

ISSN 1536-9323

Journal of the Association for Information Systems (2018) 19(12), 1217-1252
doi: 10.17705/1jais.00525

RESEARCH PAPER

1217

“Computing” Requirements for Open Source Software: A
Distributed Cognitive Approach

Xuan Xiao1, Aron Lindberg2, Sean Hansen3, Kalle Lyytinen4
1Guangzhou University, China, xiaoxuan@gzhu.edu.cn

2Stevens Institute of Technology, U.S.A., aron.lindberg@stevens.edu
3Rochester Institute of Technology, U.S.A., shansen@saunders.rit.edu

4Case Western Reserve University, U.S.A., kalle@case.edu

Abstract

Most requirements engineering (RE) research has been conducted in the context of structured and
agile software development. Software, however, is increasingly developed in open source software
(OSS) forms which have several unique characteristics. In this study, we approach OSS RE as a
sociotechnical, distributed cognitive process where distributed actors “compute” requirements—
i.e., transform requirements-related knowledge into forms that foster a shared understanding of
what the software is going to do and how it can be implemented. Such computation takes place
through social sharing of knowledge and the use of heterogeneous artifacts. To illustrate the value
of this approach, we conduct a case study of a popular OSS project, Rubinius—a runtime
environment for the Ruby programming language—and identify ways in which cognitive workload
associated with RE becomes distributed socially, structurally, and temporally across actors and
artifacts. We generalize our observations into an analytic framework of OSS RE, which delineates
three stages of requirements computation: excavation, instantiation, and testing-in-the-wild. We
show how the distributed, dynamic, and heterogeneous computational structure underlying OSS
development builds an effective mechanism for managing requirements. Our study contributes to
sorely needed theorizing of appropriate RE processes within highly distributed environments as it
identifies and articulates several novel mechanisms that undergird cognitive processes associated
with distributed forms of RE.

Keywords: Open Source Software Development, Requirements Engineering, Distributed
Cognition, Case Study, Heuristics, Ruby Programming Language

Sandeep Purao was the accepting senior editor. This research article was submitted on November 18, 2015 and went
through two revisions.

1 Introduction
The hardest single part of building a
software system is deciding precisely what
to build. No other part of the conceptual
work is as difficult as establishing the
detailed technical requirements (Brooks,
1995, p. 199).

Since the 1970s, requirements engineering (RE)—a
cohesive set of tasks that focus on discovering,
specifying, and validating what software should do in
its use context—has constituted an essential challenge
in software development (Brooks, 1995; Cheng &
Atlee, 2009). Software requirements are known to be
uncertain, inconsistent, and temporally volatile
(Damian, Helms, Kwan, Marczak, & Koelewijn,
2013; Mathiassen, Tuunanen, Saarinen, & Rossi,
2007), and weaknesses in dealing with these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301378834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kalle@case.edu

Computing Requirements for Open Source Software

1218

requirements’ properties create a constant source of
project stress and outright failure (Aurum & Wohlin,
2005; Hickey & Davis, 2003). Over the last decade,
software development has grown increasingly
distributed and dynamic, making the RE challenge
even more formidable. A prominent example of this
change is the emergence of open source software
(OSS) development where volunteers, who work
under open licensing agreements, deliver software in
a collaborative and distributed manner through public
development platforms such as SourceForge and
GitHub (Crowston, Li, Wei, Eseryel, & Howison,
2007). These arrangements allow source code and
related design information to be freely used,
modified, and disseminated among large numbers of
geographically distributed, autonomous developers. A
consequence of the distributed structure of OSS
projects is that they have ambiguous “customer” roles
and few “stages” or deadlines. Rather, the software
evolves organically to meet the needs and aspirations
of its attendant community. The success of several
OSS projects and communities implies that somehow
“the right requirements” get decided upon, addressed,
and eventually implemented “correctly.” The ways in
which this outcome is achieved are the primary focus
of the present study.

Traditional structured software development follows
well-defined RE principles such as time-bounded
discovery and documentation of needs conducted by a
stable team of analysts in relation to a clearly
identified set of users. This arrangement provides
clarity around social and technological arrangements
that identify and manage requirements. Recently, with
the rising popularity of agile methods, some
traditional RE activities (e.g., formal requirements
documentation and modeling) have been replaced by
dynamic social practices such as face-to-face
interaction and iterative prototyping. Because of the
distributed and voluntary nature of OSS, it follows
neither structured nor agile forms of RE (Crowston &
Kammerer, 1998; Hansen, Berente, & Lyytinen,
2009). OSS projects eschew RE formalisms, such as
detailed project plans and formal specifications
(Scacchi, 2002) that form the foundation for
structured approaches to RE, but they also rely on few
and intermittent face-to-face interactions due to their
voluntary and distributed natures. In contrast,
requirements knowledge in OSS is socially embedded
in various artifacts and conversations, highly diverse,
and widely distributed (Mockus, Fielding, &
Herbsleb, 2002). Due to high turnover rates (Robles
& Gonzalez-Barahona, 2006), diverse motivations
(Shah, 2006), and self-assignment (Crowston et al.,
2007), the configuration of actors and artifacts in OSS
projects is also inherently volatile. How then do OSS
projects successfully carry out RE given their
dynamic and distributed natures?

Our knowledge of OSS RE remains limited. The
small number of studies conducted suggest that OSS
projects settle requirements “on the fly” as
participants resolve and negotiate requirements by
relying on multiple networks of communication
(Scacchi, 2002, 2009). Past research also sheds light
on how OSS processes differ from traditional RE
(Crowston et al., 2007; Scacchi, 2002, 2009; Shah,
2006). Yet, extant studies do not provide a
comprehensive account of how RE tasks are actually
accomplished and how the interweaving of
participants and artifacts ultimately makes
requirements discovery, specification, and validation
possible. In particular, past studies do not explain
why OSS RE activities appear to be stable, resilient,
and effective despite the dynamic and heterogeneous
nature of the requirements knowledge, participants,
and related processes. Simply put, there is a
substantial gap in the understanding of how and why
OSS projects successfully manage their requirements.
This study seeks to address this gap by focusing on
how the social, structural, and temporal organization
of OSS activities enables effective sharing and
coordination of requirements knowledge.

In addressing this research question, we approach RE
as a cognitive task—a knowledge-oriented effort in
which participants seek to make sense of what
software should do and why. Given the heterogeneity
and dynamism of knowledge and its distribution
across actors and artifacts during OSS (Hansen,
Robinson, & Lyytinen, 2012), our analysis draws
upon the theory of distributed cognition (DCog)
(Hutchins, 1995; Hutchins & Klausen, 1996). This
theory expands traditional models of cognition
centered on the mental processes of individuals to
include an analysis of distributed, knowledge-related
activities that involve multiple heterogeneous
entities—both human and artificial. At the same time,
DCog theory extends cognitive science’s fundamental
view of “cognition as computation”—i.e., the idea
that cognition is about the creation and manipulation
of symbol systems (Simon, 1980)—into broader
sociotechnical settings. Accordingly, we treat OSS
RE as a stream of distributed cognitive activities
focused on what we refer to as the process of
requirements computation—the transformation of
vague requirements knowledge embedded and
discovered within a broader OSS environment,
through a set of artifacts and social mappings, into
implementable code that realizes those requirements.
Such computation is both enabled and constrained by
the dynamic reconfiguration of actors and artifacts,
often framed by simple heuristic rules that guide the
organization and execution of the process.

