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Abstract 

Most requirements engineering (RE) research has been conducted in the context of structured and 
agile software development. Software, however, is increasingly developed in open source software 
(OSS) forms which have several unique characteristics. In this study, we approach OSS RE as a 
sociotechnical, distributed cognitive process where distributed actors “compute” requirements—
i.e., transform requirements-related knowledge into forms that foster a shared understanding of 
what the software is going to do and how it can be implemented. Such computation takes place 
through social sharing of knowledge and the use of heterogeneous artifacts. To illustrate the value 
of this approach, we conduct a case study of a popular OSS project, Rubinius—a runtime 
environment for the Ruby programming language—and identify ways in which cognitive workload 
associated with RE becomes distributed socially, structurally, and temporally across actors and 
artifacts. We generalize our observations into an analytic framework of OSS RE, which delineates 
three stages of requirements computation: excavation, instantiation, and testing-in-the-wild. We 
show how the distributed, dynamic, and heterogeneous computational structure underlying OSS 
development builds an effective mechanism for managing requirements. Our study contributes to 
sorely needed theorizing of appropriate RE processes within highly distributed environments as it 
identifies and articulates several novel mechanisms that undergird cognitive processes associated 
with distributed forms of RE. 

Keywords: Open Source Software Development, Requirements Engineering, Distributed 
Cognition, Case Study, Heuristics, Ruby Programming Language 
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1 Introduction  
The hardest single part of building a 
software system is deciding precisely what 
to build. No other part of the conceptual 
work is as difficult as establishing the 
detailed technical requirements (Brooks, 
1995, p. 199). 

Since the 1970s, requirements engineering (RE)—a 
cohesive set of tasks that focus on discovering, 
specifying, and validating what software should do in 
its use context—has constituted an essential challenge 
in software development (Brooks, 1995; Cheng & 
Atlee, 2009). Software requirements are known to be 
uncertain, inconsistent, and temporally volatile 
(Damian, Helms, Kwan, Marczak, & Koelewijn, 
2013; Mathiassen, Tuunanen, Saarinen, & Rossi, 
2007), and weaknesses in dealing with these 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301378834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kalle@case.edu


Computing Requirements for Open Source Software 
 

1218 

 

requirements’ properties create a constant source of 
project stress and outright failure (Aurum & Wohlin, 
2005; Hickey & Davis, 2003). Over the last decade, 
software development has grown increasingly 
distributed and dynamic, making the RE challenge 
even more formidable. A prominent example of this 
change is the emergence of open source software 
(OSS) development where volunteers, who work 
under open licensing agreements, deliver software in 
a collaborative and distributed manner through public 
development platforms such as SourceForge and 
GitHub (Crowston, Li, Wei, Eseryel, & Howison, 
2007). These arrangements allow source code and 
related design information to be freely used, 
modified, and disseminated among large numbers of 
geographically distributed, autonomous developers. A 
consequence of the distributed structure of OSS 
projects is that they have ambiguous “customer” roles 
and few “stages” or deadlines. Rather, the software 
evolves organically to meet the needs and aspirations 
of its attendant community. The success of several 
OSS projects and communities implies that somehow 
“the right requirements” get decided upon, addressed, 
and eventually implemented “correctly.” The ways in 
which this outcome is achieved are the primary focus 
of the present study. 

Traditional structured software development follows 
well-defined RE principles such as time-bounded 
discovery and documentation of needs conducted by a 
stable team of analysts in relation to a clearly 
identified set of users. This arrangement provides 
clarity around social and technological arrangements 
that identify and manage requirements. Recently, with 
the rising popularity of agile methods, some 
traditional RE activities (e.g., formal requirements 
documentation and modeling) have been replaced by 
dynamic social practices such as face-to-face 
interaction and iterative prototyping. Because of the 
distributed and voluntary nature of OSS, it follows 
neither structured nor agile forms of RE (Crowston & 
Kammerer, 1998; Hansen, Berente, & Lyytinen, 
2009). OSS projects eschew RE formalisms, such as 
detailed project plans and formal specifications 
(Scacchi, 2002) that form the foundation for 
structured approaches to RE, but they also rely on few 
and intermittent face-to-face interactions due to their 
voluntary and distributed natures. In contrast, 
requirements knowledge in OSS is socially embedded 
in various artifacts and conversations, highly diverse, 
and widely distributed (Mockus, Fielding, & 
Herbsleb, 2002). Due to high turnover rates (Robles 
& Gonzalez-Barahona, 2006), diverse motivations 
(Shah, 2006), and self-assignment (Crowston et al., 
2007), the configuration of actors and artifacts in OSS 
projects is also inherently volatile. How then do OSS 
projects successfully carry out RE given their 
dynamic and distributed natures?  

Our knowledge of OSS RE remains limited. The 
small number of studies conducted suggest that OSS 
projects settle requirements “on the fly” as 
participants resolve and negotiate requirements by 
relying on multiple networks of communication 
(Scacchi, 2002, 2009). Past research also sheds light 
on how OSS processes differ from traditional RE 
(Crowston et al., 2007; Scacchi, 2002, 2009; Shah, 
2006). Yet, extant studies do not provide a 
comprehensive account of how RE tasks are actually 
accomplished and how the interweaving of 
participants and artifacts ultimately makes 
requirements discovery, specification, and validation 
possible. In particular, past studies do not explain 
why OSS RE activities appear to be stable, resilient, 
and effective despite the dynamic and heterogeneous 
nature of the requirements knowledge, participants, 
and related processes. Simply put, there is a 
substantial gap in the understanding of how and why 
OSS projects successfully manage their requirements. 
This study seeks to address this gap by focusing on 
how the social, structural, and temporal organization 
of OSS activities enables effective sharing and 
coordination of requirements knowledge.  

In addressing this research question, we approach RE 
as a cognitive task—a knowledge-oriented effort in 
which participants seek to make sense of what 
software should do and why. Given the heterogeneity 
and dynamism of knowledge and its distribution 
across actors and artifacts during OSS (Hansen, 
Robinson, & Lyytinen, 2012), our analysis draws 
upon the theory of distributed cognition (DCog) 
(Hutchins, 1995; Hutchins & Klausen, 1996). This 
theory expands traditional models of cognition 
centered on the mental processes of individuals to 
include an analysis of distributed, knowledge-related 
activities that involve multiple heterogeneous 
entities—both human and artificial. At the same time, 
DCog theory extends cognitive science’s fundamental 
view of “cognition as computation”—i.e., the idea 
that cognition is about the creation and manipulation 
of symbol systems (Simon, 1980)—into broader 
sociotechnical settings. Accordingly, we treat OSS 
RE as a stream of distributed cognitive activities 
focused on what we refer to as the process of 
requirements computation—the transformation of 
vague requirements knowledge embedded and 
discovered within a broader OSS environment, 
through a set of artifacts and social mappings, into 
implementable code that realizes those requirements. 
Such computation is both enabled and constrained by 
the dynamic reconfiguration of actors and artifacts, 
often framed by simple heuristic rules that guide the 
organization and execution of the process.  

We probe the essential characteristics of RE as 
sociotechnical “computation” through an exploratory 
case study of a typical midsized OSS project—
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Rubinius (a Ruby programming language runtime 
environment: https://rubinius.com/). Through the case 
study, we demonstrate that computing requirements 
in an OSS project are made possible by a complex 
and dynamic cognitive system consisting of 
constellations of actors, artifacts, and temporal 
structuring mechanisms. Requirements knowledge is 
discovered through excavating neighboring artifacts 
and technological environments; it is specified 
through code change units identified in ongoing 
discussions and expressed in code segments; and it is 
validated “in the wild” by sharing the code segments 
across a broader OSS community. Specific temporal 
structuring mechanisms such as design heuristics 
focus the cognitive effort on particular elements and 
computational goals at different stages of the RE 
process. These insights provide us with a rich 
foundation for theorizing the mechanisms that make 
highly distributed RE successful within an OSS 
context. The remainder of the paper is organized as 
follows. In the next section, we provide a brief 
introduction to how RE is changing due to new forms 
of software development such as agile methods and 
OSS. This is followed by a review of DCog theory 
which frames the conceptual foundation of our case 
study. Thereafter, we present an overview of the case 
study and detail its key findings. We conclude by 
formulating a model of RE computation in OSS 
environments and discuss implications of our findings 
for RE research and practice.  

2 Theoretical Background 

2.1 Requirements Engineering and the 
Changing Face of Development 

RE refers to processes carried out by software 
developers and other stakeholders to achieve a 
cohesive set of requirements for software. These 
requirements express, in a clear and collectively 
accepted form, what the software is going to deliver 
and why. In general, RE processes address three 
necessary facets associated with requirements 
knowledge: discovery, specification, and validation 
(Hansen et al., 2009). Discovery concerns the 
identification of functional needs associated with a 
given system as well as constraints to which it must 
conform (Mathiassen et al., 2007)—i.e., it addresses 
the question: What do we need to build? Specification 
focuses on the explicit articulation of discovered 
needs, including deriving in detail their functional and 
technical consequences (Hansen et al., 2009)—i.e., it 
addresses the question: How can we articulate, 
express, and share those needs in the most effective 
way? Finally, validation ensures that the requirements 
are correct, complete, and consistent, and therefore 
implementable, commonly understood, and accepted 
(Bahill & Henderson, 2005)—i.e., it address the 

question: How can we be sure that we are working in 
the right direction with the correct requirements? 

In structured development—commonly referred to as 
the waterfall model—these three RE facets are 
executed in a sequential manner (Larman & Basili, 
2003). In addition, waterfall development is largely 
oriented toward the specification component and lays 
a heavy emphasis on formal (often voluminous) 
documentation of requirements, which incorporates 
both natural language and modeling elements 
(Hansen et al., 2009). While the rigid waterfall 
structure was developed as a response to the chaotic 
approaches to RE/software development that 
preceded it (Fitzgerald & Avison, 2003), the slow 
pace and inflexibility of the approach has engendered 
severe criticism (Jarke, Loucopoulos, Lyytinen, 
Mylopoulos, & Robinson, 2011). 

To cope with the increasing rate of change in the 
contemporary business environment, a less rigid, 
iterative form of development has become widely 
popular—agile development. Agile development 
downplays the importance of formal documentation, 
because its advocates argue that the elimination of 
formal documentation can be compensated for 
through interpersonal communication, rapid 
prototyping, and continual replanning (Beck & 
Andres, 2004; Cao & Ramesh, 2008). Therefore, 
agile development emphasizes direct and frequent 
face-to-face interactions between design stakeholders, 
including development team members and clients, as 
a means of discovering and validatimg requirements 
(Conboy, Coyle, Wang, & Pikkarainen, 2011; 
Highsmith & Cockburn, 2001). Being prototype-driven 
and iterative, it also aids in discovering and specifying 
requirements, because prototypes help developers focus 
their discussions in ways that integrate requirements 
discovery, specification, and validation (Cao & Ramesh, 
2008; Ramesh, Mohan, & Cao, 2012). Finally, continual 
replanning and reprioritization introduces flexible 
attention to various requirements questions (Port & Bui, 
2009; Vidgen & Wang, 2009). 

OSS development shares some characteristics with 
the agile approach, such as the commitment to 
iterative development. However, from an RE 
perspective, the OSS model introduces several 
distinct challenges, which originate from the highly 
distributed nature of the development team (a marked 
contrast to agile methods’ ideal of face-to-face 
communications) and the absence of control in OSS 
due to the reliance on a voluntary workforce. As a 
result, the management of requirements knowledge in 
OSS projects has several idiosyncratic characteristics. 
The early studies characterized OSS development as a 
chaotic, bazaar-like engagement (Raymond, 1999) 
where the idea of coordinated RE process would 
largely disappear and become fully an individual 
concern. Yet, recent evidence suggests that OSS 
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communities maintain a relatively stable social order 
through constant mobilization and integration of 
expertise and related community building by using 
free-flowing electronic communications and 
“community events.” Crowston and Howison (2005) 
observed that a typical OSS development community 
organizes itself in an “onion” structure, with a 
relatively small core of dedicated contributors 
surrounded by a larger peripheral community marked 
by lower levels of participation and technical skill. 
The core acts as the gatekeepers of project 
participation, mission, and contribution (Asundi & 
Jayant, 2007). It also controls and coordinates 
knowledge assets necessary to develop and 
implement the code and determines the directions of 
the project (Mockus et al., 2002; Valverde & Solé, 
2007). This community structure implies that the 
discovery, specification, and validation facets of RE 
occur at multiple layers and degrees of intensity 
across the community and that specific arenas of 
knowledge exchange, involving specific 
arrangements of social and electronic 
communications, are likely to serve specific RE tasks 
within each facet. However, past OSS studies have 
primarily focused on static features of communities 
and have not investigated salient social processes and the 
deployment of artifacts that enable knowledge exchanges 
and transform requirements knowledge between different 
layers and functions of the community. 

