46 research outputs found

    Molecular docking: Shifting paradigms in drug discovery

    Get PDF
    Molecular docking is an established in silico structure-based method widely used in drug discovery. Docking enables the identification of novel compounds of therapeutic interest, predicting ligand-target interactions at a molecular level, or delineating structure-activity relationships (SAR), without knowing a priori the chemical structure of other target modulators. Although it was originally developed to help understanding the mechanisms of molecular recognition between small and large molecules, uses and applications of docking in drug discovery have heavily changed over the last years. In this review, we describe how molecular docking was firstly applied to assist in drug discovery tasks. Then, we illustrate newer and emergent uses and applications of docking, including prediction of adverse effects, polypharmacology, drug repurposing, and target fishing and profiling, discussing also future applications and further potential of this technique when combined with emergent techniques, such as artificial intelligence

    Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models

    Get PDF
    Substantial effort in recent years has been devoted to constructing and analyzing large-scale gene and protein networks on the basis of “omic” data and literature mining. These interaction graphs provide valuable insight into the topologies of complex biological networks but are rarely context specific and cannot be used to predict the responses of cell signaling proteins to specific ligands or drugs. Conversely, traditional approaches to analyzing cell signaling are narrow in scope and cannot easily make use of network-level data. Here, we combine network analysis and functional experimentation by using a hybrid approach in which graphs are converted into simple mathematical models that can be trained against biochemical data. Specifically, we created Boolean logic models of immediate-early signaling in liver cells by training a literature-based prior knowledge network against biochemical data obtained from primary human hepatocytes and 4 hepatocellular carcinoma cell lines exposed to combinations of cytokines and small-molecule kinase inhibitors. Distinct families of models were recovered for each cell type, and these families clustered topologically into normal and diseased sets.National Institutes of Health (U.S.) (Grant GM68762)National Institutes of Health (U.S.) (Grant CA112967

    Exploiting protein family and protein network data to identify novel drug targets for bladder cancer

    Get PDF
    Bladder cancer remains one of the most common forms of cancer and yet there are limited small molecule targeted therapies. Here, we present a computational platform to identify new potential targets for bladder cancer therapy. Our method initially exploited a set of known driver genes for bladder cancer combined with predicted bladder cancer genes from mutationally enriched protein domain families. We enriched this initial set of genes using protein network data to identify a comprehensive set of 323 putative bladder cancer targets. Pathway and cancer hallmarks analyses highlighted putative mechanisms in agreement with those previously reported for this cancer and revealed protein network modules highly enriched in potential drivers likely to be good targets for targeted therapies. 21 of our potential drug targets are targeted by FDA approved drugs for other diseases - some of them are known drivers or are already being targeted for bladder cancer (FGFR3, ERBB3, HDAC3, EGFR). A further 4 potential drug targets were identified by inheriting drug mappings across our in-house CATH domain functional families (FunFams). Our FunFam data also allowed us to identify drug targets in families that are less prone to side effects i.e., where structurally similar protein domain relatives are less dispersed across the human protein network. We provide information on our novel potential cancer driver genes, together with information on pathways, network modules and hallmarks associated with the predicted and known bladder cancer drivers and we highlight those drivers we predict to be likely drug targets

    Large–scale data–driven network analysis of human–plasmodium falciparum interactome: extracting essential targets and processes for malaria drug discovery