We probe the essential characteristics of RE as
sociotechnical “computation” through an exploratory
case study of a typical midsized OSS project—

Journal of the Association for Information Systems

1219

Rubinius (a Ruby programming language runtime
environment: https://rubinius.com/). Through the case
study, we demonstrate that computing requirements
in an OSS project are made possible by a complex
and dynamic cognitive system consisting of
constellations of actors, artifacts, and temporal
structuring mechanisms. Requirements knowledge is
discovered through excavating neighboring artifacts
and technological environments; it is specified
through code change units identified in ongoing
discussions and expressed in code segments; and it is
validated “in the wild” by sharing the code segments
across a broader OSS community. Specific temporal
structuring mechanisms such as design heuristics
focus the cognitive effort on particular elements and
computational goals at different stages of the RE
process. These insights provide us with a rich
foundation for theorizing the mechanisms that make
highly distributed RE successful within an OSS
context. The remainder of the paper is organized as
follows. In the next section, we provide a brief
introduction to how RE is changing due to new forms
of software development such as agile methods and
OSS. This is followed by a review of DCog theory
which frames the conceptual foundation of our case
study. Thereafter, we present an overview of the case
study and detail its key findings. We conclude by
formulating a model of RE computation in OSS
environments and discuss implications of our findings
for RE research and practice.

2 Theoretical Background

2.1 Requirements Engineering and the
Changing Face of Development

RE refers to processes carried out by software
developers and other stakeholders to achieve a
cohesive set of requirements for software. These
requirements express, in a clear and collectively
accepted form, what the software is going to deliver
and why. In general, RE processes address three
necessary facets associated with requirements
knowledge: discovery, specification, and validation
(Hansen et al., 2009). Discovery concerns the
identification of functional needs associated with a
given system as well as constraints to which it must
conform (Mathiassen et al., 2007)—i.e., it addresses
the question: What do we need to build? Specification
focuses on the explicit articulation of discovered
needs, including deriving in detail their functional and
technical consequences (Hansen et al., 2009)—i.e., it
addresses the question: How can we articulate,
express, and share those needs in the most effective
way? Finally, validation ensures that the requirements
are correct, complete, and consistent, and therefore
implementable, commonly understood, and accepted
(Bahill & Henderson, 2005)—i.e., it address the

question: How can we be sure that we are working in
the right direction with the correct requirements?

In structured development—commonly referred to as
the waterfall model—these three RE facets are
executed in a sequential manner (Larman & Basili,
2003). In addition, waterfall development is largely
oriented toward the specification component and lays
a heavy emphasis on formal (often voluminous)
documentation of requirements, which incorporates
both natural language and modeling elements
(Hansen et al., 2009). While the rigid waterfall
structure was developed as a response to the chaotic
approaches to RE/software development that
preceded it (Fitzgerald & Avison, 2003), the slow
pace and inflexibility of the approach has engendered
severe criticism (Jarke, Loucopoulos, Lyytinen,
Mylopoulos, & Robinson, 2011).

To cope with the increasing rate of change in the
contemporary business environment, a less rigid,
iterative form of development has become widely
popular—agile development. Agile development
downplays the importance of formal documentation,
because its advocates argue that the elimination of
formal documentation can be compensated for
through interpersonal communication, rapid
prototyping, and continual replanning (Beck &
Andres, 2004; Cao & Ramesh, 2008). Therefore,
agile development emphasizes direct and frequent
face-to-face interactions between design stakeholders,
including development team members and clients, as
a means of discovering and validatimg requirements
(Conboy, Coyle, Wang, & Pikkarainen, 2011;
Highsmith & Cockburn, 2001). Being prototype-driven
and iterative, it also aids in discovering and specifying
requirements, because prototypes help developers focus
their discussions in ways that integrate requirements
discovery, specification, and validation (Cao & Ramesh,
2008; Ramesh, Mohan, & Cao, 2012). Finally, continual
replanning and reprioritization introduces flexible
attention to various requirements questions (Port & Bui,
2009; Vidgen & Wang, 2009).

OSS development shares some characteristics with
the agile approach, such as the commitment to
iterative development. However, from an RE
perspective, the OSS model introduces several
distinct challenges, which originate from the highly
distributed nature of the development team (a marked
contrast to agile methods’ ideal of face-to-face
communications) and the absence of control in OSS
due to the reliance on a voluntary workforce. As a
result, the management of requirements knowledge in
OSS projects has several idiosyncratic characteristics.
The early studies characterized OSS development as a
chaotic, bazaar-like engagement (Raymond, 1999)
where the idea of coordinated RE process would
largely disappear and become fully an individual
concern. Yet, recent evidence suggests that OSS

Computing Requirements for Open Source Software

1220

communities maintain a relatively stable social order
through constant mobilization and integration of
expertise and related community building by using
free-flowing electronic communications and
“community events.” Crowston and Howison (2005)
observed that a typical OSS development community
organizes itself in an “onion” structure, with a
relatively small core of dedicated contributors
surrounded by a larger peripheral community marked
by lower levels of participation and technical skill.
The core acts as the gatekeepers of project
participation, mission, and contribution (Asundi &
Jayant, 2007). It also controls and coordinates
knowledge assets necessary to develop and
implement the code and determines the directions of
the project (Mockus et al., 2002; Valverde & Solé,
2007). This community structure implies that the
discovery, specification, and validation facets of RE
occur at multiple layers and degrees of intensity
across the community and that specific arenas of
knowledge exchange, involving specific
arrangements of social and electronic
communications, are likely to serve specific RE tasks
within each facet. However, past OSS studies have
primarily focused on static features of communities
and have not investigated salient social processes and the
deployment of artifacts that enable knowledge exchanges
and transform requirements knowledge between different
layers and functions of the community.

Recent popular models of software development
downplay the earlier emphasis on the formal aspects
of RE. However, because of the nature of design, the
fundamental goals of discovery, specification, and
validation need to be honored regardless of the
development approach adopted (Cao & Ramesh,
2008). As we argue below, the resolution of these
questions is conditioned by how the selected
approach frames and solves a set of cognitive
challenges related to RE as a collaborative design
effort. For example, structured requirements
approaches rely on specification documents and
formal models—i.e., explicit and relatively closed
forms of externalized RE knowledge. The use of
these artifacts, however, has been rendered
increasingly problematic in development
environments which are highly complex, dynamic,
and heterogeneous, while also demanding
increasingly dynamic ways of expressing and sharing
diverse requirements knowledge (Jarke et al. 2011).
Therefore, both agile and OSS approaches tend to
disavow formal documentation and deny the presence
of a clearly demarcated requirements phase. In
contrast, these approaches see requirements discovery
and validation as dynamic and interwoven social and
technical practices and rely heavily on social
mechanisms in expressing and sharing RE knowledge
(Petersen & Wohlin, 2010). In the OSS context, the
process grows still more complicated due to the lack

of control over volunteer developers, who are
physically and temporally distributed. This renders
face-to-face communications infrequent and shallow
(see Appendix A for a comparison of RE principles in
the three methodologies) and raises the question of
how RE knowledge is expressed and shared in such
settings. Because of these differences with OSS, extant
RE research provides only limited explanations
regarding how requirements knowledge is effectively
managed during OSS development (Jarke et al., 2011).

One fruitful avenue for investigating OSS RE is to
explore the role and function of heterogeneous
artifacts and related mechanisms through which
requirements knowledge is created, maintained and
disseminated within the OSS community for
discovery, specification, and validation. Scacchi
(2002, 2009) observed that OSS communities eschew
explicit requirements statements in favor of
“informalisms” buried in threaded discussion forums,
web pages, email communications, and external
publications. Recent studies confirm that OSS RE
relies on evolving heterogeneous online
documentation scattered across diverse
representational forms split across multiple channels
which record intensive exchanges about varying
aspects of the software (Ernst & Murphy, 2012; Noll
& Liu, 2010). These studies also show that OSS
designs and implementations often result from local
improvisation which is rationalized in discovery and
specification logic only post hoc, when requirements
need to be written down (Ernst & Murphy, 2012).
Though this research stream describes in detail how
distributed artifacts are used during OSS
development, it mainly concentrates on reporting
discursive uses of artifacts and their roles in capturing
RE knowledge while largely ignoring how the uses of
these artifacts trigger, influence, and transform RE
knowledge so as to address the three principal RE
goals. To put it another way, we do not know how
cognitive processes necessary for RE and related to
the use of various artifacts by diverse participants
unfold within OSS settings. To understand better
these forms of RE, we will next formulate a cognitive
approach that helps us analyze such processes.