Recent popular models of software development 
downplay the earlier emphasis on the formal aspects 
of RE. However, because of the nature of design, the 
fundamental goals of discovery, specification, and 
validation need to be honored regardless of the 
development approach adopted (Cao & Ramesh, 
2008). As we argue below, the resolution of these 
questions is conditioned by how the selected 
approach frames and solves a set of cognitive 
challenges related to RE as a collaborative design 
effort. For example, structured requirements 
approaches rely on specification documents and 
formal models—i.e., explicit and relatively closed 
forms of externalized RE knowledge. The use of 
these artifacts, however, has been rendered 
increasingly problematic in development 
environments which are highly complex, dynamic, 
and heterogeneous, while also demanding 
increasingly dynamic ways of expressing and sharing 
diverse requirements knowledge (Jarke et al. 2011). 
Therefore, both agile and OSS approaches tend to 
disavow formal documentation and deny the presence 
of a clearly demarcated requirements phase. In 
contrast, these approaches see requirements discovery 
and validation as dynamic and interwoven social and 
technical practices and rely heavily on social 
mechanisms in expressing and sharing RE knowledge 
(Petersen & Wohlin, 2010). In the OSS context, the 
process grows still more complicated due to the lack 

of control over volunteer developers, who are 
physically and temporally distributed. This renders 
face-to-face communications infrequent and shallow 
(see Appendix A for a comparison of RE principles in 
the three methodologies) and raises the question of 
how RE knowledge is expressed and shared in such 
settings. Because of these differences with OSS, extant 
RE research provides only limited explanations 
regarding how requirements knowledge is effectively 
managed during OSS development (Jarke et al., 2011). 

One fruitful avenue for investigating OSS RE is to 
explore the role and function of heterogeneous 
artifacts and related mechanisms through which 
requirements knowledge is created, maintained and 
disseminated within the OSS community for 
discovery, specification, and validation. Scacchi 
(2002, 2009) observed that OSS communities eschew 
explicit requirements statements in favor of 
“informalisms” buried in threaded discussion forums, 
web pages, email communications, and external 
publications. Recent studies confirm that OSS RE 
relies on evolving heterogeneous online 
documentation scattered across diverse 
representational forms split across multiple channels 
which record intensive exchanges about varying 
aspects of the software (Ernst & Murphy, 2012; Noll 
& Liu, 2010). These studies also show that OSS 
designs and implementations often result from local 
improvisation which is rationalized in discovery and 
specification logic only post hoc, when requirements 
need to be written down (Ernst & Murphy, 2012). 
Though this research stream describes in detail how 
distributed artifacts are used during OSS 
development, it mainly concentrates on reporting 
discursive uses of artifacts and their roles in capturing 
RE knowledge while largely ignoring how the uses of 
these artifacts trigger, influence, and transform RE 
knowledge so as to address the three principal RE 
goals. To put it another way, we do not know how 
cognitive processes necessary for RE and related to 
the use of various artifacts by diverse participants 
unfold within OSS settings. To understand better 
these forms of RE, we will next formulate a cognitive 
approach that helps us analyze such processes. 

2.2 Cognitive Foundations 
Broadly conceived, cognition is the human ability to 
acquire, transform, store, and apply information 
(knowledge) gathered from the environment 
(Shettleworth, 2009). Cognition serves as an umbrella 
term for activities traditionally captured under the 
concept of general mental functioning: “a moniker for 
practically all the interesting functions the brain 
performs to facilitate behavioral adaptations and 
survival” (Cromwell and Panksepp 2011, p. 2027). 
Accordingly, cognitive activity includes such diverse 
functions as attention, evaluation, memory, 
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communication, decision-making, and problem-
solving (Anderson, 2005; Metzler & Shea, 2011). 
Within the field of cognitive science, cognition has 
been specifically framed through the analogy of 
computation—the creation and manipulation of 
symbol systems (Simon, 1980)—to the extent that 
computation has been identified as “the principle 
metaphor of cognitive science” (Hutchins, 1995, p. 49).  

The distributed and sociotechnical nature of OSS 
calls for an analysis of cognition in the presence of 
heterogeneous actors and artifacts. Accordingly, we 
conceive of RE as a form of sociotechnical 
computation. This lens identifies not only the distinct 
and mutually supportive roles of participating social 
actors during cognition, but also their reliance upon 
artifacts during cognition. The idea of RE as 
sociotechnical computation does not, however, imply 
that the processes through which the design 
environment moves from problem formulation to 
solution generation are algorithmic and deterministic; 
rather, the use of the term accentuates the interplay 
between actors and artifacts that jointly promote 
cognition around requirements. 

The rich literature around sociotechnical cognition 
presents several candidates for a cognitive approach 
to OSS RE, including activity theory (Leont’ev, 1981; 
Vygotsky, 1987), transactive memory systems 
(Wegner, 1995), actor-network theory (Callon, 1986; 
Latour, 1987), situated action (Lave, 1988; Suchman, 
1987), and DCog theory (Hollan, Hutchins, & Kirsh, 
2000; Hutchins, 1995). For our purposes, DCog offers 
the most appropriate foundation, because it 
simultaneously considers the social (actor-related), 

structural (artifact-related), and temporal (dynamism) 
aspects of cognitive activities, all of which are critical 
in analyzing how each of the RE facets are 
“computed.” Other theories focus primarily on one 
side of the sociotechnical divide or on comparatively 
narrow aspects of cognition. For example, activity 
theory focuses on a single actor as the unit of analysis 
with less consideration of interplay between diverse 
actors and the degree to which artifacts actually bear a 
cognitive load in information processing. Similarly, 
while transactive memory systems theory attends to 
the distribution of cognitive effort among the 
members of a team, it provides limited consideration 
of the impacts of artifacts on cognition. In addition, 
transactive memory systems theory centers on a 
single cognitive function, namely memory. Actor-
network theory explains why sociotechnical 
knowledge-based networks emerge and achieve 
stability, particularly in the domains of scientific or 
technological innovation. However, actor-network 
theorists are less focused on how such systems 
process information and execute cognitive functions 
on a day-to-day basis; rather their focus is on how 
knowledge is grounded in sociotechnical 
arrangements (Fomin & De Vaujany, 2008). Finally, 
while situated action (Lave, 1988; Suchman, 1987) 
places a significant emphasis on the influence of the 
external world on human action, the approach downplays 
the importance of distinct cognitive objectives or goals in 
favor of contingent and improvisatory responses to 
changing situations (Nardi, 1996). A summary 
comparison of reviewed sociotechnical theoretical 
approaches is provided in Table 1.  
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Table 1. Summary Comparison of Multiple Sociotechnical Theoretical Approaches  

Theory/ 
framework Areas of focus Selected 

citations 

Relative to distributed cognition 

Points of commonality Points of contrast 

Activity theory  Understanding 
human activity as a 
by-product of 
sociotechnical 
systems 

Leont’ev, 1981; 
Vygotsky, 1987 

Emphasizes the role of 
artifacts in human 
activity; focuses on the 
fusion of external and 
internal influences 

Artifacts merely mediate 
human cognition; focus on 
cognitive efforts of 
individuals 

Actor-network 
theory 

Explaining 
formation and 
maintenance of 
innovation 
networks, esp. in 
the sciences 

Callon, 1986; 
Latour, 1987 

Significant concern for 
nonhuman elements 
(actants) in a system; 
knowledge as a product 
of sociotechnical 
operations 

Limited concern for day-
to-day cognition among 
actors; less focus on how 
knowledge is used and 
deployed  

Situated action Understanding the 
influence of social 
and material 
contexts on human 
actions 

Lave, 1988; 
Suchman, 1987 

Emphasis on the 
interaction of human 
beings with the social and 
material environment 

Greater concern for 
contingent response to the 
external word; less focus 
on distinct cognitive goals  

Transactive 
memory systems 

Exploring how 
groups capture and 
store knowledge 
collectively 

Wegner, 1995 Focuses on social 
distribution of cognitive 
load 

Little concern for the 
specific role of artifacts in 
cognition; primarily 
concerned with memory 
functions 

2.3 Distributed Cognition 
DCog theory considers how cognitive tasks are 
executed through the interaction of distributed actors 
and artifacts (Hutchins, 1995; Hutchins & Klausen, 
1996). Accordingly, it offers a fruitful lens for 
analyzing OSS RE as it accommodates the roles of 
heterogeneous actors and artifacts in pursuing 
discovery, specification, and validation of 
requirements. While maintaining the metaphorical 
framing of cognition as computation, DCog theory 
breaks with traditional cognitive science by asserting 
that cognitive processes are not bounded by an 
individual’s mind (Rogers & Ellis, 1994). Not only 
does cognition extend beyond the brain to other parts 
of the body (e.g., our hands as we write), but also to 
other humans and the physical environment 
(Hutchins, 1995). Hence, during cognition, relevant 
information gets distributed and transformed across 
actors and physical artifacts over time and space. 

Given the shift in scope, DCog reformulates cognition 
as “the propagation of representational states across 
representational media” (Hutchins 1995, p. 118), 
where a representational state is “a configuration of 
the elements of a medium that can be interpreted as a 
representation of something” (Hutchins 1995, p. 117). 
In the context of OSS RE, representational states 
would cover diverse ways in which requirements 

knowledge is perceived, communicated, refined, and 
instantiated in a software artifact. This framing 
embraces both internal (e.g., an individual’s mental 
states) and external representations (e.g., embodied 
artifacts) (Rogers & Ellis, 1994). As these 
representational states change over time and across 
media, information propagates through the cognitive 
system. In the context of OSS, the cognitive system is 
all actors and artifacts that perceive, store, transform, 
and transfer requirements knowledge. 

Specifically, DCog theory identifies three intertwined 
modes of cognitive distribution (Hansen et al. 2012; 
Hollan et al. 2000): (1) social distribution, (2) 
structural distribution, and (3) temporal distribution. 
Social distribution spreads cognitive workload across 
members of a group and reflects the cognitive 
processing resulting from the interactions of multiple 
actors with diverse skills and expertise. Structural 
distribution allocates cognitive workload through the 
use of external artifacts—representational forms 
which store, display, and process information (Hollan 
et al., 2000). Such artifacts afford specific ways to 
shoulder cognitive activities such as memory, 
visualization, or inference. OSS projects use artifacts 
for RE such as document repositories or recording 
histories of design discussion (memory), layout, and 
wireframes (visualization), etc. Finally, temporal 
distribution spreads cognitive workload over time, 
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where preceding cognitive efforts establish a 
foundation for the subsequent ones. Several OSS 
practices, such as code reuse and patterns, manifest 
temporal distribution (Raymond, 1999). These modes 
of distribution provide a valuable lens for comparing 
development models (Hansen, Lyytinen, & Kharabe, 
2015). For example, while comparing waterfall and 
agile approaches, one observes substantial differences 
in the mechanisms of social distribution (e.g., strict 
specialization of work vs. close interpersonal 
interaction), structural distribution (e.g., emphasis on 
formal documentation vs. informal mock-ups and 
rapid prototyping), and temporal distribution (e.g., 
sequential ordering of states vs. intense iteration 
between) of cognitive effort. In general, the waterfall 
approach places priority on structural and 
sequential temporal forms of distributions, while 
the agile approach emphasizes social and recursive 
temporal forms of distribution. 

Because DCog approaches cognition as a form of 
computation, it also places significant emphasis on 
the impact of heuristics—“rules of thumb”—that 
convey how (and under what conditions) the 
propagation between representational states happens. 
Heuristics embody rough “algorithms” that represent 
the content and nature of computation. Heuristics 
often combine multiple cognitive functions, including 
evaluation (e.g., establishing thresholds/acceptance 
criteria), memory (e.g., reducing the elements to be 
maintained in working memory), decision-making 
(e.g., providing tacit decision rules), and problem-
solving (e.g., conducting trouble-shooting through 
causal attribution). Overall, heuristics embody higher-
order knowledge within a given domain—“discipline-
appropriate problem-solving strategies and patterns of 
justification, explanation, and inquiry” (Perkins 1993, 
p. 101). Ultimately, they encapsulate available 
inferential knowledge regarding the “what, when, and 
how” of computation. Akin to design patterns 
(Mangalaraj, Nerur, Mahapatra, & Price, 2014), 
heuristics can be combined into larger cognitive 
patterns (Vidgen & Wang, 2009). Building upon 
these foundations the present study will pursue the 
following research questions: 

RQ1: In what ways is requirements-oriented 
cognition distributed across actors and artifacts in 
OSS development?  

RQ2: What are the specific mechanisms through 
which OSS requirements are dynamically 
computed? 

RQ3: How do the system-level dynamics between 
actors and artifacts unfold during requirements 
“computation”?  

