187,095 research outputs found

    “Computing” Requirements for Open Source Software: A Distributed Cognitive Approach

    Get PDF
    Most requirements engineering (RE) research has been conducted in the context of structured and agile software development. Software, however, is increasingly developed in open source software (OSS) forms which have several unique characteristics. In this study, we approach OSS RE as a sociotechnical, distributed cognitive process where distributed actors “compute” requirements—i.e., transform requirements-related knowledge into forms that foster a shared understanding of what the software is going to do and how it can be implemented. Such computation takes place through social sharing of knowledge and the use of heterogeneous artifacts. To illustrate the value of this approach, we conduct a case study of a popular OSS project, Rubinius—a runtime environment for the Ruby programming language—and identify ways in which cognitive workload associated with RE becomes distributed socially, structurally, and temporally across actors and artifacts. We generalize our observations into an analytic framework of OSS RE, which delineates three stages of requirements computation: excavation, instantiation, and testing-in-the-wild. We show how the distributed, dynamic, and heterogeneous computational structure underlying OSS development builds an effective mechanism for managing requirements. Our study contributes to sorely needed theorizing of appropriate RE processes within highly distributed environments as it identifies and articulates several novel mechanisms that undergird cognitive processes associated with distributed forms of RE

    The Gridbus Toolkit for Service Oriented Grid and Utility Computing: An Overview and Status Report

    Full text link
    Grids aim at exploiting synergies that result from cooperation of autonomous distributed entities. The synergies that result from grid cooperation include the sharing, exchange, selection, and aggregation of geographically distributed resources such as computers, data bases, software, and scientific instruments for solving large-scale problems in science, engineering, and commerce. For this cooperation to be sustainable, participants need to have economic incentive. Therefore, "incentive" mechanisms should be considered as one of key design parameters of Grid architectures. In this article, we present an overview and status of an open source Grid toolkit, called Gridbus, whose architecture is fundamentally driven by the requirements of Grid economy. Gridbus technologies provide services for both computational and data grids that power the emerging eScience and eBusiness applications.Comment: 11 pages, 3 figures, 3 table

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Specification of multiparty audio and video interaction based on the Reference Model of Open Distributed Processing

    Get PDF
    The Reference Model of Open Distributed Processing (RM-ODP) is an emerging ISO/ITU-T standard. It provides a framework of abstractions based on viewpoints, and it defines five viewpoint languages to model open distributed systems. This paper uses the viewpoint languages to specify multiparty audio/video exchange in distributed systems. To the designers of distributed systems, it shows how the concepts and rules of RM-ODP can be applied.\ud \ud The ODP ¿binding object¿ is an important concept to model continuous data flows in distributed systems. We take this concept as a basis for multiparty audio and video flow exchanges, and we provide five ODP viewpoint specifications, each emphasising a particular concern. To ensure overall correctness, special attention is paid to the mapping between the ODP viewpoint specifications

    The role of the RM-ODP computational viewpoint concepts in the MDA approach

    Get PDF
    An MDA design approach should be able to accommodate designs at different levels of platform-independence. We have proposed a design approach previously (in [2]), which allows these levels to be identified. An important feature of this approach is the notion of abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by considering various design goals. In this paper, we define a framework that makes it possible to use RM-ODP concepts in our MDA design approach. This framework allows a recursive application of the computational viewpoint at different levels of platform-independence. This is obtained by equating the RM-ODP notion of infrastructure to our notion of abstract platform

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    SIMDAT

    No full text

    On the Notion of Abstract Platform in MDA Development

    Get PDF
    Although platform-independence is a central property in MDA models, the study of platform-independence has been largely overlooked in MDA. As a consequence, there is a lack of guidelines to select abstraction criteria and modelling concepts for platform-independent design. In addition, there is little methodological support to distinguish between platform-independent and platform-specific concerns, which could be detrimental to the beneficial exploitation of the PIM-PSM separation-of-concerns adopted by MDA. This work is an attempt towards clarifying the notion of platform-independent modelling in MDA development. We argue that each level of platform-independence must be accompanied by the identification of an abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by balancing various design goals. We present some methodological principles for abstract platform design, which forms a basis for defining requirements for design languages intended to support platform-independent design. Since our methodological framework is based on the notion of abstract platform, we pay particular attention to the definition of abstract platforms and the language requirements to specify abstract platforms. We discuss how the concept of abstract platform relates to UML
    corecore