2.2 Cognitive Foundations
Broadly conceived, cognition is the human ability to
acquire, transform, store, and apply information
(knowledge) gathered from the environment
(Shettleworth, 2009). Cognition serves as an umbrella
term for activities traditionally captured under the
concept of general mental functioning: “a moniker for
practically all the interesting functions the brain
performs to facilitate behavioral adaptations and
survival” (Cromwell and Panksepp 2011, p. 2027).
Accordingly, cognitive activity includes such diverse
functions as attention, evaluation, memory,

Journal of the Association for Information Systems

1221

communication, decision-making, and problem-
solving (Anderson, 2005; Metzler & Shea, 2011).
Within the field of cognitive science, cognition has
been specifically framed through the analogy of
computation—the creation and manipulation of
symbol systems (Simon, 1980)—to the extent that
computation has been identified as “the principle
metaphor of cognitive science” (Hutchins, 1995, p. 49).

The distributed and sociotechnical nature of OSS
calls for an analysis of cognition in the presence of
heterogeneous actors and artifacts. Accordingly, we
conceive of RE as a form of sociotechnical
computation. This lens identifies not only the distinct
and mutually supportive roles of participating social
actors during cognition, but also their reliance upon
artifacts during cognition. The idea of RE as
sociotechnical computation does not, however, imply
that the processes through which the design
environment moves from problem formulation to
solution generation are algorithmic and deterministic;
rather, the use of the term accentuates the interplay
between actors and artifacts that jointly promote
cognition around requirements.

The rich literature around sociotechnical cognition
presents several candidates for a cognitive approach
to OSS RE, including activity theory (Leont’ev, 1981;
Vygotsky, 1987), transactive memory systems
(Wegner, 1995), actor-network theory (Callon, 1986;
Latour, 1987), situated action (Lave, 1988; Suchman,
1987), and DCog theory (Hollan, Hutchins, & Kirsh,
2000; Hutchins, 1995). For our purposes, DCog offers
the most appropriate foundation, because it
simultaneously considers the social (actor-related),

structural (artifact-related), and temporal (dynamism)
aspects of cognitive activities, all of which are critical
in analyzing how each of the RE facets are
“computed.” Other theories focus primarily on one
side of the sociotechnical divide or on comparatively
narrow aspects of cognition. For example, activity
theory focuses on a single actor as the unit of analysis
with less consideration of interplay between diverse
actors and the degree to which artifacts actually bear a
cognitive load in information processing. Similarly,
while transactive memory systems theory attends to
the distribution of cognitive effort among the
members of a team, it provides limited consideration
of the impacts of artifacts on cognition. In addition,
transactive memory systems theory centers on a
single cognitive function, namely memory. Actor-
network theory explains why sociotechnical
knowledge-based networks emerge and achieve
stability, particularly in the domains of scientific or
technological innovation. However, actor-network
theorists are less focused on how such systems
process information and execute cognitive functions
on a day-to-day basis; rather their focus is on how
knowledge is grounded in sociotechnical
arrangements (Fomin & De Vaujany, 2008). Finally,
while situated action (Lave, 1988; Suchman, 1987)
places a significant emphasis on the influence of the
external world on human action, the approach downplays
the importance of distinct cognitive objectives or goals in
favor of contingent and improvisatory responses to
changing situations (Nardi, 1996). A summary
comparison of reviewed sociotechnical theoretical
approaches is provided in Table 1.

Computing Requirements for Open Source Software

1222

Table 1. Summary Comparison of Multiple Sociotechnical Theoretical Approaches

Theory/
framework Areas of focus Selected

citations

Relative to distributed cognition

Points of commonality Points of contrast

Activity theory Understanding
human activity as a
by-product of
sociotechnical
systems

Leont’ev, 1981;
Vygotsky, 1987

Emphasizes the role of
artifacts in human
activity; focuses on the
fusion of external and
internal influences

Artifacts merely mediate
human cognition; focus on
cognitive efforts of
individuals

Actor-network
theory

Explaining
formation and
maintenance of
innovation
networks, esp. in
the sciences

Callon, 1986;
Latour, 1987

Significant concern for
nonhuman elements
(actants) in a system;
knowledge as a product
of sociotechnical
operations

Limited concern for day-
to-day cognition among
actors; less focus on how
knowledge is used and
deployed

Situated action Understanding the
influence of social
and material
contexts on human
actions

Lave, 1988;
Suchman, 1987

Emphasis on the
interaction of human
beings with the social and
material environment

Greater concern for
contingent response to the
external word; less focus
on distinct cognitive goals

Transactive
memory systems

Exploring how
groups capture and
store knowledge
collectively

Wegner, 1995 Focuses on social
distribution of cognitive
load

Little concern for the
specific role of artifacts in
cognition; primarily
concerned with memory
functions

2.3 Distributed Cognition
DCog theory considers how cognitive tasks are
executed through the interaction of distributed actors
and artifacts (Hutchins, 1995; Hutchins & Klausen,
1996). Accordingly, it offers a fruitful lens for
analyzing OSS RE as it accommodates the roles of
heterogeneous actors and artifacts in pursuing
discovery, specification, and validation of
requirements. While maintaining the metaphorical
framing of cognition as computation, DCog theory
breaks with traditional cognitive science by asserting
that cognitive processes are not bounded by an
individual’s mind (Rogers & Ellis, 1994). Not only
does cognition extend beyond the brain to other parts
of the body (e.g., our hands as we write), but also to
other humans and the physical environment
(Hutchins, 1995). Hence, during cognition, relevant
information gets distributed and transformed across
actors and physical artifacts over time and space.

Given the shift in scope, DCog reformulates cognition
as “the propagation of representational states across
representational media” (Hutchins 1995, p. 118),
where a representational state is “a configuration of
the elements of a medium that can be interpreted as a
representation of something” (Hutchins 1995, p. 117).
In the context of OSS RE, representational states
would cover diverse ways in which requirements

knowledge is perceived, communicated, refined, and
instantiated in a software artifact. This framing
embraces both internal (e.g., an individual’s mental
states) and external representations (e.g., embodied
artifacts) (Rogers & Ellis, 1994). As these
representational states change over time and across
media, information propagates through the cognitive
system. In the context of OSS, the cognitive system is
all actors and artifacts that perceive, store, transform,
and transfer requirements knowledge.

Specifically, DCog theory identifies three intertwined
modes of cognitive distribution (Hansen et al. 2012;
Hollan et al. 2000): (1) social distribution, (2)
structural distribution, and (3) temporal distribution.
Social distribution spreads cognitive workload across
members of a group and reflects the cognitive
processing resulting from the interactions of multiple
actors with diverse skills and expertise. Structural
distribution allocates cognitive workload through the
use of external artifacts—representational forms
which store, display, and process information (Hollan
et al., 2000). Such artifacts afford specific ways to
shoulder cognitive activities such as memory,
visualization, or inference. OSS projects use artifacts
for RE such as document repositories or recording
histories of design discussion (memory), layout, and
wireframes (visualization), etc. Finally, temporal
distribution spreads cognitive workload over time,

Journal of the Association for Information Systems

1223

where preceding cognitive efforts establish a
foundation for the subsequent ones. Several OSS
practices, such as code reuse and patterns, manifest
temporal distribution (Raymond, 1999). These modes
of distribution provide a valuable lens for comparing
development models (Hansen, Lyytinen, & Kharabe,
2015). For example, while comparing waterfall and
agile approaches, one observes substantial differences
in the mechanisms of social distribution (e.g., strict
specialization of work vs. close interpersonal
interaction), structural distribution (e.g., emphasis on
formal documentation vs. informal mock-ups and
rapid prototyping), and temporal distribution (e.g.,
sequential ordering of states vs. intense iteration
between) of cognitive effort. In general, the waterfall
approach places priority on structural and
sequential temporal forms of distributions, while
the agile approach emphasizes social and recursive
temporal forms of distribution.