3 Research Design 

3.1 Project Selection 
Given the novelty of using a cognitive approach to 
study OSS RE our study is exploratory and motivated 
by the need to identify critical actors and artifacts and 
the constellations involved in OSS RE 
“computation.” Accordingly, we wanted to sample a 
representative case to achieve a holistic and 
generalizable understanding of the phenomenon 
(Eisenhardt, 1989; Yin, 2009). The criteria for 
selecting a representative case embodied Lee, Kim, & 
Gupta’s (2009) criteria of OSS success which 
encompasses both software and community service 
quality: (1) the project should be of reasonable size 
(i.e., greater than one million lines of code) to be 
representative of a population of successful OSS 
projects; (2) the project should have a relatively large 
developer community (i.e., greater than 100 
developers), so as to be representative of more widely 
distributed RE processes; and (3) the project should 
have had at least one official release, indicating initial 
success in deriving and managing requirements. 
Based on these criteria, we selected the Rubinius 
project, which has over 2.6 million lines of code, 
more than 100 contributors, and had its first release in 
late 2010 followed by multiple successive releases. 
Our data collection focused on the period between 
spring 2010 (when Rubinius 1.0 was launched) and 
fall 2012 (when the Rubinius 2.0 preview was 
launched). This period involved a new round of 
efforts to prepare for the Rubinius 2.0 release and 
involved significant extension in software 
functionality. A detailed description of the Rubinius 
project is provided in Appendix B.  

3.2 Data Collection 
We drew on multiple sources of data which enabled 
data triangulation and use of complementary evidence 
(Yin, 2009). Our primary data collection method was 
interviewing aimed at investigating how project 
participants understand and work with design 
requirements. During interviews, we followed a 
critical incident approach by asking respondents to 
describe specific cases where a requirement was 
successfully implemented and cases where it was not. 
We then sought to “follow” requirements computation 
by tracing the movement of knowledge through the 
system in all cases. To support a comprehensive and 
systematic data collection, we developed an open-
ended interview protocol prior to data collection 
(Eisenhardt, 1989; Yin, 2009). The protocol was 
refined and augmented as the study progressed. The 
final protocol is provided in Appendix C.  

In our sampling, we followed theoretical and 
snowballing techniques (Corbin & Strauss, 2008). To 
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help in sampling salient respondents, an initial 
interview was conducted with the founder of 
Rubinius. He helped us identify other relevant 
respondents and facilitated access to them. Our 
criterion in sampling was to cover all key stakeholder 
groups in the project, including core team members, 
peripheral developers, participants with different 
technical skills or roles (e.g., encoding), and 
representatives of the sponsor. A total of 17 
interviews were conducted over a six-month period 
from September 2012 to February 2013, and 13 were 
with members of the Rubinius community. We 
interviewed all three core members, who contributed 
to 2.2 million lines of code, accounting for 
approximately 85% of the total lines of code by the 
end of 2012. These three subjects were interviewed 
several times to validate and deepen our 
understanding of the process. In addition, we 
conducted an interview with a senior vice president at 
Engine Yard, the primary organizational sponsor of 
Rubinius. We stopped seeking more interviewees 
when theoretical and empirical saturation was 
achieved (i.e., we ceased to gain additional insights 
from the interviews and the empirical cases could be 
accounted for by the emerging theory).  

The interview protocol was emailed to all respondents 
prior to the interview so that they could prepare for 
the interview by recalling critical incidents. 
Interviews lasted between 60 and 90 minutes and 
covered the key elements of the protocol, with 
additional probing when salient issues were 
identified. Because of the distributed nature of the 

community, most interviews were conducted via 
videoconferencing. Due to one respondent’s linguistic 
limitations (e.g., lack of comfort with speaking 
English), one interview was conducted through instant 
messaging over Skype. All other interviews were audio 
recorded with the permission of the respondents. The 
recordings were transcribed and follow-up emails were 
occasionally used for clarification. Overall the 
interview corpus covered 393 pages of transcribed text, 
containing more than 140,000 words. 

In addition to interviews, we collected archival data 
from the project’s GitHub repository. This data 
represented a heterogeneous mix of project 
documentation, including project descriptions, 26 
blog posts, 1082 instances of stated issues, and 604 
instances of pull requests. We also collected direct 
conversations between project stakeholders archived 
in the project’s mailing list (35 email threads). To 
manage the overwhelming size of this dataset, a set of 
emic (Headland, Pike, & Harris, 1990) keywords 
were elicited from the interviews (see Appendix D for 
details on this procedure). We then searched the 
archival data sources for these keywords, and selected 
all entries that matched. This helped us pare down the 
archival data to a manageable slice of relevant data. 
Internet relay chat (IRC) messages, numbered in the 
hundreds of thousands, were selected when an interview 
or archival item explicitly pointed us toward them. 
Analysis of the archival data sources helped validate, 
refine, and triangulate the data and insights generated 
through interviews. A summary of data collection 
activities and data types is provided in Table 2. 

Table 2. Summary of Data Collection 

Data sources Descriptions 

Interviews  A total of 17 interviews conducted with 393 pages of transcribed data, composed of 16 interviews 
with 13 committers within the Rubinius community (including multiple interviews with the three 
core developers) and one interview with a senior vice president at Engine Yard Company 

Archival data 1082 issues and 604 pull requests, 26 blog posts, and 35 threads from the developer mailing list 

3.3 Data Analysis  
In line with grounded theory methodology (Strauss 
and Corbin 1990), we began data analysis while 
collecting data. We analyzed the interview transcripts 
using open, axial, and selective coding (Strauss & 
Corbin, 1990). As the coding process evolved, we 
triangulated our initial findings in light of a number 
of extant theories that focused on the interplay of 
individuals and artifacts within the cognitive effort of 
teams. These included the theories summarized in 
Section 2.2 above. While we were careful not to force 
the theoretical structures onto our data set, the 
principles of DCog theory emerged as a critical 
sensitizing device (Corbin & Strauss, 2008; 

Eisenhardt, 1989), suggesting a strong fit with our 
observations in the Rubinius project. In all phases 
of data analysis, we used Dedoose analysis 
software (http://www.dedoose.com) to code the 
relevant data sets. The detailed steps of the coding 
are presented in Appendix E.  

4 Findings  
We delineate our key findings in four steps. First, we 
provide three illustrative vignettes of how several 
features implemented in various Rubinius releases 
emerged through RE processes. We will detail the 
implementation of: concurrency (a metarequirement 
with regard to parallel processing), flip-flops (a 
sophisticated logic operator), and 
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profiler/benchmarking functionalities (tools for 
identifying performance gaps). These vignettes are 
intended to offer a sense of the dynamism involved in 
requirements computation. Second, we explore how 
requirements computation is socially and structurally 
distributed in Rubinius across all observed RE 
activities. Third, we show how computation is 
temporally distributed through trends, patterns, and 
heuristics across all observed implemented features. 
Fourth, we synthesize these analyses into a 
generalized OSS RE model which distinguishes three 
broad classes of recursively organized cognitive 
processes—excavation, instantiation, and testing-in-
the-wild—which we put forward as distinct stages of 
requirements computation within OSS. 

4.1 Three Vignettes Illustrating 
Requirement Engineering 
Computation 

The vignettes that follow are emblematic of the ways 
in which requirements knowledge is discovered, 
specified, and validated in Rubinius. We include 
these here to provide the reader with a firsthand sense 
of how RE processes unfolded within the Rubinius 
community. When we consider these vignettes, 
several salient features about the distribution of 
cognitive load during RE become visible including 
distinct dimensions of distribution (i.e., social, 
structural, and temporal), reliance upon several 
heuristics to guide actions, and what patterns of 
propagation across representational states emerged. 
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Table 3. An Example of RE Computation in Rubinius—Concurrency 

Given the increasing prominence of multicore processors, concurrency was acknowledged as a technological 
change worthy of the Rubinius community’s attention. One day, in the midst of regular IRC channel exchanges, 
a Rubinius committer called attention to the lack of support for multicore programming in Rubinius. This 
functionality was missing because Matz’s Ruby Interpreter (MRI, a standard Ruby interpreter upon which 
Rubinius is based) did not yet support runtime concurrency even though concurrent I/O had been implemented.  

This observation elicited a conversation on IRC about the feasibility of implementing concurrency in Rubinius. 
Examples of the concerns voiced at that time included “Running concurrency forces Rubinius to suck down 
GIL [Global Interpreter Lock] timeslices.” Based on this exchange, the core committers decided to “give it a 
try” by attempting to develop this new feature. The main objective was to improve Rubinius’s runtime 
performance. One of the core committers tentatively began to develop the feature. During the process, the 
general idea (runtime concurrency requirements), which initially had surfaced during IRC conversations, was 
translated into a series of informal specs and corresponding code. After several days of exploratory 
development, the core committers concluded that runtime concurrency might indeed be a feasible feature.  

Accordingly, they established a new branch on GitHub, dubbed Hydra, to pursue this work. This decision 
kicked off another round of trial-and-error experimentation recorded under the new branch and characterized as 
“experiments with concurrent allocation and full stop GC [Garbage Collection].” After several months of 
experimentation, one of the core committers published a post on the Rubinius website 
(http://rubini.us/2011/02/17/rubinius-what-s-next/) announcing that, “I’d like to introduce the work we are 
doing on the Hydra branch and the features you can expect to see in Rubinius soon.” By then, the Hydra code 
had proven to be relatively stable so that runtime concurrency could be effectively demonstrated.  

Next, a baseline implementation was formed where the core committers merged the then-current master branch 
with Hydra. This indicated that the new feature was ready for the wider community to “play with.” Several 
individuals and related communities began to test their own software projects that would need such a feature to 
determine if the newly implemented functionality would serve their needs. The developers also ran the baseline 
implementation against MRI to see whether it worked as expected. During this process, the stated requirement 
of runtime concurrency was validated with the support of multiple artifacts such as MRI, GitHub, Puma (a web 
server), and Travis (a continuous integration server). When tests failed or the baseline implementation crashed, 
the developers were encouraged to identify new bugs and report them via GitHub in the form of issues and pull 
requests. For example, one developer raised an issue concerning “Randomizer in Hydra segfaults” when 
running the Hydra branch under high load (https://github.com/rubinius/rubinius/issues/726). One of the core 
committers addressed this issue by “adding spinlock around state in Randomizer.” However, resolving the issue 
triggered another problem (e.g., fault in Inline Cache). Therefore an issue 
(https://github.com/rubinius/rubinius/issues/729) was later opened signaling the creation of new requirements 
to be considered. 

The first vignette focuses on the emergence and 
evolution of a requirement around concurrency of the 
running code. Socially, we can see the activity of 
distinct sets of social actors, such as core committers, 
peripheral developers, and external communities, who 
play different roles with respect to the discovery, 
specification, and validation of the concurrency 
requirement. For example, the idea originally 
emerged from a peripheral committer and was then 
discussed extensively within the core through the IRC 
channel. The idea was subsequently taken up by a 
core committer who proposed a tentative solution 
which was then shared with a broader group of core 
committers, resulting in a spec. Structurally, several 
artifacts are prominent in the computation process, 
including the GitHub platform, IRC channels, 
informal specs, and related software platforms. These 
were critical in storing, displaying, and distributing 
knowledge or generating new knowledge through 

experimenting around focal requirements. As with the 
social actors, the prominence of these artifacts varied 
widely at different stages of the process. For example, 
specs were important in the early stages but not relied 
upon in the later stages. Finally, temporal distribution 
shows how efforts build upon one another. For 
example, the processing of the idea moved into an 
IRC channel, then into tentatively implemented code, 
then into an informal spec, and so on. These steps 
show how the whole Rubinius ecosystem moves from 
initial problem identification toward resolution and 
ultimate feature use. Interestingly, the community 
employed fairly simple behavioral norms (i.e., 
heuristics) to foster the evolution of the desired 
functionality over time. For example, one core 
committer volunteers to “give it a try,” reports his 
results in an informal spec, which is then expanded to 
a fuller, potentially promising implementation, 
providing the justification of a new branch in the 
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GitHub repository. Overall, we see a trace of 
mappings from one representational state to 
another where the concurrency feature was 

expressed as an idea, as a set of recorded notes in 
the IRC channel, as a set of tentative software 
solutions, as informal specs, and so on. 

Table 4. An Example of RE Computation in Rubinius—Flip-Flops 

A Rubinius committer, who wanted to “try something new and crazy,” opened an issue in GitHub related to 
implementing a flip-flops feature, which already existed in MRI. However, this issue was closed by one of the 
core committers because flip-flops were deemed “esoteric and unnecessary.” The core committer refused to 
regard flip-flops implementation as a new requirement until the committer could show him real-world code that 
used it. The committer therefore examined the MRI source code and asked the larger community of Ruby 
developers whether anyone was using flip-flops. Fortunately, a Ruby developer came up with “the weirdest 
code example” that illustrated a valuable use case. Given that flip-flops behavior could be found in MRI and a 
real-world use-case existed, the core committer conceded and agreed to include the flip-flops feature in 
Rubinius.  

Accordingly, the committer began to work on the flip-flops feature as a trial-and-error experiment under a new 
branch in GitHub, eponymously named flip-flop. Due to insufficient tests for flip-flops, the committer 
“searched through RSpec [a specification for describing the behavior of MRI]” and communicated with core 
committers from time to time “on IRC mainly” to write and adjust specs and code until they passed on MRI and 
Rubinius. The committer “went into wherever the compiler was throwing errors and just added the code 
necessary.”  

