch cuts, phase singularities, or both. The consequence of the existence of singular conservation laws for experimental data analysis, and also for the search for scale-invariant critical states via uncontrolled approximations in deterministic dynamical systems, is discussed. Finally, the expectation of ubiquity of scaling laws and universality classes in dynamics is contrasted with the possibility that the most interesting dynamics in nature may be nonscaling, nonuniversal, and to some degree computationally complex
    corecore