Because DCog approaches cognition as a form of
computation, it also places significant emphasis on
the impact of heuristics—“rules of thumb”—that
convey how (and under what conditions) the
propagation between representational states happens.
Heuristics embody rough “algorithms” that represent
the content and nature of computation. Heuristics
often combine multiple cognitive functions, including
evaluation (e.g., establishing thresholds/acceptance
criteria), memory (e.g., reducing the elements to be
maintained in working memory), decision-making
(e.g., providing tacit decision rules), and problem-
solving (e.g., conducting trouble-shooting through
causal attribution). Overall, heuristics embody higher-
order knowledge within a given domain—“discipline-
appropriate problem-solving strategies and patterns of
justification, explanation, and inquiry” (Perkins 1993,
p. 101). Ultimately, they encapsulate available
inferential knowledge regarding the “what, when, and
how” of computation. Akin to design patterns
(Mangalaraj, Nerur, Mahapatra, & Price, 2014),
heuristics can be combined into larger cognitive
patterns (Vidgen & Wang, 2009). Building upon
these foundations the present study will pursue the
following research questions:

RQ1: In what ways is requirements-oriented
cognition distributed across actors and artifacts in
OSS development?

RQ2: What are the specific mechanisms through
which OSS requirements are dynamically
computed?

RQ3: How do the system-level dynamics between
actors and artifacts unfold during requirements
“computation”?

3 Research Design

3.1 Project Selection
Given the novelty of using a cognitive approach to
study OSS RE our study is exploratory and motivated
by the need to identify critical actors and artifacts and
the constellations involved in OSS RE
“computation.” Accordingly, we wanted to sample a
representative case to achieve a holistic and
generalizable understanding of the phenomenon
(Eisenhardt, 1989; Yin, 2009). The criteria for
selecting a representative case embodied Lee, Kim, &
Gupta’s (2009) criteria of OSS success which
encompasses both software and community service
quality: (1) the project should be of reasonable size
(i.e., greater than one million lines of code) to be
representative of a population of successful OSS
projects; (2) the project should have a relatively large
developer community (i.e., greater than 100
developers), so as to be representative of more widely
distributed RE processes; and (3) the project should
have had at least one official release, indicating initial
success in deriving and managing requirements.
Based on these criteria, we selected the Rubinius
project, which has over 2.6 million lines of code,
more than 100 contributors, and had its first release in
late 2010 followed by multiple successive releases.
Our data collection focused on the period between
spring 2010 (when Rubinius 1.0 was launched) and
fall 2012 (when the Rubinius 2.0 preview was
launched). This period involved a new round of
efforts to prepare for the Rubinius 2.0 release and
involved significant extension in software
functionality. A detailed description of the Rubinius
project is provided in Appendix B.

3.2 Data Collection
We drew on multiple sources of data which enabled
data triangulation and use of complementary evidence
(Yin, 2009). Our primary data collection method was
interviewing aimed at investigating how project
participants understand and work with design
requirements. During interviews, we followed a
critical incident approach by asking respondents to
describe specific cases where a requirement was
successfully implemented and cases where it was not.
We then sought to “follow” requirements computation
by tracing the movement of knowledge through the
system in all cases. To support a comprehensive and
systematic data collection, we developed an open-
ended interview protocol prior to data collection
(Eisenhardt, 1989; Yin, 2009). The protocol was
refined and augmented as the study progressed. The
final protocol is provided in Appendix C.

In our sampling, we followed theoretical and
snowballing techniques (Corbin & Strauss, 2008). To

Computing Requirements for Open Source Software

1224

help in sampling salient respondents, an initial
interview was conducted with the founder of
Rubinius. He helped us identify other relevant
respondents and facilitated access to them. Our
criterion in sampling was to cover all key stakeholder
groups in the project, including core team members,
peripheral developers, participants with different
technical skills or roles (e.g., encoding), and
representatives of the sponsor. A total of 17
interviews were conducted over a six-month period
from September 2012 to February 2013, and 13 were
with members of the Rubinius community. We
interviewed all three core members, who contributed
to 2.2 million lines of code, accounting for
approximately 85% of the total lines of code by the
end of 2012. These three subjects were interviewed
several times to validate and deepen our
understanding of the process. In addition, we
conducted an interview with a senior vice president at
Engine Yard, the primary organizational sponsor of
Rubinius. We stopped seeking more interviewees
when theoretical and empirical saturation was
achieved (i.e., we ceased to gain additional insights
from the interviews and the empirical cases could be
accounted for by the emerging theory).

The interview protocol was emailed to all respondents
prior to the interview so that they could prepare for
the interview by recalling critical incidents.
Interviews lasted between 60 and 90 minutes and
covered the key elements of the protocol, with
additional probing when salient issues were
identified. Because of the distributed nature of the

community, most interviews were conducted via
videoconferencing. Due to one respondent’s linguistic
limitations (e.g., lack of comfort with speaking
English), one interview was conducted through instant
messaging over Skype. All other interviews were audio
recorded with the permission of the respondents. The
recordings were transcribed and follow-up emails were
occasionally used for clarification. Overall the
interview corpus covered 393 pages of transcribed text,
containing more than 140,000 words.

In addition to interviews, we collected archival data
from the project’s GitHub repository. This data
represented a heterogeneous mix of project
documentation, including project descriptions, 26
blog posts, 1082 instances of stated issues, and 604
instances of pull requests. We also collected direct
conversations between project stakeholders archived
in the project’s mailing list (35 email threads). To
manage the overwhelming size of this dataset, a set of
emic (Headland, Pike, & Harris, 1990) keywords
were elicited from the interviews (see Appendix D for
details on this procedure). We then searched the
archival data sources for these keywords, and selected
all entries that matched. This helped us pare down the
archival data to a manageable slice of relevant data.
Internet relay chat (IRC) messages, numbered in the
hundreds of thousands, were selected when an interview
or archival item explicitly pointed us toward them.
Analysis of the archival data sources helped validate,
refine, and triangulate the data and insights generated
through interviews. A summary of data collection
activities and data types is provided in Table 2.

Table 2. Summary of Data Collection

Data sources Descriptions

Interviews A total of 17 interviews conducted with 393 pages of transcribed data, composed of 16 interviews
with 13 committers within the Rubinius community (including multiple interviews with the three
core developers) and one interview with a senior vice president at Engine Yard Company

Archival data 1082 issues and 604 pull requests, 26 blog posts, and 35 threads from the developer mailing list

3.3 Data Analysis
In line with grounded theory methodology (Strauss
and Corbin 1990), we began data analysis while
collecting data. We analyzed the interview transcripts
using open, axial, and selective coding (Strauss &
Corbin, 1990). As the coding process evolved, we
triangulated our initial findings in light of a number
of extant theories that focused on the interplay of
individuals and artifacts within the cognitive effort of
teams. These included the theories summarized in
Section 2.2 above. While we were careful not to force
the theoretical structures onto our data set, the
principles of DCog theory emerged as a critical
sensitizing device (Corbin & Strauss, 2008;

Eisenhardt, 1989), suggesting a strong fit with our
observations in the Rubinius project. In all phases
of data analysis, we used Dedoose analysis
software (http://www.dedoose.com) to code the
relevant data sets. The detailed steps of the coding
are presented in Appendix E.

4 Findings
We delineate our key findings in four steps. First, we
provide three illustrative vignettes of how several
features implemented in various Rubinius releases
emerged through RE processes. We will detail the
implementation of: concurrency (a metarequirement
with regard to parallel processing), flip-flops (a
sophisticated logic operator), and

Journal of the Association for Information Systems

1225

profiler/benchmarking functionalities (tools for
identifying performance gaps). These vignettes are
intended to offer a sense of the dynamism involved in
requirements computation. Second, we explore how
requirements computation is socially and structurally
distributed in Rubinius across all observed RE
activities. Third, we show how computation is
temporally distributed through trends, patterns, and
heuristics across all observed implemented features.
Fourth, we synthesize these analyses into a
generalized OSS RE model which distinguishes three
broad classes of recursively organized cognitive
processes—excavation, instantiation, and testing-in-
the-wild—which we put forward as distinct stages of
requirements computation within OSS.