Although the core committers did not take charge of the actual coding process, they always guided the 
committer and were involved in writing some specs and code. For instance, a core committer commented 
regarding the issue “sexp_key should be sexp_name to be consistent with existing code” and another committer 
commented “This isn’t thread safe at all . . . Flipflops should just be implemented using stack locals . . .” 
(https://github.com/rubinius/rubinius/pull/1257). Once all specs and code passed, the related commits were 
merged into the master branch, which signaled to the wider community that the feature was ready to be 
validated. 

In the second vignette, we can again see social, 
structural, and temporal distribution. Socially, core 
committers, peripheral committers, and external 
communities are all involved in the computation of 
the flip-flops requirement. Flip-flops—sophisticated 
logic operators allowing for multiple truth 
conditions—already existed in MRI. Therefore, a 
peripheral committer proposed their implementation 
in Rubinius, but the proposal was turned down by a 
core committer on the grounds that it was “esoteric 
and unnecessary” from a cost-benefit perspective. 
Later on, the functionality was supported by a real-
world use-case submitted by a Ruby developer in an 
external community, which convinced the core 
committer of the usefulness of the functionality; 
therefore, the functionality was eventually accepted 
for inclusion in Rubinius release. Structurally, we can 
see the importance of GitHub, MRI, Ruby-related 
projects, RSpec, and the IRC channel in perceiving 
and evaluating knowledge and generating a solution. 
The existence of flip-flops in MRI triggered the 

peripheral committer to raise the issue of flip-flops in 
GitHub’s Rubinius repository, enabling the core 
committer to evaluate its feasibility. As real-world 
code from Ruby-related projects emerged, the 
functionality was reevaluated by the core committer, 
and the implementation could be moved forward by 
the peripheral committer. Afterwards, the knowledge 
of the flip-flops requirement flowed from RSpec, 
which directed the peripheral committer to write 
specs describing the desired flip-flops behavior of 
Rubinius. The peripheral committer first turned to 
MRI which provided a baseline for the functionality’s 
intended behavior and then to the IRC channel which 
facilitated problem solving. Temporally, we can 
observe how subsequent efforts rely on preceding 
efforts, from functional discovery to validation. For 
example, the processing of the function was translated 
into a bug report on GitHub, which was then 
transformed into specs and code, and eventually 
transformed into changes to the master branch.
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Table 5. An Example of RE Computation in Rubinius—Profiler/Benchmarking 

As an interpreted (as opposed to compiled) programming language, Ruby has often been accused of being slow. 
Rubinius, being written largely in Ruby, as opposed to C (in which MRI is written), has also received its fair 
share of accusations in this regard, but the community largely considered it to be its mission to overcome such 
performance constraints (“the hope that Rubinius actually would be faster”). To realize this hope, Rubinius core 
developers launched an initiative for “improving the JIT compiler.” A particular feature requested to help 
realize this vision was to implement benchmarks for specific methods (e.g. “Added a benchmark to allow 
performance comparison of Array#permutation against other Ruby implementations”), as well as an improved 
profiler which allows for very detailed profiling, i.e. “type profiling,” which in turn enables developers to 
understand performance in relation to specific object types and methods.  

The overall process of identifying performance gaps relies on the involvement of the community, leading the 
core developers to essentially make a call for contributions: “Rubinius is calling on the über programmers of the 
world to implement solutions in Ruby to help us identify performance challenges and address them.” Through 
this call, Rubinius could harness the capacity of “oceans of regulars” to look into the various nooks and 
crannies of the codebase, using the profiler and the associated benchmarks, so as to find places where the 
performance of Rubinius could be improved. 

In the last vignette, we see how a persistent need for 
speed generates the implementation of a set of tools—
a profiler and associated benchmarks for improving 
the just-in-time (JIT) compiler. In this vignette, 
significant social distribution helps gather a large 
number of benchmarks. These benchmarks then 
constitute a widened structural distribution of artifacts 
that allows developers in multiple situations to 
compare their code to the benchmarks. Temporally, 
the core initiates the development of a tool (i.e., the 
profiler), so as to activate the broader social 
distribution, which in turn generates and activates a 
broader benchmark-oriented structural distribution, 
thus sequencing the various forms of distribution 
across time, so that the work performed through 
structural distribution builds upon work performed first 
by the core and later a broader community of actors. 

In summary, these vignettes illustrate the rich 
dynamics across the social, structural, and temporal 
forms of cognitive distribution. Next, we consider 
generic social and structural elements present in 
Rubinius RE as well as discuss how they are tied 
together by temporal distribution mechanisms. 

4.2 Social and Structural Distribution 
Mechanisms 

4.2.1 Social Distribution 
Overall, social distribution is concerned with 
allocating cognitive workload across members of a 
group of actors involved in RE computation. Table 6 
shows the social distribution mechanisms in 
Rubinius, with an emphasis on the distinct analytical 

categories and actor types observed. These categories 
classify actors according to their relative position 
within the Rubinius project and the cognitive 
activities in which they participated. These include: 
(1) the focal community (i.e., actors internal to the 
project), (2) sponsors (i.e., actors neither entirely 
internal nor external to the project), and (3) external 
communities (i.e., actors external to the project). 
Because of Rubinius’s open commit policy (i.e., 
anyone who gets a pull request accepted is 
automatically granted commit rights to the 
repository), we can distinguish between internal and 
external participation based on whether or not actors 
have a commit access to the project. The position of 
sponsors cannot be deemed to be entirely internal or 
external, since some actors may directly contribute to 
the Rubinius codebase while others may not. 

Each category supports different cognitive functions 
in provisioning and manipulating requirements 
knowledge. These functions reflect the necessary 
distribution of the cognitive workload across social 
and organizational boundaries. Based on these 
functions, the focal community can devote their 
software knowledge and technical expertise to RE 
activities with the benefit of sponsor input. External 
communities, in contrast, provide mainly an impetus 
for the discovery of new requirements. Though the 
Rubinius community experienced high member 
turnover, the roles related to requirements 
computation and related knowledge flow remained 
relatively stable across the study period. Thus, the 
skills of the actors in specific social positions (see 
Table 6) largely determined how the requirements 
knowledge became socially sourced and distributed.
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Table 6. Summary of Social Distribution Mechanisms 

Actors Descriptions Functions in cognitive system 

Focal community 

Core committers Actors engaging in the daily management of the project; 
responsible for guiding the overall project direction and 
coordinating development activities; generally reflecting 
extended involvement on the project and regular contribution 
of new features 

Providing domain and content-
specific knowledge 

Problem solving and decision-
making 

Peripheral 
committers 

Actors primarily contributing to discovering, reporting, and/or 
fixing bugs; occasionally contributing new features, with 
sporadic, periodic, or seasonal involvement  

Providing content-specific 
knowledge 

Perception and communications 
of issues/problems 

Sponsor 

Engine Yard Platform-as-a-Service (PaaS) company focusing on Ruby on 
Rails and PHP development and management; providing 
financial support to several Rubinius committers 

Providing domain knowledge  

Perception and communications 
of needs 

External communities 

Ruby developers/ 
users 

Actors working on or using the Ruby programming language Providing use-cases and 
technical skills  

Perception of needs 

Evaluation of functionality 
Ruby on Rails 
developers/ users 

Actors working on or using Rails, a web application 
framework for the Ruby programming language 

Engine Yard 
customers 

Users of Engine Yard services 

Puma users Users of Puma, a concurrent HTTP 1.1 server for Ruby web 
applications 

Travis users Users of Travis, a hosted continuous integration service for 
open source projects 

Within the focal community, RE relied heavily on the 
emerging vision of core committers. This vision was 
strongly rooted in the knowledge gained in 
developing Rubinius 1.0, including both domain 
knowledge (e.g., regarding the Ruby environment) 
and content-specific knowledge (e.g., regarding 
certain Rubinius components such as virtual 
machines, benchmarks, and standard specifications). 
Apart from a small number of core committers, 
hundreds of peripheral committers carried out specific 
aspects of requirements discovery. For example, a 
peripheral committer, who previously used an 
external “gem” (i.e., a package) for a specific 
purpose, submitted a pull request to make said feature 
part of Rubinius: “I use FFI::Pointer.size in a gem to 
check if I’m on a 32-bit or 64-bit platform, and I 
imagine I’m not the only one doing that . . . I hope 
this is a good addition to Rubinius.” Their RE 
activities focused on discovering and settling 
requirements questions by drawing on their diverse 

expertise and interests. The following two statements 
illustrate the social dynamic of the focal community: 

[One of the core committers] has like most 
of the interknowledge because he wrote 
most of Rubinius. His hunches of what [a 
problem] could be usually come quicker. 
That’s the biggest difference, as you 
probably get to know the whole code base 
and how it works in these cases. 

Most people did have some kind of 
narrower focus . . . There were some 
people who worked just on the VM or the 
code generation, but a lot of the 
contributors worked solely on Ruby, solely 
on the specs, or just implementing 
standard functionality. 

The distribution of requirements knowledge was not 
limited to the focal community. It was complemented 
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with the support of Engine Yard, which had a strong 
emotional tie to OSS in general and the Ruby 
programming language, in particular. They were 
culturally embedded within the larger OSS 
community and “wanted Ruby to win,” i.e., become 
an established programming language. During the 
study period (i.e., 2010 to 2012), Engine Yard 
representatives did not propose any formal functional 
requirements for Rubinius; they respected the will of 
the Rubinius community. Rather, they provided 
useful advice to the community on how to specify and 
implement requirements. In addition, Engine Yard 
facilitated Rubinius’s exposure to other external 
communities by providing Rubinius as an option for 
their clients on the Engine Yard platform. In this 
regard, Engine Yard’s sponsorship helped Rubinius 
build relationships with external communities and 
thereby increase the credibility of the RE process and 
validity of the requirements.  

Indeed, many of the salient requirements flowed from 
external communities including GitHub, the Engine 
Yard platform, Puma, and Travis CI (Continuous 
Integration). External communities refer here to a 
variety of Ruby-related users and developers, who 
contributed requirements knowledge to Rubinius 
based on their domain or technical skills. These 
related communities provided use-cases which helped 
make certain requirements explicit, public, and highly 
specific. A committer’s comment provides a useful 
illustration of this role: 

People will try out Rubinius and something 
will break and they submit a bug report . . . 
There are some people that don’t want to 
deal with Rubinius—they don’t really care, 
essentially—but Travis still gives them an 
opportunity to test on Rubinius and maybe 
allows for the failure so the Rubinius team 
can see what’s happening and diagnose or 
create an issue to make an improvement. 

4.2.2 Structural Distribution 
Structural distribution refers to the distribution of 
cognitive workload through the presence and use of 
external (representational) artifacts. In the case of 
Rubinius, nearly all notable artifacts were digital in 
nature due to the significant geographic distribution 
of the work and extensive use of software 
development platforms (GitHub)1. Table 7 provides a 
summary of structural distribution mechanisms in 
Rubinius. Four categories of structural artifacts—i.e., 
web resources, system artifacts, communication 
channels, and environments—were identified based 
on characteristics of the medium and the functions 
that they served in propagating requirements 
knowledge forward. Importantly, this suggests that 
these observed forms of distribution do not simply 
reflect the current state of the requirements 
knowledge at a certain point; rather, these artifacts are 
iteratively and recursively mobilized and modified as 
requirements knowledge evolves. 