    Get PDF
    Background: Plasmodium falciparum malaria is an infectious disease considered to have great impact on public health due to its associated high mortality rates especially in sub Saharan Africa. Falciparum drugresistant strains, notably, to chloroquine and sulfadoxine-pyrimethamine in Africa is traced mainly to Southeast Asia where artemisinin resistance rate is increasing. Although careful surveillance to monitor the emergence and spread of artemisinin-resistant parasite strains in Africa is on-going, research into new drugs, particularly, for African populations, is critical since there is no replaceable drug for artemisinin combination therapies (ACTs) yet. Objective: The overall objective of this study is to identify potential protein targets through host–pathogen protein–protein functional interaction network analysis to understand the underlying mechanisms of drug failure and identify those essential targets that can play their role in predicting potential drug candidates specific to the African populations through a protein-based approach of both host and Plasmodium falciparum genomic analysis. Methods: We leveraged malaria-specific genome wide association study summary statistics data obtained from Gambia, Kenya and Malawi populations, Plasmodium falciparum selective pressure variants and functional datasets (protein sequences, interologs, host-pathogen intra-organism and host-pathogen inter-organism protein-protein interactions (PPIs)) from various sources (STRING, Reactome, HPID, Uniprot, IntAct and literature) to construct overlapping functional network for both host and pathogen. Developed algorithms and a large-scale data-driven computational framework were used in this study to analyze the datasets and the constructed networks to identify densely connected subnetworks or hubs essential for network stability and integrity. The host-pathogen network was analyzed to elucidate the influence of parasite candidate key proteins within the network and predict possible resistant pathways due to host-pathogen candidate key protein interactions. We performed biological and pathway enrichment analysis on critical proteins identified to elucidate their functions. In order to leverage disease-target-drug relationships to identify potential repurposable already approved drug candidates that could be used to treat malaria, pharmaceutical datasets from drug bank were explored using semantic similarity approach based of target–associated biological processes Results: About 600,000 significant SNPs (p-value< 0.05) from the summary statistics data were mapped to their associated genes, and we identified 79 human-associated malaria genes. The assembled parasite network comprised of 8 clusters containing 799 functional interactions between 155 reviewed proteins of which 5 clusters contained 43 key proteins (selective variants) and 2 clusters contained 2 candidate key proteins(key proteins characterized by high centrality measure), C6KTB7 and C6KTD2. The human network comprised of 32 clusters containing 4,133,136 interactions between 20,329 unique reviewed proteins of which 7 clusters contained 760 key proteins and 2 clusters contained 6 significant human malaria-associated candidate key proteins or genes P22301 (IL10), P05362 (ICAM1), P01375 (TNF), P30480 (HLA-B), P16284 (PECAM1), O00206 (TLR4). The generated host-pathogen network comprised of 31,512 functional interactions between 8,023 host and pathogen proteins. We also explored the association of pfk13 gene within the host-pathogen. We observed that pfk13 cluster with host kelch–like proteins and other regulatory genes but no direct association with our identified host candidate key malaria targets. We implemented semantic similarity based approach complemented by Kappa and Jaccard statistical measure to identify 115 malaria–similar diseases and 26 potential repurposable drug hits that can be 3 appropriated experimentally for malaria treatment. Conclusion: In this study, we reviewed existing antimalarial drugs and resistance–associated variants contributing to the diminished sensitivity of antimalarials, especially chloroquine, sulfadoxine-pyrimethamine and artemisinin combination therapy within the African population. We also described various computational techniques implemented in predicting drug targets and leads in drug research. In our data analysis, we showed that possible mechanisms of resistance to artemisinin in Africa may arise from the combinatorial effects of many resistant genes to chloroquine and sulfadoxine–pyrimethamine. We investigated the role of pfk13 within the host–pathogen network. We predicted key targets that have been proposed to be essential for malaria drug and vaccine development through structural and functional analysis of host and pathogen function networks. Based on our analysis, we propose these targets as essential co-targets for combinatorial malaria drug discovery