4.1 Three Vignettes Illustrating
Requirement Engineering
Computation

The vignettes that follow are emblematic of the ways
in which requirements knowledge is discovered,
specified, and validated in Rubinius. We include
these here to provide the reader with a firsthand sense
of how RE processes unfolded within the Rubinius
community. When we consider these vignettes,
several salient features about the distribution of
cognitive load during RE become visible including
distinct dimensions of distribution (i.e., social,
structural, and temporal), reliance upon several
heuristics to guide actions, and what patterns of
propagation across representational states emerged.

Computing Requirements for Open Source Software

1226

Table 3. An Example of RE Computation in Rubinius—Concurrency

Given the increasing prominence of multicore processors, concurrency was acknowledged as a technological
change worthy of the Rubinius community’s attention. One day, in the midst of regular IRC channel exchanges,
a Rubinius committer called attention to the lack of support for multicore programming in Rubinius. This
functionality was missing because Matz’s Ruby Interpreter (MRI, a standard Ruby interpreter upon which
Rubinius is based) did not yet support runtime concurrency even though concurrent I/O had been implemented.

This observation elicited a conversation on IRC about the feasibility of implementing concurrency in Rubinius.
Examples of the concerns voiced at that time included “Running concurrency forces Rubinius to suck down
GIL [Global Interpreter Lock] timeslices.” Based on this exchange, the core committers decided to “give it a
try” by attempting to develop this new feature. The main objective was to improve Rubinius’s runtime
performance. One of the core committers tentatively began to develop the feature. During the process, the
general idea (runtime concurrency requirements), which initially had surfaced during IRC conversations, was
translated into a series of informal specs and corresponding code. After several days of exploratory
development, the core committers concluded that runtime concurrency might indeed be a feasible feature.

Accordingly, they established a new branch on GitHub, dubbed Hydra, to pursue this work. This decision
kicked off another round of trial-and-error experimentation recorded under the new branch and characterized as
“experiments with concurrent allocation and full stop GC [Garbage Collection].” After several months of
experimentation, one of the core committers published a post on the Rubinius website
(http://rubini.us/2011/02/17/rubinius-what-s-next/) announcing that, “I’d like to introduce the work we are
doing on the Hydra branch and the features you can expect to see in Rubinius soon.” By then, the Hydra code
had proven to be relatively stable so that runtime concurrency could be effectively demonstrated.

Next, a baseline implementation was formed where the core committers merged the then-current master branch
with Hydra. This indicated that the new feature was ready for the wider community to “play with.” Several
individuals and related communities began to test their own software projects that would need such a feature to
determine if the newly implemented functionality would serve their needs. The developers also ran the baseline
implementation against MRI to see whether it worked as expected. During this process, the stated requirement
of runtime concurrency was validated with the support of multiple artifacts such as MRI, GitHub, Puma (a web
server), and Travis (a continuous integration server). When tests failed or the baseline implementation crashed,
the developers were encouraged to identify new bugs and report them via GitHub in the form of issues and pull
requests. For example, one developer raised an issue concerning “Randomizer in Hydra segfaults” when
running the Hydra branch under high load (https://github.com/rubinius/rubinius/issues/726). One of the core
committers addressed this issue by “adding spinlock around state in Randomizer.” However, resolving the issue
triggered another problem (e.g., fault in Inline Cache). Therefore an issue
(https://github.com/rubinius/rubinius/issues/729) was later opened signaling the creation of new requirements
to be considered.

The first vignette focuses on the emergence and
evolution of a requirement around concurrency of the
running code. Socially, we can see the activity of
distinct sets of social actors, such as core committers,
peripheral developers, and external communities, who
play different roles with respect to the discovery,
specification, and validation of the concurrency
requirement. For example, the idea originally
emerged from a peripheral committer and was then
discussed extensively within the core through the IRC
channel. The idea was subsequently taken up by a
core committer who proposed a tentative solution
which was then shared with a broader group of core
committers, resulting in a spec. Structurally, several
artifacts are prominent in the computation process,
including the GitHub platform, IRC channels,
informal specs, and related software platforms. These
were critical in storing, displaying, and distributing
knowledge or generating new knowledge through

experimenting around focal requirements. As with the
social actors, the prominence of these artifacts varied
widely at different stages of the process. For example,
specs were important in the early stages but not relied
upon in the later stages. Finally, temporal distribution
shows how efforts build upon one another. For
example, the processing of the idea moved into an
IRC channel, then into tentatively implemented code,
then into an informal spec, and so on. These steps
show how the whole Rubinius ecosystem moves from
initial problem identification toward resolution and
ultimate feature use. Interestingly, the community
employed fairly simple behavioral norms (i.e.,
heuristics) to foster the evolution of the desired
functionality over time. For example, one core
committer volunteers to “give it a try,” reports his
results in an informal spec, which is then expanded to
a fuller, potentially promising implementation,
providing the justification of a new branch in the

Journal of the Association for Information Systems

1227

GitHub repository. Overall, we see a trace of
mappings from one representational state to
another where the concurrency feature was

expressed as an idea, as a set of recorded notes in
the IRC channel, as a set of tentative software
solutions, as informal specs, and so on.

Table 4. An Example of RE Computation in Rubinius—Flip-Flops

A Rubinius committer, who wanted to “try something new and crazy,” opened an issue in GitHub related to
implementing a flip-flops feature, which already existed in MRI. However, this issue was closed by one of the
core committers because flip-flops were deemed “esoteric and unnecessary.” The core committer refused to
regard flip-flops implementation as a new requirement until the committer could show him real-world code that
used it. The committer therefore examined the MRI source code and asked the larger community of Ruby
developers whether anyone was using flip-flops. Fortunately, a Ruby developer came up with “the weirdest
code example” that illustrated a valuable use case. Given that flip-flops behavior could be found in MRI and a
real-world use-case existed, the core committer conceded and agreed to include the flip-flops feature in
Rubinius.

Accordingly, the committer began to work on the flip-flops feature as a trial-and-error experiment under a new
branch in GitHub, eponymously named flip-flop. Due to insufficient tests for flip-flops, the committer
“searched through RSpec [a specification for describing the behavior of MRI]” and communicated with core
committers from time to time “on IRC mainly” to write and adjust specs and code until they passed on MRI and
Rubinius. The committer “went into wherever the compiler was throwing errors and just added the code
necessary.”

Although the core committers did not take charge of the actual coding process, they always guided the
committer and were involved in writing some specs and code. For instance, a core committer commented
regarding the issue “sexp_key should be sexp_name to be consistent with existing code” and another committer
commented “This isn’t thread safe at all . . . Flipflops should just be implemented using stack locals . . .”
(https://github.com/rubinius/rubinius/pull/1257). Once all specs and code passed, the related commits were
merged into the master branch, which signaled to the wider community that the feature was ready to be
validated.