                                                      
1 While analog artifacts (e.g., notepad sketches, whiteboards) 
may be used by individual Rubinius developers, these could 
not be “verified” empirically, given the nature of the study. 
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Table 7. Summary of Structural Distribution Categories and Artifacts 

Artifacts Descriptions Functions in cognitive 
system 

Web Resources 

Rubinius 
website 

A website for introducing, documenting, and blogging about the 
Rubinius project 

Directing perception of focal 
community members 

Establishing parameters or 
constraints on the solution 
space 

Creating external memory 
functions 

Rspec A specification for describing the expected behavior of the Ruby 
programming language 

RDocs Documentation generated for the Ruby programming language 

RubySpec An executable specification for the Ruby programming language 
that is syntax-compatible with RSpec 

System artifacts 

GitHub A web-based hosting service for software development projects Automation of computational 
processes 

Creating external memory 
function  

 

Enabling evaluation of 
proposed or instantiated 
functionality 

Directing perception of focal 
and external communities 

Engine Yard 
platform 

A cloud Platform-as-a-Service (PaaS) for Ruby on Rails, PHP and 
Node.js applications 

Puma 
webserver 

A concurrent HTTP 1.1 server for Ruby web applications 

Travis CI A hosted continuous integration service for OSS projects 

MRI  A standard Ruby interpreter 

Tools Git, A debugger, Gdb, Insiter, etc. (different developers used 
different tools with respect to personal preferences)  

Ruby-related 
projects 

Projects testing on/against Rubinius 

Communication channels 

Mailing list Email lists for community discussions Enabling communication 
between social actors 

Facilitating decision-making 

Supporting perception of 
hidden or latent requirements 

Creating external memory 
functions 

Skype Internet telephony and video teleconference 

IRC channel Internet relay chat discussion forums 

Phone call Traditional telephony 

Environments 

Hardware The environment of contemporary hardware architectures (e.g., 
multicore processors) to which Rubinius must relate 

Enabling perception of broader 
technological capabilities 

Facilitating decision-making Software The environment of contemporary software architectures (e.g., real-
time web interfaces) to which Rubinius must relate 

Web resources consists of the project’s web pages. 
These served as sources of input or output to 
requirements computation, by rendering requirements 

knowledge in explicit (textual and graphical) form. 
Primarily, these resources supported discovery of 
relevant requirements knowledge in that they helped 
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respective actors produce and then perceive and evaluate 
salient issues in the expected functioning of Rubinius 
and the Ruby programming language. Further, they set 
the baseline goals and criteria for the subsequent testing 
of identified requirements. The role of RubySpec2—a 
key web resource—provides a useful illustration:  

RubySpec is an executable specification 
part of Ruby language libraries. It is what 
Rubinius tests itself against and it 
maintains a set of tags which basically say, 
“This particular RubySpec fails on 
Rubinius.” So this is a point that Rubinius 
needs to fix—to find out either where the 
problem is or [determine] if it is something 
that hasn’t been implemented yet. 

System artifacts are software tools that automate 
certain computational processes related to 
requirements. In particular, the GitHub platform 
serves as Rubinius’s organizational memory by 
recording what, how, and when each piece of code 
was created and by whom. Accordingly, much of the 
activity around requirements discovery, specification, 
and validation takes place on GitHub by tracing the 
ongoing commentaries and related knowledge 
provisioning associated with pull requests and issues 
reports. The platform also offers a way of recording 
and maintaining “who knows what” knowledge. As a 
committer noted: “GitHub just made it easy for 
people to jump in and contribute, and for us to handle 
the code.” MRI, the Engine Yard platform, Puma 
webserver, Travis CI, and other Ruby-related projects 
also served as significant sources for requirements 
discovery and management from external 
communities. These system artifacts played a critical 
computational role in requirements identification, as 
their functionality (e.g., continuous integration, 
automated testing) simplified the information 
processing demanded of the developers. For example, 
with the use of continuous integration, the burden of 
assessing the status of the build was transformed from 
a cognitively intensive task (e.g., continuous review, 
manual testing) to a comparatively simple task of 
observing a status indicator. For the pull request 
“Running spec/ruby/core for 1.8 fails,” Travisbot (an 
automated “bot” used by the Travis CI system) would 
leave a comment indicating: “This pull request passes,” 
while in the pull request “Completely fix deadlocks of 
Thread#raise,” Travisbot would leave a comment 
among discussions indicating: “This pull request fails.” 

                                                      
2  RubySpec is a collection of executable specification 
documents available on the web for the Ruby programming 
language. It describes Ruby language syntax and standard 
library classes. A detailed description of RubySpec is 
provided in Appendix B. 

Communication channels refer to various (mostly 
electronic) media through which project-related 
information gets communicated between developers 
and other stakeholders. They played a pivotal role in 
enabling requirements knowledge to flow across 
boundaries and revealing hidden or latent 
requirements, thereby making them exchangeable 
with other members of the community. The most 
prominent communication channel in Rubinius was 
IRC (“Have you been to the IRC channel? Things are 
actually discussed there”), which served several 
functions in the cognitive system including facilitating 
problem perception, enabling solution generation, 
promoting decision making, and capturing the history 
of requirements-oriented discussions (i.e., memory). 
The following two quotes illustrate these roles:  

We were talking about [the concurrency 
stuff] on the IRC Channel one day and it 
got me thinking and I was like “I’ll just do 
it as a spike and see how far I can get.” 

We did coordinate pretty much exclusively 
on the IRC channel. . . . The actual 
discussions mostly took place on IRC, and 
just told people what we were doing or 
going to be doing. If somebody needed 
help or assistance in implementing 
something, then they notified there and we 
would come and help.  

Environments represent broader sociotechnical 
contexts in which the project exists. Specifically, they 
consist of software and hardware that are relevant in 
relation to new features being considered for 
implementation. For example, the emergence of new 
hardware architectures with multicores established 
the importance of supporting such hardware features. 
This external development offloads some of the 
cognitive burden from the team in making decisions 
and helping delineate some features as being more 
relevant than others. As a result, real-time web 
interface functionality, which could capitalize on the 
concurrent runtime capabilities of multicore 
processors, became a promising avenue to pursue. In 
order to stay abreast of the technical state-of-the-art, 
Rubinius needs to support such functionalities. Thus, 
implicit requirements were often embedded within 
hardware and software architectures that influenced 
Rubinius’s implementation: 

The concurrency stuff is because of 
industry . . . It’s just the technology. 
People are building other core CPUs and 
putting them in everything, so we knew we 
had to have those features.  

4.3 Temporal Structuring Mechanisms 
We observed three temporal structuring mechanisms, 
through which requirements knowledge evolved over 
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time: (1) trends, (2) patterns, and (3) heuristics. These 
mechanisms are hierarchically organized and 
recursive (i.e., trends incorporate multiple patterns, 
patterns incorporate multiple heuristics). At the 
highest level, trends represent broad environmental 
expectations of technology such as the evolution in 
hardware or software environments or the emergence 
of nonfunctional requirements (e.g., security 
standards). By establishing a context for 
technological advancement, trends influence an OSS 
project’s relationship with its external environment 
and especially the temporal pacing of requirements 
discovery, prioritization, and implementation. 
Patterns aggregate salient heuristics to facilitate 
requirements computation in an orderly manner in 
order to ensure that all three RE facets are addressed 
consistently (e.g., creating a shifting focus of work at 
different stages of release development). 3  Patterns 
typically operate within the timescale of a release 

                                                      
3 Our concept of “pattern” is distinct from the way the term 
is used in programming. However, it is consistent with 
Alexander’s (1964) original idea in that patterns reflect 
generic approaches to problem framing and solution 
generation which are developed and refined over time while 
being applied. 

cycle and are influenced by the extent of scoping of 
requirements within a release. Such patterns in 
Rubinius are primarily concerned with extracting 
requirements from root artifacts—which delineate the 
de facto standard that Rubinius must meet and depend 
on—and also from distal artifacts, which alert 
developers to take note of new technical requirements 
that Rubinius needs to meet. At the lowest level, 
heuristics refer to the “rules of thumb” that simplify 
cognitively intensive tasks (e.g., “If a behavior can be 
found in MRI, then replicate it in Rubinius”). They 
operate on the timescale of computing a specific 
aspect of an individual requirement. While the role of 
heuristics is well-established in cognitive theory, the 
former two temporal structuring mechanisms can be 
viewed as higher-order structuring mechanisms called 
“patterns” above. Overall, they provide goal oriented 
“narrative structures,” which enable social actors to 
identify what sort of “story” or “cognitive play” the 
current activity represents and which types of 
heuristics might be relevant in a given situation. 
Table 8 provides a summary and examples of each 
temporal mechanism present in the Rubinius 
project. We also show how each structuring 
mechanism is embedded in specific elements of the 
social and structural distributions. 

Table 8. Summary of Temporal Distribution Mechanisms 

Pacing Mechanism Descriptions Social elements Structural 
elements 

Trends Scanning for high-
level requirements in 
the technological 
environment 

Identifying broader 
requirements capitalizing on 
general technological 
changes and trajectories 

External 
communities 

Environments 

Patterns Uncovering 
embedded 
requirements in root 
and distal artifacts  

Requirements embodied 
within artifacts which are 
external, but related to 
Rubinius  

Focal community 

External 
communities 

Web resources 

System/software 
artifacts 

Heuristics Detailed guidelines 
for computing an 
individual 
requirement  

Rules of thumb guiding 
individual requirement to be 
discovered, refined and 
implemented 

Focal community 

External 
communities 

Web resources 

System/software 
artifacts 

Communication 
channels 

4.3.1 Trends 
The degree to which OSS projects follow changes in 
the broader technological landscape (e.g., multicore 
processors or the real-time web) influences the search 
for a new set of features (i.e., requirements) to be 
integrated into the software. Scanning for high level 
requirements in the technological environment refers 
to the identification of broad, often implicit, 
requirements established by changes in the 

sociotechnical environment (such as security 
standards). These are envisioned technological 
capabilities that the project seeks to capitalize upon so 
as to keep the software “hot.” The project team 
therefore has to transform vague, contested, and 
weakly articulated trends into explicit requirements 
that can be instantiated in the software. This process 
depends on the cognitive function of perception, as it 
helps frame which new features in the technology 
environment are most relevant. Recalling the 
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multicore processing example, the emergence of the 
multicore hardware architectures and supporting 
operating systems necessitated adding new features to 
the Ruby language to provide support of multiple run 
time threads. Indeed, this was one of the original 
motivations for releasing Rubinius 2.0—to make 
Ruby multithreaded. Hence, a new hardware 
capability triggered the initiation of the development 
process through the discovery of new requirements: 

Every CPU going into almost anything 
these days has more than one core, so 
being able to utilize resources efficiently 
requires being sensitive to memory 
pressure. If you’re using five instances of a 
process instead of one process using five 
threads, you’re not gonna be efficient. So it 
was sort of a no-brainer in terms of 
concurrency as something we always 
intended to do. All those steps up to now—
improving the architecture in the C++ and 
VM—helped lay the groundwork for doing 
the concurrency work.  

4.3.2 Patterns 
Patterns provide a consistent framing for how the 
distributed cognitive system will solve a set of similar 
problems typically associated with an RE facet. 
Patterns bundle together a set of heuristics that guide 
the use of social and structural resources and artifacts 
at hand. Overall, patterns help organize activities to 
coordinate requirements computation across and 
between RE facets. Even though all sorts of RE 
activities occur regularly throughout a release cycle, 
OSS developers show a marked tendency toward 
bundling some of them to occur more frequently in 
the early stages of the cycle (e.g., discovery), whereas 
other activities become more prominent in the later 
stages (e.g., validation). One reason for this is the 
high interdependency between discovered 
requirements and the need to use scarce skills and 
knowledge effectively. Table 9 depicts three patterns 
associated with early and late stages in the Rubinius 
release cycle that integrate embedded requirements in 
root artifacts, replicating MRI behavior, and 
embedded requirements in distal artifacts.
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Table 9. Summary of Patterns 

Patterns Descriptions Social 
elements 

Structural 
elements Illustrative statements 

Early Stage 

Uncovering 
embedded 
requirements in 
root artifacts 

Requirements 
embodied within 
existing artifacts 
which offer 
implementation 
guidelines for the 
project (i.e. mainly 
discovery) 

Focal 
community 

Ruby 
developers 
and users 

MRI “MRI is the de facto standard . . . A lot of 
Rubinius work is actually to reverse 
engineering what MRI does, figuring out its 
behavior.” 

Pull request: “are you just working on 
failures or porting code from MRI? Since 
we just import this library from MRI, if 
these bugs are fixed in MRI, we should just 
update to the 1.8.7 stable version. If they are 
not fixed, we should be submitting fixes to 
MRI.”  

Late Stage 

Replicating 
MRI behavior 

Writing code so 
that the Rubinius 
artifacts deliver 
behaviors 
encapsulated in 
specs (i.e. mainly 
specification) 

Core 
committers 

RubySpec “When you’re working on new features, you 
look at how MRI behaves or read how MRI 
is supposed to behave, write some specs, 
check them against MRI to make sure that 
the documentation is correct. Then you just 
sort of stare at that and say ‘Okay, this is 
ready to implement,’ and you go do it.”  

Uncovering 
embedded 
requirements in 
distal artifacts 

Requirements 
embodied within 
existing artifacts 
which the project 
intends to be 
compatible with 
(i.e. mainly 
discovery and 
validation) 

External 
communities  

Engine Yard 
platform 

Puma 
webserver  

Travis CI 

Ruby-related 
projects 

“Travis provides the ability for people who 
are writing libraries and applications to 
easily test across multiple Ruby 
organizations . . . Travis users basically will 
go in and say ‘I want to build on the nightly 
build of Rubinius. I want to build a weekly 
release.’ They can easily specify their level 
of engaging Rubinius changes and then just 
watch and see whether their project passes 
or fails. . . . They link us to their results on 
Travis and say ‘Here, this is what I get. It’s 
having this error.’ And we can figure it out 
directly from the error output.” 