    Computational Approaches for Predicting Drug Targets

    Get PDF
    This thesis reports the development of several computational approaches to predict human disease proteins and to assess their value as drug targets, using in-house domain functional families (CATH FunFams). CATH-FunFams comprise evolutionary related protein domains with high structural and functional similarity. External resources were used to identify proteins associated with disease and their genetic variations. These were then mapped to the CATH-FunFams together with information on drugs bound to any relatives within the FunFam. A number of novel approaches were then used to predict the proteins likely to be driving disease and to assess whether drugs could be repurposed within the FunFams for targeting these putative driver proteins. The first work chapter of this thesis reports the mapping of drugs to CATHFunFams to identify druggable FunFams based on statistical overrepresentation of drug targets within the FunFam. 81 druggable CATH-FunFams were identified and the dispersion of their relatives on a human protein interaction network was analysed to assess their propensity to be associated with side effects. In the second work chapter, putative drug targets for bladder cancer were identified using a novel computational protocol that expands a set of known bladder cancer genes with genes highly expressed in bladder cancer and highly associated with known bladder cancer genes in a human protein interaction network. 35 new bladder cancer targets were identified in druggable FunFams, for some of which FDA approved drugs could be repurposed from other protein domains in the FunFam. In the final work chapter, protein kinases and kinase inhibitors were analysed. These are an important class of human drug targets. A novel classification protocol was applied to give a comprehensive classification of the kinases which was benchmarked and compared with other widely used kinase classifications. Druginformation from ChEMBL was mapped to the Kinase-FunFams and analyses of protein network characteristics of the kinase relatives in each FunFam used to identify those families likely to be associated with side effects

    Multi-Targeting Bioactive Compounds Extracted from Essential Oils as Kinase Inhibitors

    Get PDF
    Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target feature

    Combinatorial Drug Therapy for Cancer in the Post-Genomic Era.

    Get PDF
    Over the past decade, whole genome sequencing and other &apos;omics&apos; technologies have defined pathogenic driver mutations to which tumor cells are addicted. Such addictions, synthetic lethalities and other tumor vulnerabilities have yielded novel targets for a new generation of cancer drugs to treat discrete, genetically defined patient subgroups. This personalized cancer medicine strategy could eventually replace the conventional one-size-fits-all cytotoxic chemotherapy approach. However, the extraordinary intratumor genetic heterogeneity in cancers revealed by deep sequencing explains why de novo and acquired resistance arise with molecularly targeted drugs and cytotoxic chemotherapy, limiting their utility. One solution to the enduring challenge of polygenic cancer drug resistance is rational combinatorial targeted therapy

    Emerging Promise of Computational Techniques in Anti-Cancer Research: At a Glance

    Full text link
    Research on the immune system and cancer has led to the development of new medicines that enable the former to attack cancer cells. Drugs that specifically target and destroy cancer cells are on the horizon; there are also drugs that use specific signals to stop cancer cells multiplying. Machine learning algorithms can significantly support and increase the rate of research on complicated diseases to help find new remedies. One area of medical study that could greatly benefit from machine learning algorithms is the exploration of cancer genomes and the discovery of the best treatment protocols for different subtypes of the disease. However, developing a new drug is time-consuming, complicated, dangerous, and costly. Traditional drug production can take up to 15 years, costing over USD 1 billion. Therefore, computer-aided drug design (CADD) has emerged as a powerful and promising technology to develop quicker, cheaper, and more efficient designs. Many new technologies and methods have been introduced to enhance drug development productivity and analytical methodologies, and they have become a crucial part of many drug discovery programs; many scanning programs, for example, use ligand screening and structural virtual screening techniques from hit detection to optimization. In this review, we examined various types of computational methods focusing on anticancer drugs. Machine-based learning in basic and translational cancer research that could reach new levels of personalized medicine marked by speedy and advanced data analysis is still beyond reach. Ending cancer as we know it means ensuring that every patient has access to safe and effective therapies. Recent developments in computational drug discovery technologies have had a large and remarkable impact on the design of anticancer drugs and have also yielded useful insights into the field of cancer therapy. With an emphasis on anticancer medications, we covered the various components of computer-aided drug development in this paper. Transcriptomics, toxicogenomics, functional genomics, and biological networks are only a few examples of the bioinformatics techniques used to forecast anticancer medications and treatment combinations based on multi-omics data. We believe that a general review of the databases that are now available and the computational techniques used today will be beneficial for the creation of new cancer treatment approaches.</jats:p
    corecore