In the second vignette, we can again see social,
structural, and temporal distribution. Socially, core
committers, peripheral committers, and external
communities are all involved in the computation of
the flip-flops requirement. Flip-flops—sophisticated
logic operators allowing for multiple truth
conditions—already existed in MRI. Therefore, a
peripheral committer proposed their implementation
in Rubinius, but the proposal was turned down by a
core committer on the grounds that it was “esoteric
and unnecessary” from a cost-benefit perspective.
Later on, the functionality was supported by a real-
world use-case submitted by a Ruby developer in an
external community, which convinced the core
committer of the usefulness of the functionality;
therefore, the functionality was eventually accepted
for inclusion in Rubinius release. Structurally, we can
see the importance of GitHub, MRI, Ruby-related
projects, RSpec, and the IRC channel in perceiving
and evaluating knowledge and generating a solution.
The existence of flip-flops in MRI triggered the

peripheral committer to raise the issue of flip-flops in
GitHub’s Rubinius repository, enabling the core
committer to evaluate its feasibility. As real-world
code from Ruby-related projects emerged, the
functionality was reevaluated by the core committer,
and the implementation could be moved forward by
the peripheral committer. Afterwards, the knowledge
of the flip-flops requirement flowed from RSpec,
which directed the peripheral committer to write
specs describing the desired flip-flops behavior of
Rubinius. The peripheral committer first turned to
MRI which provided a baseline for the functionality’s
intended behavior and then to the IRC channel which
facilitated problem solving. Temporally, we can
observe how subsequent efforts rely on preceding
efforts, from functional discovery to validation. For
example, the processing of the function was translated
into a bug report on GitHub, which was then
transformed into specs and code, and eventually
transformed into changes to the master branch.

Computing Requirements for Open Source Software

1228

Table 5. An Example of RE Computation in Rubinius—Profiler/Benchmarking

As an interpreted (as opposed to compiled) programming language, Ruby has often been accused of being slow.
Rubinius, being written largely in Ruby, as opposed to C (in which MRI is written), has also received its fair
share of accusations in this regard, but the community largely considered it to be its mission to overcome such
performance constraints (“the hope that Rubinius actually would be faster”). To realize this hope, Rubinius core
developers launched an initiative for “improving the JIT compiler.” A particular feature requested to help
realize this vision was to implement benchmarks for specific methods (e.g. “Added a benchmark to allow
performance comparison of Array#permutation against other Ruby implementations”), as well as an improved
profiler which allows for very detailed profiling, i.e. “type profiling,” which in turn enables developers to
understand performance in relation to specific object types and methods.

The overall process of identifying performance gaps relies on the involvement of the community, leading the
core developers to essentially make a call for contributions: “Rubinius is calling on the über programmers of the
world to implement solutions in Ruby to help us identify performance challenges and address them.” Through
this call, Rubinius could harness the capacity of “oceans of regulars” to look into the various nooks and
crannies of the codebase, using the profiler and the associated benchmarks, so as to find places where the
performance of Rubinius could be improved.

In the last vignette, we see how a persistent need for
speed generates the implementation of a set of tools—
a profiler and associated benchmarks for improving
the just-in-time (JIT) compiler. In this vignette,
significant social distribution helps gather a large
number of benchmarks. These benchmarks then
constitute a widened structural distribution of artifacts
that allows developers in multiple situations to
compare their code to the benchmarks. Temporally,
the core initiates the development of a tool (i.e., the
profiler), so as to activate the broader social
distribution, which in turn generates and activates a
broader benchmark-oriented structural distribution,
thus sequencing the various forms of distribution
across time, so that the work performed through
structural distribution builds upon work performed first
by the core and later a broader community of actors.

In summary, these vignettes illustrate the rich
dynamics across the social, structural, and temporal
forms of cognitive distribution. Next, we consider
generic social and structural elements present in
Rubinius RE as well as discuss how they are tied
together by temporal distribution mechanisms.

4.2 Social and Structural Distribution
Mechanisms

4.2.1 Social Distribution
Overall, social distribution is concerned with
allocating cognitive workload across members of a
group of actors involved in RE computation. Table 6
shows the social distribution mechanisms in
Rubinius, with an emphasis on the distinct analytical

categories and actor types observed. These categories
classify actors according to their relative position
within the Rubinius project and the cognitive
activities in which they participated. These include:
(1) the focal community (i.e., actors internal to the
project), (2) sponsors (i.e., actors neither entirely
internal nor external to the project), and (3) external
communities (i.e., actors external to the project).
Because of Rubinius’s open commit policy (i.e.,
anyone who gets a pull request accepted is
automatically granted commit rights to the
repository), we can distinguish between internal and
external participation based on whether or not actors
have a commit access to the project. The position of
sponsors cannot be deemed to be entirely internal or
external, since some actors may directly contribute to
the Rubinius codebase while others may not.

Each category supports different cognitive functions
in provisioning and manipulating requirements
knowledge. These functions reflect the necessary
distribution of the cognitive workload across social
and organizational boundaries. Based on these
functions, the focal community can devote their
software knowledge and technical expertise to RE
activities with the benefit of sponsor input. External
communities, in contrast, provide mainly an impetus
for the discovery of new requirements. Though the
Rubinius community experienced high member
turnover, the roles related to requirements
computation and related knowledge flow remained
relatively stable across the study period. Thus, the
skills of the actors in specific social positions (see
Table 6) largely determined how the requirements
knowledge became socially sourced and distributed.

Journal of the Association for Information Systems

1229

Table 6. Summary of Social Distribution Mechanisms

Actors Descriptions Functions in cognitive system

Focal community

Core committers Actors engaging in the daily management of the project;
responsible for guiding the overall project direction and
coordinating development activities; generally reflecting
extended involvement on the project and regular contribution
of new features

Providing domain and content-
specific knowledge

Problem solving and decision-
making

Peripheral
committers

Actors primarily contributing to discovering, reporting, and/or
fixing bugs; occasionally contributing new features, with
sporadic, periodic, or seasonal involvement

Providing content-specific
knowledge

Perception and communications
of issues/problems

Sponsor

Engine Yard Platform-as-a-Service (PaaS) company focusing on Ruby on
Rails and PHP development and management; providing
financial support to several Rubinius committers

Providing domain knowledge

Perception and communications
of needs

External communities

Ruby developers/
users

Actors working on or using the Ruby programming language Providing use-cases and
technical skills

Perception of needs

Evaluation of functionality
Ruby on Rails
developers/ users

Actors working on or using Rails, a web application
framework for the Ruby programming language

Engine Yard
customers

Users of Engine Yard services

Puma users Users of Puma, a concurrent HTTP 1.1 server for Ruby web
applications

Travis users Users of Travis, a hosted continuous integration service for
open source projects

Within the focal community, RE relied heavily on the
emerging vision of core committers. This vision was
strongly rooted in the knowledge gained in
developing Rubinius 1.0, including both domain
knowledge (e.g., regarding the Ruby environment)
and content-specific knowledge (e.g., regarding
certain Rubinius components such as virtual
machines, benchmarks, and standard specifications).
Apart from a small number of core committers,
hundreds of peripheral committers carried out specific
aspects of requirements discovery. For example, a
peripheral committer, who previously used an
external “gem” (i.e., a package) for a specific
purpose, submitted a pull request to make said feature
part of Rubinius: “I use FFI::Pointer.size in a gem to
check if I’m on a 32-bit or 64-bit platform, and I
imagine I’m not the only one doing that . . . I hope
this is a good addition to Rubinius.” Their RE
activities focused on discovering and settling
requirements questions by drawing on their diverse

expertise and interests. The following two statements
illustrate the social dynamic of the focal community:

[One of the core committers] has like most
of the interknowledge because he wrote
most of Rubinius. His hunches of what [a
problem] could be usually come quicker.
That’s the biggest difference, as you
probably get to know the whole code base
and how it works in these cases.

Most people did have some kind of
narrower focus . . . There were some
people who worked just on the VM or the
code generation, but a lot of the
contributors worked solely on Ruby, solely
on the specs, or just implementing
standard functionality.

The distribution of requirements knowledge was not
limited to the focal community. It was complemented

Computing Requirements for Open Source Software

1230

with the support of Engine Yard, which had a strong
emotional tie to OSS in general and the Ruby
programming language, in particular. They were
culturally embedded within the larger OSS
community and “wanted Ruby to win,” i.e., become
an established programming language. During the
study period (i.e., 2010 to 2012), Engine Yard
representatives did not propose any formal functional
requirements for Rubinius; they respected the will of
the Rubinius community. Rather, they provided
useful advice to the community on how to specify and
implement requirements. In addition, Engine Yard
facilitated Rubinius’s exposure to other external
communities by providing Rubinius as an option for
their clients on the Engine Yard platform. In this
regard, Engine Yard’s sponsorship helped Rubinius
build relationships with external communities and
thereby increase the credibility of the RE process and
validity of the requirements.