Uncovering embedded requirements in root artifacts 
refers to the process of discovering requirements 
embodied within existing artifacts. They offer 
guidelines for the subsequent implementation of new 
features. In Rubinius, the implementation guidelines 
of the Ruby programming language (i.e., MRI) were a 
critical source of embedded requirements. These 
guidelines reflect prior cognitive effort and learning 
and thus present developers and users with a shared 
cognitive foundation and constraints upon which to 
build their RE process. The norm is that each 
instantiation of a Ruby runtime environment has to 
adhere to this standard. Indeed, a large number of 
Rubinius requirements are established a priori in 
MRI, with the understanding that MRI forms an 

essential reference for desired functionality. 
Requirements from MRI are uncovered early in a 
release cycle, as they represent the “low-hanging 
fruit” around which there is a strong consensus. 
Further, identifying embedded requirements and 
translating them into testable specs provides valuable 
knowledge for subsequent development by 
establishing common points of reference in the 
community. This embedding of requirements is 
similar to “best practices” transcending their place of 
production as they are instantiated in commercial 
software packages (Pollock & Williams, 2009).  

Replicating MRI behavior. As embedded 
requirements are uncovered and translated into 
testable specs, it becomes increasingly feasible for the 
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developers—especially core committers—to shift to 
writing code (i.e., engaging in design) that addresses 
those requirements. Hence, the cognitive load is again 
redistributed, as fewer developers can engage with the 
increasing technical difficulty (as one of our 
respondents put it, “brain melting” work) of 
configuring the internal workings of Rubinius to 
deliver the behaviors as described in specs.  

Uncovering embedded requirements in distal artifacts 
identifies requirements that are “inherited” from other 
Ruby-related projects, which run Rubinius and test its 
functionality. These external communities either test 
their projects directly on Rubinius or on other 
platforms (e.g., Engine Yard, Puma webserver, Travis 
CI), which include Rubinius as the runtime 
environment. The continuous backward flows from 
test failures highlight new elements that need to be 
accounted for. Additionally, these embedded requirements 
provide insights into how requirements knowledge can be 
transferred across social and structural boundaries.  

4.3.3 Heuristics 
In Rubinius, heuristics take the form of guidelines for 
how developers should discover, consolidate, refine, 

negotiate, and implement a certain requirement. The 
heuristics combine social and structural resources to 
simplify specific cognitive tasks associated with 
requirements discovery, specification, and validation, 
as well as the overall recursive process which 
connects the three RE facets in an iterative loop. 
Heuristics guide developers to coordinate knowledge 
with specific groups of fellow developers and to 
manipulate certain artifacts in order to sequence their 
activities. For example, if the focal community finds a 
behavior in MRI that is not addressed in Rubinius, it 
would extract associated knowledge embedded in 
MRI and transform it into verbal, graphical, and 
literal representations in Rubinius (i.e., often a 
“spec”). Apart from MRI, the other Ruby-related 
projects provide alternative sources for developers to 
identify missing behaviors that need to be implemented 
in Rubinius. A set of representative heuristics observed 
in Rubinius requirements computation are summarized 
in Table 10. The table also indicates the primary RE 
facet that the heuristic supports. 

 

Table 10. Summary of Heuristics per RE Facet 

Heuristics Social 
elements 

Structural 
elements 

Interaction of social 
and structural 

elements 
Illustrative statements 

Discovery 

1. If a behavior can 
be found in MRI, 
then replicate it in 
Rubinius 

Focal 
community 

MRI Focal community 
extracts 
requirements 
knowledge 
embedded in MRI 

“For every method [in the MRI source 
code] I would take the textual description 
and break it down into as many distinct 
facets of behavior as I could, and then 
write a specification for each of those.” 

Pull request: “I’ve implemented an initial 
run of building Rubinius into static and 
shared libraries . . . I was mainly 
following what MRI does in that case.” 

2. If a use-case 
exists in defining 
MRI behavior, 
then replicate it in 
Rubinius 

Focal 
community 

Sponsor 

External 
community 

MRI 

Ruby-related 
projects 

Focal community, 
sponsor, and 
external 
community 
identifies use-case 
from Ruby- related 
projects 

“We provide feedback [from real-world 
use cases] to the Rubinius project and we 
think it’s a big value for any open source 
project to have real-world use cases that 
it uses just to figure out if it’s actually 
delivering what it’s trying to deliver.”  

Specification 

3. If a feature is 
experimental, 
separate it as a side 
branch 

Core 
committers 

GitHub Core committers 
utilize Github as 
documentary 
foundation of 
requirements 
knowledge  

“If [a feature] takes longer than using the 
local branch or if it’s something that we 
want other people to review . . . then we 
sometimes use a feature branch.”  
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4. If a developer is 
trying to 
understand an 
established feature, 
then check 
documentation 

Focal 
community 

Web 
resources 
(esp. Ruby 
Spec) 

Focal community 
referred to certain 
web resources to 
explore problems 
and identify 
solutions 

IRC channel: “xxx look in 
spec/ruby/optional/ffi/string_spec.rb and 
see if the code you’re looking at is in 
there.”  

Pull request: “In the future, please 
separate spec/ruby patches from the rest. 
See http://rubini.us/doc/en/specs/ for the 
reason why.” 

5. If a developer is 
trying to 
understand an in-
development 
feature, then go to 
IRC and talk to 
Core 

Focal 
community 

External 
community 

Communicat
ion channels 
(esp. IRC) 

Focal community 
and external 
community discuss 
in-development 
requirements via 
communication 
channels 

IRC channel:  

yyy: “hey, I want to work on the 1.9 
compatibility. What should I attack?”  

zzz: “depends what you want to work on. 
small request, do small bits and push 
frequently. work on the hydra branch.” 

6. If a spec has 
been coded and 
passes the test, 
mark it as 
completed 

Core 
committers 

RubySpec 

MRI 

GitHub 

Core committers 
test Rubinius specs 
against RubySpec 
and MRI  

“You write the specs. You get them to 
pass on Ruby 1.9 and then you get them 
to fail on Rubinius and then you go about 
implementing them on Rubinius.” 

Validation 

7. If code passes 
tests, then 
distribute the code 
through the master 
branch 

Core 
committers 

MRI 

GitHub 

 

Core committers 
disseminate code 
baseline of 
Rubinius, which 
had been tested 
against MRI, in 
Github platform  

“Master is something that we really keep 
very stable, so if you want the best 
Rubinius version out there, you just grab 
today’s Master.”  

8. If tests fail or 
Rubinius crashes, 
then identify the 
bug 

Focal 
community 

External 
community 

Engine Yard 
platform 

Related 
projects 

GitHub 

Focal and external 
communities use 
various system 
artifacts to identify 
bugs 

“When you have an actual user bug, one 
of the big processes is just trying to 
isolate it and refine the code into 
something much smaller—this tiny bit of 
code that shows the bug.” 
 

9. If a bug has been 
identified, then 
report it in the bug 
tracker 

Focal 
community 

External 
community 

GitHub 

Travis CI 

Focal and external 
communities 
identify bugs and 
convert knowledge 
into bug tracker 
held in Github 

“If [it] appeared to be a bug or some 
conflict with the documentation, then we 
would file a bug report and ask for 
clarification.”  

Pull request: “I tried to compile rubinius 
on my archlinux machine and got a 
warning/error regarding an implicit case 
of (unsigned int) to (const int32_t). . . . 
Here is my setup and the exact error.” 
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Recursion 

10. If a bug is 
related to 
faulty/missing 
specs, then go to 
“Discovery” 

Focal 
community 

MRI 

RubySpec 

GitHub 

Focal community 
referred to MRI 
and/or RubySpec 
to identify 
faulty/missing 
specs 

“When we hit a bug that we don’t have a 
RubySpec for, we look at the specs, 
figure out where we’re missing all those 
things.”  

Pull request: “This is a patch to correct 
the behavior of Class#dup in Rubinius. 
The patch ensures the proper ancestry for 
the duplicated singleton class. Included 
are specs for the correct behavior (met by 
MRI).” 

11. If a bug is 
related to 
problematic code, 
then go to 
“Specification” 

Focal 
community 

MRI 

RubySpec 

GitHub 

Focal community 
referred to MRI 
and/or RubySpec 
to identify 
problematic code  

“I thought there would be a bug in 
Rubinius . . . so I went through RubySpec 
and then go back and fix Rubinius.” 

4.4 Generalized Computational Structure 
Based on our analysis, we can synthesize a 
generalized framework of OSS RE “computation.” 
The framework is graphically depicted in Figure 1, 
with an emphasis on how requirements knowledge 
“flows” through the cognitive system and how the 
cognitive system as a whole “reconfigures” itself as 
the computation unfolds. Specifically, the model 
illustrates how the tripartite functions of RE 
(discovery, specification, and validation) become 
enacted in Rubinius through the ongoing 

reconfiguration of three forms of distribution. This 
results in different temporary configurations of social 
and structural distribution of actors, artifacts, and 
heuristics to perform the cognitive work necessary to 
satisfy the goals of each RE facet. Notably, although 
the figure shows the computational structure as a 
sequential process, it does not imply a “linear” flow 
of RE activity; rather, the three patterns evolve and 
interact through threaded iterative loops as different 
requirements emerge and evolve toward closure, 
enabling a new release. 

Discovery Specification Validation

Root Artifacts Focal Community

Code/Specs Core

Representations-as-conditions

Representations-as-experiments

Excavation

Representations-as-discrepancies

Baseline 
Implementation

External 
CommunitiesInstantiation

Testing in the Wild

Patterns: Patterning of cognitive activities across releases

Trends: Changes in the technological enviornment

1, 2

3-6
7-9

10 11

 
Note: The numbers in the figure refer to the application of the 11 heuristics detailed in Table 10. 

Figure 1. Computational Framework of RE in OSS 

The framework also reveals how requirements, 
understood as representational states, become 
propagated through the distributed cognitive system 
from discovery through validation. It also highlights 
where the flow is likely to “break,” such as when 

someone drops a requirement by failing to note it in 
an IRC channel or the system “forgets” a requirement 
by failing to record it. It also shows where 
requirements typically “hang up” in the system due to 
inadequate feedback mechanisms to earlier stages of 
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each RE process. Such propagation “failures” or 
“lags” emerge especially when the requirements 
knowledge needs to travel from one subsystem to 
another. Next, we delineate in detail the 
computational processes and the dynamic flow of 
representational states captured in Figure 1.  

4.4.1 Trends and Patterns 
The long-term temporal structuring mechanisms 
reflected in RE computation (i.e., trends and patterns) 
have an effect on the overall computational system. 
Trends drive the characteristics and directions of the 
overall RE process. For example, the specific focus 
on concurrency in Rubinius during the study period 
provided a cognitive framing through which 
individual requirements were interpreted and 
indicated what sort of expertise needed to be 
mobilized. Those requirements necessary to support 
runtime concurrency or benefiting from it became 
favored, while those which did not were pushed to the 
background. Patterns provide a consistent temporal 
structure for a set of distributed cognitive efforts 
within the release cycle. For example, identification 
of requirements from root artifacts had to be pursued 
early on, whereas the evaluation of possible solutions 
was shifted to later stages. Similarly, excavating 
requirements from distal artifacts was shunted toward 
the end of the release cycle. Such sequencing 
principles enabled the overall cognitive system to 
attend to separate tasks at different times throughout a 
release cycle and thus economized the use of the 
cognitive resources. We next discuss specific classes 
of requirements computation along with the specific 
heuristics that drive these broader patterns. 

4.4.2 Discovery 
In this facet, requirements are discovered through a 
process of excavation (Luckham, 2001) enabled by 
the rich social and structural interconnections within 
the project. “Root” artifacts, such as MRI, establish 
constraints to which proposed solutions must 
conform. By drawing on such root artifacts, 
developers excavate requirements (using Heuristics 1 
and 2 in Table 10), which are then integrated into the 
focal software. In excavation, representations include 
suggestions and challenges expressed in IRC or 
future-state vision descriptions in Skype dialogues. 
We refer to these as representations-as-conditions, 
because they operationalize requirements knowledge 
in the form of assumptions, logic, and rules about the 
existing environment. Throughout excavation, the 
focal community focuses on identifying a set of 
requirements that it deems important and feasible 
based on the current matching of competencies and 
opportunities emerging from trends.  

As embedded requirements are excavated and 
transformed into tangible conditions, they are carried 

forward to a specification. This movement relies on 
the use of heuristics for mapping elements of root 
artifacts to Rubinius specs. This is the first step 
toward instantiating representations-as-conditions 
into a representational form (i.e., specs) for which 
code can be developed and tested. This is a process of 
looking for “low-hanging fruit”—i.e., less-demanding 
cognitive tasks that are appropriate for inexperienced 
developers. Such tasks often include either writing 
specs (tests) or fixing bugs so as to make specs pass. 
For example, in one pull request, a developer stated:  

This patch makes the String#squessze spec 
pass on 1.9. The spec only specified what 
error should be thrown, so I copied the 
message that gets thrown from MRI 1.9.2. . . 
This is my first pull request here . . . I 
couldn’t tell if there were any other tests I 
should run to make sure I didn’t break 
anything else, so that is where I stopped.  

This process guides developers to seek voluntary 
contributions that match their level of experience.  

4.4.3 Specification 
In this facet, requirements become specified through 
the interplay of the core committers where specific 
heuristics (3-6) guide developers to produce code and 
specs derived from representations-as-conditions. 
Interestingly, specification involves a smaller and 
more limited group of developers and artifacts. 
During this task, more experienced core developers 
work collaboratively, drawing upon their collective 
technical expertise to convert the requirements 
knowledge into readable and executable forms. We 
refer to this as instantiation, a process of detailing the 
technical implications of discovered requirements. 
Importantly, this process involves substantial trial-
and-error learning, as developers expand or narrow 
requirements while they explore their technical 
consequences. In light of the extensive 
experimentation employed, we can say that this core 
instantiation process results in representations-as-
experiments. In the case of concurrency, the core 
committers conducted a “first experiment to remove 
GIL,” followed by “experiments with concurrent 
allocation and full stop GC.” During this phase, 
several requirements may be instantiated in parallel. 
When experiments composed of working code and 
feasible specs have been produced, the newly 
computed representations-as-experiments are 
transmitted to the next phase—validation (Heuristic 7). 

4.4.4 Validation 
In this facet, a baseline implementation is transmitted 
to the wider community for testing. Cognitive effort 
in this task centers on testing-in-the-wild through the 
“scaffolding” (Clark, 1998) of multiple external 
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artifacts—e.g., MRI, RubySpec, Engine Yard 
platform, Puma IO, Travis CI. These artifacts are 
used to expose a multitude of bugs and additional 
necessary requirements. In contrast to the narrowing 
of the social distribution in specification, testing-in-
the-wild expands the social distribution, with multiple 
developers and users integrating Rubinius into their 
local tasks (i.e., requirements embedded in distal 
artifacts). Any challenges that emerge in these tests 
give rise to representations-as-discrepancies, in the 
form of bug reports and feature requests. These 
representations-as-discrepancies reflect disconnects 
between the expectations and actual performance. 
Hence, Heuristic 8 guides developers to revise code 
based on bug reports so as to harmonize different 
parts of the code base, and Heuristic 9 guides the 
handling of bugs. In contrast to feature development, 
bug fixing is viewed as being less demanding cognitively 
and is therefore often conducted by peripheral developers. 
This effectively distributes the system’s cognitive 
resources across a large number of bugs as they emerge. 
Testing-in-the-wild uncovers previously unexcavated new 
requirements and creates a recursive loop that feeds back 
to discovery and specification. 

4.4.5 Recursion  
By excavating additional requirements that maintain 
the software’s integrity, the feedback mechanisms 
from validation to discovery (Heuristic 10) and 
specification (Heuristic 11) can invoke additional 
combinations of developers and artifacts to recompute 
successive instantiations of the same set of 
requirements. Based on our observations, however, 
this recursion sometimes fails, due to inconsistencies 
across the structural distribution, ineffective 
configurations of developers, or failure on part on 
developers to apply heuristics appropriately. One 
breakdown of the cognitive system illustrates several 
of these failures: 

I actually broke Rubinius really badly at 
one point because I merged in a pull request 
from someone else. At the time I didn’t 
spend too much time on Rubinius . . . So at 
the time you would merge the pull request 
locally and then run all the tests and then 
maybe do the automated testing locally and 
do some manual playing with it. 

Here the peripheral committer misunderstood the 
social distribution mechanism. The external 
community might devote technical skills and 
experience with other Ruby-related projects to 
Rubinius, but they were not as familiar with 
Rubinius-specific RE practices. Therefore, the focal 
community generally took charge of the workflow 
and acted as “gatekeepers,” helping to convert 
external insights into internalized Rubinius 
requirements. When a peripheral committer did not 

follow the proper heuristics (i.e., 10 or 11), this 
resulted in a faulty merge. The feedback mechanisms 
thus call for reconfiguration of social and structural 
elements and recomputing of requirements 
discovery/specification shouldered by, for example, 
MRI/RubySpec. Overall, the above incident was 
ultimately a failure to follow an established computational 
structure within the distributed cognitive system.  

5 Discussion 
In this study, we have considered how RE is made 
possible in OSS development despite highly 
distributed teams and lack of formal governance. 
Accordingly, we approach OSS RE as a 
sociotechnical, distributed cognitive task whereby RE 
knowledge is maintained and computed within the 
sociotechnical system. We use this lens to analyze RE 
in a midsize successful OSS project called Rubinius. 
Through our analysis, we identify and illustrate the 
dynamic relationships between actors and artifacts 
within the Rubinius community (RQ1). In addition, 
we articulate three-layered temporal structuring 
mechanisms (i.e., trends, patterns, and heuristics), 
through which requirements knowledge is propagated 
in Rubinius (RQ2). By identifying the temporally 
ordered cognitive processes of excavation, 
instantiation, and testing-in-the-wild, we show how 
the Rubinius project transformed discovered 
requirements through a series of mappings between 
specific representational states that change 
requirements knowledge from representations-as-
conditions, and representation-as-experiments, to 
representations-as-discrepancies. These mappings 
resulted over time in a collectively accepted 
understanding of the design requirements for a release 
(RQ3). Our inquiry offers a number of important 
insights for both IS scholars and OSS developers. 
With respect to research, our study fosters a broader 
understanding of requirements-oriented activity and 
the nature of software requirements. With respect 
to developers, our research suggests ways in 
which practitioners can effectively leverage 
resources and enhance project sustainability by 
attending to the sociotechnical distribution of 
cognitive effort in OSS projects.  

5.1 Implications for Research 
This study offers two primary research contributions: 
(1) providing an integrated and theoretically grounded 
model on how OSS communities, despite the lack of 
formal governance mechanisms and the presence of 
high distribution, can garner a robust and shared set 
of requirements through the interplay of actors, 
artifacts, and temporal structuring mechanisms; (2) an 
articulation of how OSS RE is different from RE in 
waterfall and agile contexts.  



Journal of the Association for Information Systems 
 

1241 

 

To the best of our knowledge, this study provides the 
first empirically based, theoretically grounded view 
of the computational mechanisms through which 
requirements are effectively managed in OSS 
development. Our exploratory analysis of the 
Rubinius project’s computational structure outlines a 
generic set of generative cognitive mechanisms 
(Anderson et al., 2006)—a system of actors and 
artifacts which interact over time to compute 
requirements. Since OSS represents a relatively novel 
form of organizing (Puranam, Alexy, & Reitzig, 
2014) in which collective action is possible despite 
the challenges of voluntary contribution, emergent 
coordination, and asynchronous work (Howison & 
Crowston, 2014), understanding how complex 
knowledge coordination is achieved in such a context 
is an important endeavor (Tuertscher, Garud, & 
Kumaraswamy, 2014). By integrating consideration 
of the actors, artifacts, and temporal mechanisms 
shaping the evolution of OSS systems, our model 
helps discern how OSS projects foster a shared 
understanding of requirements, despite their highly 
distributed nature. Specifically, the study suggests 
several key factors which contribute to the robustness 
of RE in OSS projects—including the leveraging of 
embedded requirements in distal artifacts, the 
integration of knowledge flows from external 
communities, and policies that foster broader 
engagement of community members (e.g., an open 
commit policy). Future research can build upon these 
insights to operationalize formal comparisons of 
distinct OSS communities with respect to their 
outcomes and sustainability. 

The study also contributes to the broader research on 
RE. Our analysis illustrates the value of analyzing RE 
as a sociotechnical cognitive process, with an eye 
toward the dynamic relationships between actors and 
artifacts. Indeed, the distributed cognitive framing 
enables us to highlight several ways in which the OSS 
context differs from either waterfall or agile 
approaches with respect to the nature of social 
interactions, the role of artifacts, and the temporal 
sequencing of cognitive effort. These distinctions 
hold regardless of whether waterfall or agile 
approaches are distributed geographically (Espinosa, 
Slaughter, Kraut, & Herbsleb, 2007). OSS 
development eschews both the formal documentation 
of the waterfall model and the intense face-to-face 
interaction of agile development, and thereby moves 
away from both the strict phasing approach typical of 
waterfall and the locally constrained social iterations 
preferred in the agile approach. This has important 
implications for how we see the role of artifacts, 
social interactions, and temporal structuring.  

First, our study indicates the curious role that digital 
artifacts (Kallinikos, Aaltonen, & Marton, 2013) play 
in mediating the OSS RE process. Rather than serving 

as centralized deposits of knowledge, which is 
common in waterfall and agile, artifacts become 
distributed and dynamically engaged in the process of 
discovering and implementing requirements. Here, 
the DCog perspective allows us to show the ways in 
which artifacts participate in the process of 
computing requirements, rather than simply being 
passive information repositories assumed in other 
approaches. When such artifacts are engaged in the 
process of requirements computation, they are 
continuously updated, and often serve as the original 
source for specific requirements, rather than just 
being used as ledgers where requirements emanating 
from the customer get recorded. When artifacts are 
viewed in this way, they become central to the ability 
of OSS projects to dynamically pick up requirements 
across a set of disparate subcommunities distributed 
in both space and time.  

Second, while the lack of face-to-face interaction 
crucial to agile practices weakens the ability of a core 
group to communicate in an intensive manner, the use 
of distributed artifacts with related dialogues radically 
expands the diversity and socialization of individuals 
who may participate in the RE process (Dabbish, 
Stuart, Tsay, & Herbsleb, 2012). In a sense, the 
distributed artifacts engaged in the requirements 
computation process allow for “quasi-dialogues” 
involving “invisible others” who lurk behind the 
digital artifacts (Baralou & Tsoukas, 2015). This is 
crucially different from the forms of geographical 
distribution that we might observe in waterfall and 
agile processes, because the artifacts, through their 
dynamic participation, substitute for the formal 
working relationships within software development 
processes where all participants are paid either as 
employees or consultants. In sum, the participants can 
be spatially and temporally distributed, and may use 
the software being developed for varying purposes. 
This may lead to unexpected degrees of robustness, as 
the software can effectively be “stress-tested” from a 
multitude of angles. Third, while the temporal 
structuring of waterfall and agile is established 
beforehand (e.g., either as phased or iterative), the 
temporal structuring of OSS is fluid and contingent. 
Requirements move forward in the RE process if and 
when they activate various heuristics by meeting 
specific conditions. Each cycle of code revisions 
called “superpositioning” (Howison & Crowston, 
2014) is triggered by specific conditions being met. 
This provides valuable knowledge with regard to 
when work (1) gets deferred, and (2) is rendered easy 
enough to be accomplished “with only a single 
programmer working on any one task . . . rather than 
being undertaken through structured team work” 
(Howison & Crowston, 2014, p. 29). 

To a certain extent, our framing challenges the RE 
research community to reassess the fundamental 
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understanding of the “requirements” concept. This 
context necessitates a departure from the idea of 
explicit requirements as a strict articulation of desired 
functionality using formalized notation (Scacchi, 
2002) to something which is improvised and 
emergent. Such a shift would enable us to embrace 
the complex sociotechnical mechanisms through 
which knowledge about user needs or desired features 
emerges, crystallizes, and evolves in a localized and 
distributed manner. With the rise of less-structured 
development approaches such as OSS and agile 
methods new theoretically grounded approaches to 
analyze RE processes become critical.  

5.2 Implications for Practice 
From a practice perspective, the framing of RE 
activities as a distributed cognitive process can alert 
OSS leaders to heed the critical roles played by 
different stakeholders and artifacts. Given the high 
rates of OSS project failure (Lee et al., 2009), a better 
understanding of the elements that contribute to 
effective requirements discovery is desirable. Most 
notably, the research underscores the importance of 
focusing on “OSS ecosystems” (Scacchi, Feller, 
Fitzgerald, Hissam, & Lakhani, 2006; Thomas & 
Hunt, 2004)—interrelated webs of developers, 
technologies, and projects—rather than distinct 
projects or tools. For example, our study highlights 
the robustness gained by engaging external 
stakeholders in the process of supplying 
requirements. By fostering linkages with an extended 
network of interested entities, a project can draw upon 
a richer set of perceived needs for their focal platform. 
In particular, the Rubinius case highlights the ways in 
which strong channels of exchange within external 
communities enhance discovery and validation. 

The significant role of peripheral developers that we 
observe also highlights the importance of distributed 
requirements discovery. The integration of peripheral 
committers enables new requirements to emerge 
continuously as more established requirements are 
addressed. The open commit policy adopted by 
Rubinius, for example, ensures that requirements 
discovery and distribution is not limited to a small 
core; rather, requirements and possible solutions can 
originate from a broader community of developers. 
While the core team still controls the direction of the 
software evolution, the broader engagement calls into 
question the conventional framing of OSS core 
developers as “benevolent dictators” (Shah, 2006). 