Indeed, many of the salient requirements flowed from
external communities including GitHub, the Engine
Yard platform, Puma, and Travis CI (Continuous
Integration). External communities refer here to a
variety of Ruby-related users and developers, who
contributed requirements knowledge to Rubinius
based on their domain or technical skills. These
related communities provided use-cases which helped
make certain requirements explicit, public, and highly
specific. A committer’s comment provides a useful
illustration of this role:

People will try out Rubinius and something
will break and they submit a bug report . . .
There are some people that don’t want to
deal with Rubinius—they don’t really care,
essentially—but Travis still gives them an
opportunity to test on Rubinius and maybe
allows for the failure so the Rubinius team
can see what’s happening and diagnose or
create an issue to make an improvement.

4.2.2 Structural Distribution
Structural distribution refers to the distribution of
cognitive workload through the presence and use of
external (representational) artifacts. In the case of
Rubinius, nearly all notable artifacts were digital in
nature due to the significant geographic distribution
of the work and extensive use of software
development platforms (GitHub)1. Table 7 provides a
summary of structural distribution mechanisms in
Rubinius. Four categories of structural artifacts—i.e.,
web resources, system artifacts, communication
channels, and environments—were identified based
on characteristics of the medium and the functions
that they served in propagating requirements
knowledge forward. Importantly, this suggests that
these observed forms of distribution do not simply
reflect the current state of the requirements
knowledge at a certain point; rather, these artifacts are
iteratively and recursively mobilized and modified as
requirements knowledge evolves.

1 While analog artifacts (e.g., notepad sketches, whiteboards)
may be used by individual Rubinius developers, these could
not be “verified” empirically, given the nature of the study.

Journal of the Association for Information Systems

1231

Table 7. Summary of Structural Distribution Categories and Artifacts

Artifacts Descriptions Functions in cognitive
system

Web Resources

Rubinius
website

A website for introducing, documenting, and blogging about the
Rubinius project

Directing perception of focal
community members

Establishing parameters or
constraints on the solution
space

Creating external memory
functions

Rspec A specification for describing the expected behavior of the Ruby
programming language

RDocs Documentation generated for the Ruby programming language

RubySpec An executable specification for the Ruby programming language
that is syntax-compatible with RSpec

System artifacts

GitHub A web-based hosting service for software development projects Automation of computational
processes

Creating external memory
function

Enabling evaluation of
proposed or instantiated
functionality

Directing perception of focal
and external communities

Engine Yard
platform

A cloud Platform-as-a-Service (PaaS) for Ruby on Rails, PHP and
Node.js applications

Puma
webserver

A concurrent HTTP 1.1 server for Ruby web applications

Travis CI A hosted continuous integration service for OSS projects

MRI A standard Ruby interpreter

Tools Git, A debugger, Gdb, Insiter, etc. (different developers used
different tools with respect to personal preferences)

Ruby-related
projects

Projects testing on/against Rubinius

Communication channels

Mailing list Email lists for community discussions Enabling communication
between social actors

Facilitating decision-making

Supporting perception of
hidden or latent requirements

Creating external memory
functions

Skype Internet telephony and video teleconference

IRC channel Internet relay chat discussion forums

Phone call Traditional telephony

Environments

Hardware The environment of contemporary hardware architectures (e.g.,
multicore processors) to which Rubinius must relate

Enabling perception of broader
technological capabilities

Facilitating decision-making Software The environment of contemporary software architectures (e.g., real-
time web interfaces) to which Rubinius must relate

Web resources consists of the project’s web pages.
These served as sources of input or output to
requirements computation, by rendering requirements

knowledge in explicit (textual and graphical) form.
Primarily, these resources supported discovery of
relevant requirements knowledge in that they helped

Computing Requirements for Open Source Software

1232

respective actors produce and then perceive and evaluate
salient issues in the expected functioning of Rubinius
and the Ruby programming language. Further, they set
the baseline goals and criteria for the subsequent testing
of identified requirements. The role of RubySpec2—a
key web resource—provides a useful illustration:

RubySpec is an executable specification
part of Ruby language libraries. It is what
Rubinius tests itself against and it
maintains a set of tags which basically say,
“This particular RubySpec fails on
Rubinius.” So this is a point that Rubinius
needs to fix—to find out either where the
problem is or [determine] if it is something
that hasn’t been implemented yet.

System artifacts are software tools that automate
certain computational processes related to
requirements. In particular, the GitHub platform
serves as Rubinius’s organizational memory by
recording what, how, and when each piece of code
was created and by whom. Accordingly, much of the
activity around requirements discovery, specification,
and validation takes place on GitHub by tracing the
ongoing commentaries and related knowledge
provisioning associated with pull requests and issues
reports. The platform also offers a way of recording
and maintaining “who knows what” knowledge. As a
committer noted: “GitHub just made it easy for
people to jump in and contribute, and for us to handle
the code.” MRI, the Engine Yard platform, Puma
webserver, Travis CI, and other Ruby-related projects
also served as significant sources for requirements
discovery and management from external
communities. These system artifacts played a critical
computational role in requirements identification, as
their functionality (e.g., continuous integration,
automated testing) simplified the information
processing demanded of the developers. For example,
with the use of continuous integration, the burden of
assessing the status of the build was transformed from
a cognitively intensive task (e.g., continuous review,
manual testing) to a comparatively simple task of
observing a status indicator. For the pull request
“Running spec/ruby/core for 1.8 fails,” Travisbot (an
automated “bot” used by the Travis CI system) would
leave a comment indicating: “This pull request passes,”
while in the pull request “Completely fix deadlocks of
Thread#raise,” Travisbot would leave a comment
among discussions indicating: “This pull request fails.”

2 RubySpec is a collection of executable specification
documents available on the web for the Ruby programming
language. It describes Ruby language syntax and standard
library classes. A detailed description of RubySpec is
provided in Appendix B.

Communication channels refer to various (mostly
electronic) media through which project-related
information gets communicated between developers
and other stakeholders. They played a pivotal role in
enabling requirements knowledge to flow across
boundaries and revealing hidden or latent
requirements, thereby making them exchangeable
with other members of the community. The most
prominent communication channel in Rubinius was
IRC (“Have you been to the IRC channel? Things are
actually discussed there”), which served several
functions in the cognitive system including facilitating
problem perception, enabling solution generation,
promoting decision making, and capturing the history
of requirements-oriented discussions (i.e., memory).
The following two quotes illustrate these roles:

We were talking about [the concurrency
stuff] on the IRC Channel one day and it
got me thinking and I was like “I’ll just do
it as a spike and see how far I can get.”

We did coordinate pretty much exclusively
on the IRC channel. . . . The actual
discussions mostly took place on IRC, and
just told people what we were doing or
going to be doing. If somebody needed
help or assistance in implementing
something, then they notified there and we
would come and help.

Environments represent broader sociotechnical
contexts in which the project exists. Specifically, they
consist of software and hardware that are relevant in
relation to new features being considered for
implementation. For example, the emergence of new
hardware architectures with multicores established
the importance of supporting such hardware features.
This external development offloads some of the
cognitive burden from the team in making decisions
and helping delineate some features as being more
relevant than others. As a result, real-time web
interface functionality, which could capitalize on the
concurrent runtime capabilities of multicore
processors, became a promising avenue to pursue. In
order to stay abreast of the technical state-of-the-art,
Rubinius needs to support such functionalities. Thus,
implicit requirements were often embedded within
hardware and software architectures that influenced
Rubinius’s implementation:

The concurrency stuff is because of
industry . . . It’s just the technology.
People are building other core CPUs and
putting them in everything, so we knew we
had to have those features.