The research also underscores the critical role of 
artifacts in supporting or simplifying cognitive 
processes within the cognitive system. At the most 
fundamental level, artifacts serve an external memory 
function by capturing requirements knowledge at 
various points within a community. Given the 
transitory nature of OSS participation, this 

externalization remains a central consideration for a 
community’s continuity and resiliency. In addition, as 
we observed in Rubinius, artifacts are essential in 
directing attention to new needs as they emerge. Such 
attention shifts can be fostered by the discovery of 
embedded requirements that mitigate the need for 
“greenfield” discovery. Third, system artifacts 
provide a material foundation for requirements 
evolution. For example, during instantiation, 
developers clarify requirements through 
experimentation by using diverse representations and 
exploring multiple solution possibilities—what 
Latour (1986) calls “thinking with eyes and hands.” 

Finally, the importance of heuristics in propagating 
representational states in the cognitive system 
suggests the value of conscious attention to the 
maintenance and dissemination of heuristics 
throughout a community. While heuristics provide 
support for rapid cognitive processing in complex 
environments (Kleinmuntz, 1985), inappropriate 
filtering or a mismatch between the situation and the 
heuristics can result in “severe and systematic errors” 
(Tversky & Kahneman, 1974). Fortunately, heuristics 
are also subject to conscious design and evaluation 
(Gigerenzer, 2008). Therefore, OSS project leaders 
may benefit from directed and constant evaluation of 
heuristics for excavation, instantiation, and testing. 
Such analysis could include identification of factors 
that contribute to user satisfaction, search strategies, 
and errors from past heuristics. In addition, OSS 
communities could consider redesigning 
communications media, processes, and tools that 
reinforce effective heuristic use. 

5.3 Limitations and Future Research 
Generalizability of our findings is naturally limited by 
the fact that we analyzed a single representative case. 
Furthermore, we acknowledge that Rubinius has 
some idiosyncratic characteristics, such as an open 
commit policy, highly technical nature, and 
significant interconnectedness with other OSS 
artifacts. Though the forms of social, structural, and 
temporal distribution within OSS communities may 
vary widely, we contend that the sociotechnical 
cognitive processes we identified are likely to remain 
consistent in other OSS environments due to the 
similarity in tasks, social organization, and deployed 
artifacts. In this sense, we are claiming that our 
proposed framework provides strong theoretical 
generalizability (Lee & Baskerville, 2003), even 
when specific facts of our case may not generalize to 
all other OSS projects. Therefore, we expect the 
theoretical mechanisms that we have proposed to 
remain quite stable. 

Several avenues are open for additional research. Our 
DCog model can be applied to other software 
environments, including structured development, 
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“commercial off-the-shelf”-based development, and 
agile development. The computational structures 
employed in these environments are likely to vary 
with respect to social, structural, and temporal forms 
of cognitive activity distribution, as well as the 
heuristics used. Consistent application of the perspective 
to multiple environments should foster inductive theory-
driven identification of appropriate computational 
configurations that influence software project success, 
developer or user satisfaction, and innovativeness.  

6 Conclusion  
We inquired into how DCog can account for RE 
management in OSS. We find that establishing 
requirements is a “computational” process, whereby 
requirements knowledge is transformed across a 
system that is distributed socially, structurally, and 
temporally. Distinct components and mechanisms 
within each form of distribution carry out distinct 
roles within the cognitive system, which collectively 
computes requirements in the absence of formal 

planning or hierarchical authority. The study offers 
important insights for both research and practice in 
OSS. From a research perspective, the study 
underscores the importance of attending to the 
temporal unfolding of interactions between human 
and structural elements in software development. 
From a practice perspective, the study highlights a 
range of cognitive dynamics, which can inform 
OSS leaders as they seek to support and maintain 
vibrant development communities. 
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Appendix A. Software Development Methodologies 
In Table 11 below we provide an overview of the main characteristics of waterfall, agile, and open source. 

Table 11. Comparison of Three RE Approaches 

Qualities Waterfall 

(Bell & Thayer, 1976; Royce, 
1970) 

Agile development 

(Fowler & Highsmith, 2001; 
Vidgen & Wang, 2009) 

Open source 

(Howison & Crowston, 2014; 
Scacchi, 2009) 

Methodological Characteristics 

Team structure Stable Stable Fluid 

Location Mainly colocated Mainly colocated Distributed 

Role of developer Employee or hired for work Employee or hired for work Volunteer (secondary employee) 

Coordination 
mechanisms 

Formal planning & 
documentation, scripting 

Face-to-face exchange, “big & 
visible” displays of project 
knowledge 

Emergent and largely computer-
mediated (e.g., via GitHub) 

Requirements Facets 

Discovery Formal planning; requirements set 
prior to design and implementation 

Close collaboration in a core team; 
cocreation with customers 

Developer-driven exploration 
features and  
“scratching itches” 

Specification Formal documentation; 
standardized requirements 
specification documents 

List of flexible backlogs; mock-
ups/prototypes 

“Informalisms” (e.g., discussion 
forums, email messages, test 
results) 

Validation Document review and sign-off Iterative review and test-driven 
development 

Informal ex ante evaluation  

Post hoc evaluation and use; 
testing platforms 

Appendix B. The Rubinius Project  
Rubinius is an implementation of the Ruby programming language through a virtual machine (VM) that provides a 
runtime environment and a dynamic compiler for Ruby. As a partially sponsored OSS project, Rubinius has been 
relatively successful in this highly specialized domain. The project was initiated in 2005 as a hobby by Evan 
Phoenix who intended to write Ruby in Ruby, making it analogous to C and Java whose major functionalities 
available to programmers are written in the language itself. Subsequently, Rubinius ceased to be written purely in 
Ruby when the VM was rewritten in C++ to improve efficiency. The project has a large base of committers built 
around a core committer team, primarily due to its highly open commit policy (i.e., if one pull request has been 
accepted, the developer who submitted the pull request will become a committer and be entitled to commit directly 
to the project). 

In late 2007, Engine Yard Company—one of the biggest privately held companies focused on Ruby on Rails and 
PHP development and management—began to sponsor several committers of Rubinius to work full-time on the 
project. On May 14, 2010, the first released version of Rubinius 1.0 (Fabius) was launched. Our data collection 
focused primarily on the period after that initial release, because it indicated a new round of efforts to prepare for a 
Rubinius 2.0 release. The new release will introduce significant changes to the system and involves substantial 
updates to the base functions of the implementation with additional features, bug fixes, and significant performance 
improvements. Interestingly, in the middle of 2012, after seven years of enthusiastic involvement, the initiator 
elected not to slot himself in the core committer team, citing a change in his professional work and the intention to 
seek new challenges. Although it changed the dynamic within the core development team somewhat, the leadership 
transition has not substantively impeded the overall development effort. 
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The requirements of the new release were determined through diverse efforts by a large number of participants. 
While there was no formalized approach in place to manage requirements, the informal resources generated by 
collaborative engagements together with robust coding, testing and coordination infrastructures (GitHub) and other 
artifacts employed played a significant role in shouldering RE practices. In the context of Rubinius, one important 
artifact is RubySpec which is highly relevant in RE management. RubySpec consists of an executable specification 
for the Ruby programming language and describes Ruby language syntax and its standard library classes. It captures 
behaviors of Matz’s Ruby Interpreter (MRI, i.e., the reference implementation of the Ruby programming language 
setting the de facto standard for any Ruby interpreter) and tells how Rubinius should execute the same behavior so 
as to evaluate the correctness of its implementation. In contrast to the traditional specification documents which are 
usually written in a formal, literal way upfront, RubySpec is a living open source project repository on GitHub 
composed of executable specs and test cases. For example, a spec named array_spec.rb can be represented in the 
RubySpec as follows:  

 “require File.dirname(__FILE__) + '/../../spec_helper' 
 describe “Array” do 
  it "includes Enumerable" do 
     Array.ancestors.include?(Enumerable).should == true 
  end 
 end” 
 

Appendix C. Interview Protocol 
This interview intended to explore evolution of coding and requirements engineering practices. Specifically, the 
interviews focused on interviewee’s personal experiences/views of these practices.  

Background 

• Could you tell us about your background, and how you came to work on this project? 

• Could you describe your process of entering the community of this particular project? 

• When do you usually spend your energy on the project? How many hours do you usually spend?  

Coding/Requirements engineering practices 

• Could you provide an overview of events since you joined the project? Were there any notable events of 
importance during this period?  

• Were there any conversations or chats discussing what the project was going to do before the event? Where 
did the conversations or chats take place? Did they happen on a regular basis? Did anyone within the 
community take primary responsibility for documenting them? Where were they documented? 

• Which tasks do you take on within the project? Why did you choose those tasks?  

• Please walk us through a typical/recent issue or commit you submitted.  

o Where did your idea come from? Why did you think the problem was necessary to address?  

o What techniques did you employ to identify the problem you were addressing? What development 
tools or resources were used in identifying the problem? 

o Were there any people that you turned to for identifying the problem? Could you tell us about your 
interactions with other project members, particularly as it pertains to the identification of the 
problem? How did you initiate contact, with whom did you make contact, and why was the process 
done this way? 

o Could you describe how you solved the problem? What technology platforms, modeling techniques 
and tools were used? What were specific reasons for choosing them? 

o Were there any project members or any resources that you turned to for solving the problem? How 
did they help you in this regard? Which communication channels did you use? 
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o Did you and other project members share the same understanding of what needed to be done during 
the process? Were there any disagreements? If there were conflicts, how did you negotiate them and 
achieve consensus? 

Next steps 

• We would like to have a continuing relationship. Would it be possible for us to talk again in the future? 

• What would be interesting for you to find out? What would you like to have visibility into? 

• Who else can we talk to? 

 

Appendix D. Selection of Archival Entries Based on Keywords 
Based on the coding of the interviews we identified a set of emic (Headland et al., 1990) keywords that capture 
salient topics within the Rubinius project. We identified 20 such keywords: 

1. MRI / Matz Ruby Interpreter 

2. Flip Flop / FlipFlop / Flip-Flop 

3. Concurrency / concurrent 

4. GLI / Global Interpreter Lock 

5. IO / I/O 

6. Hydra 

7. GC / Garbage Collection 

8. Puma 

9. Travis 

10. CI / Continuous Integration 

11. Engine Yard / EngineYard 

12. Rspec 

13. RDocs 

14. RubySpec 

15. GitHub 

16. Git 

17. Gdb 

18. Insiter 

19. Real-time web / realtime web 

20. Multicore / multicore / processors / CPUs 

These keywords were then used to search the GitHub repository, project website, developer mailing list, as well as 
IRC, for the time period May 14, 2010 (when Rubinius 1.0 was launched) to November 2, 2012 (when the Rubinius 
2.0 preview was launched). All items in these archival data sources that matched any of these search terms were then 
selected for coding. The selected archival items were then loaded into Dedoose, and were then coded using the 
theoretical codes extracted from the interview data. Overall, the data funnel can be seen in Table 12 below. 

Table 12. Archival Analysis Data Funnel 

 Issues Pull requests Blog posts Mailing List threadsa  

Total 1082 604 26 35 

Selected 816 233 19 25 

a Each thread contains multiple emails 

The data were collected from these hyperlinks, corresponding to the columns in Table 12: 

• https://github.com/rubinius/rubinius/issues 

• https://github.com/rubinius/rubinius/pulls 

• https://github.com/rubinius/rubinius-archive/tree/master/_posts 

• https://groups.google.com/forum/#!forum/rubinius-dev 
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Appendix E. Coding Protocol 
The initial round of coding focused on the identification of themes (i.e., themes and concepts) and central 
explanatory categories within the interview data, concerning the ways in which requirements knowledge is processed 
across actors and artifacts over time. Additional codes and analytical memos were developed during the coding 
process. This initial round of coding was followed by a round of axial coding in which we consolidated some of the 
codes from the open coding phase. During axial coding, we identified key relationships between and higher-level 
categorization of the preliminary codes. The technique of constant comparison was employed in the development of 
these higher level categories (Corbin & Strauss, 2008). Finally, we conducted a round of selective coding to 
determine consistent patterns of interaction between social, structural, and temporal modes of cognitive distribution 
and to formulate a computational framework that reflected the RE processes at play in the Rubinius community.  

At the point where substantive categories had emerged and we had gained a certain level of stability and saturation, 
we approached the archival data sources. Due to the overwhelming amounts of archival data (thousands of email 
conversations, workflows, and public documents), the themes that emerged from the interviews were used as 
guideposts. By searching archives using keywords associated with prominent themes, relevant passages were 
identified and coded to support comparisons as well as to increase the richness and integration of the emerging 
theory. 

Comparing across both interviews and archival data, we refined the categories until a systematic explanation of RE 
distribution patterns was formulated. As a result, the final selective coding structure emerged during iterative coding 
of all interviews and archival data sources. Code generation and refinement proceeded until the researchers deemed 
that theoretical saturation was achieved (Eisenhardt, 1989; Glaser & Strauss, 1967). The research findings were 
presented to the informants and other members of our research team with in-depth discussions feeding back into the 
analysis process to validate the emerging theoretical scheme (Corbin & Strauss, 2008). In the end, 611 codable 
moments were recognized along with 13 analytical memos and 87 distinctive codes. 
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