4.3 Temporal Structuring Mechanisms
We observed three temporal structuring mechanisms,
through which requirements knowledge evolved over

Journal of the Association for Information Systems

1233

time: (1) trends, (2) patterns, and (3) heuristics. These
mechanisms are hierarchically organized and
recursive (i.e., trends incorporate multiple patterns,
patterns incorporate multiple heuristics). At the
highest level, trends represent broad environmental
expectations of technology such as the evolution in
hardware or software environments or the emergence
of nonfunctional requirements (e.g., security
standards). By establishing a context for
technological advancement, trends influence an OSS
project’s relationship with its external environment
and especially the temporal pacing of requirements
discovery, prioritization, and implementation.
Patterns aggregate salient heuristics to facilitate
requirements computation in an orderly manner in
order to ensure that all three RE facets are addressed
consistently (e.g., creating a shifting focus of work at
different stages of release development). 3 Patterns
typically operate within the timescale of a release

3 Our concept of “pattern” is distinct from the way the term
is used in programming. However, it is consistent with
Alexander’s (1964) original idea in that patterns reflect
generic approaches to problem framing and solution
generation which are developed and refined over time while
being applied.

cycle and are influenced by the extent of scoping of
requirements within a release. Such patterns in
Rubinius are primarily concerned with extracting
requirements from root artifacts—which delineate the
de facto standard that Rubinius must meet and depend
on—and also from distal artifacts, which alert
developers to take note of new technical requirements
that Rubinius needs to meet. At the lowest level,
heuristics refer to the “rules of thumb” that simplify
cognitively intensive tasks (e.g., “If a behavior can be
found in MRI, then replicate it in Rubinius”). They
operate on the timescale of computing a specific
aspect of an individual requirement. While the role of
heuristics is well-established in cognitive theory, the
former two temporal structuring mechanisms can be
viewed as higher-order structuring mechanisms called
“patterns” above. Overall, they provide goal oriented
“narrative structures,” which enable social actors to
identify what sort of “story” or “cognitive play” the
current activity represents and which types of
heuristics might be relevant in a given situation.
Table 8 provides a summary and examples of each
temporal mechanism present in the Rubinius
project. We also show how each structuring
mechanism is embedded in specific elements of the
social and structural distributions.

Table 8. Summary of Temporal Distribution Mechanisms

Pacing Mechanism Descriptions Social elements Structural
elements

Trends Scanning for high-
level requirements in
the technological
environment

Identifying broader
requirements capitalizing on
general technological
changes and trajectories

External
communities

Environments

Patterns Uncovering
embedded
requirements in root
and distal artifacts

Requirements embodied
within artifacts which are
external, but related to
Rubinius

Focal community

External
communities

Web resources

System/software
artifacts

Heuristics Detailed guidelines
for computing an
individual
requirement

Rules of thumb guiding
individual requirement to be
discovered, refined and
implemented

Focal community

External
communities

Web resources

System/software
artifacts

Communication
channels

4.3.1 Trends
The degree to which OSS projects follow changes in
the broader technological landscape (e.g., multicore
processors or the real-time web) influences the search
for a new set of features (i.e., requirements) to be
integrated into the software. Scanning for high level
requirements in the technological environment refers
to the identification of broad, often implicit,
requirements established by changes in the

sociotechnical environment (such as security
standards). These are envisioned technological
capabilities that the project seeks to capitalize upon so
as to keep the software “hot.” The project team
therefore has to transform vague, contested, and
weakly articulated trends into explicit requirements
that can be instantiated in the software. This process
depends on the cognitive function of perception, as it
helps frame which new features in the technology
environment are most relevant. Recalling the

Computing Requirements for Open Source Software

1234

multicore processing example, the emergence of the
multicore hardware architectures and supporting
operating systems necessitated adding new features to
the Ruby language to provide support of multiple run
time threads. Indeed, this was one of the original
motivations for releasing Rubinius 2.0—to make
Ruby multithreaded. Hence, a new hardware
capability triggered the initiation of the development
process through the discovery of new requirements:

Every CPU going into almost anything
these days has more than one core, so
being able to utilize resources efficiently
requires being sensitive to memory
pressure. If you’re using five instances of a
process instead of one process using five
threads, you’re not gonna be efficient. So it
was sort of a no-brainer in terms of
concurrency as something we always
intended to do. All those steps up to now—
improving the architecture in the C++ and
VM—helped lay the groundwork for doing
the concurrency work.

4.3.2 Patterns
Patterns provide a consistent framing for how the
distributed cognitive system will solve a set of similar
problems typically associated with an RE facet.
Patterns bundle together a set of heuristics that guide
the use of social and structural resources and artifacts
at hand. Overall, patterns help organize activities to
coordinate requirements computation across and
between RE facets. Even though all sorts of RE
activities occur regularly throughout a release cycle,
OSS developers show a marked tendency toward
bundling some of them to occur more frequently in
the early stages of the cycle (e.g., discovery), whereas
other activities become more prominent in the later
stages (e.g., validation). One reason for this is the
high interdependency between discovered
requirements and the need to use scarce skills and
knowledge effectively. Table 9 depicts three patterns
associated with early and late stages in the Rubinius
release cycle that integrate embedded requirements in
root artifacts, replicating MRI behavior, and
embedded requirements in distal artifacts.

Journal of the Association for Information Systems

1235

Table 9. Summary of Patterns

Patterns Descriptions Social
elements

Structural
elements Illustrative statements

Early Stage

Uncovering
embedded
requirements in
root artifacts

Requirements
embodied within
existing artifacts
which offer
implementation
guidelines for the
project (i.e. mainly
discovery)

Focal
community

Ruby
developers
and users

MRI “MRI is the de facto standard . . . A lot of
Rubinius work is actually to reverse
engineering what MRI does, figuring out its
behavior.”

Pull request: “are you just working on
failures or porting code from MRI? Since
we just import this library from MRI, if
these bugs are fixed in MRI, we should just
update to the 1.8.7 stable version. If they are
not fixed, we should be submitting fixes to
MRI.”

Late Stage

Replicating
MRI behavior

Writing code so
that the Rubinius
artifacts deliver
behaviors
encapsulated in
specs (i.e. mainly
specification)

Core
committers

RubySpec “When you’re working on new features, you
look at how MRI behaves or read how MRI
is supposed to behave, write some specs,
check them against MRI to make sure that
the documentation is correct. Then you just
sort of stare at that and say ‘Okay, this is
ready to implement,’ and you go do it.”

Uncovering
embedded
requirements in
distal artifacts

Requirements
embodied within
existing artifacts
which the project
intends to be
compatible with
(i.e. mainly
discovery and
validation)

External
communities

Engine Yard
platform

Puma
webserver

Travis CI

Ruby-related
projects

“Travis provides the ability for people who
are writing libraries and applications to
easily test across multiple Ruby
organizations . . . Travis users basically will
go in and say ‘I want to build on the nightly
build of Rubinius. I want to build a weekly
release.’ They can easily specify their level
of engaging Rubinius changes and then just
watch and see whether their project passes
or fails. . . . They link us to their results on
Travis and say ‘Here, this is what I get. It’s
having this error.’ And we can figure it out
directly from the error output.”

Uncovering embedded requirements in root artifacts
refers to the process of discovering requirements
embodied within existing artifacts. They offer
guidelines for the subsequent implementation of new
features. In Rubinius, the implementation guidelines
of the Ruby programming language (i.e., MRI) were a
critical source of embedded requirements. These
guidelines reflect prior cognitive effort and learning
and thus present developers and users with a shared
cognitive foundation and constraints upon which to
build their RE process. The norm is that each
instantiation of a Ruby runtime environment has to
adhere to this standard. Indeed, a large number of
Rubinius requirements are established a priori in
MRI, with the understanding that MRI forms an

essential reference for desired functionality.
Requirements from MRI are uncovered early in a
release cycle, as they represent the “low-hanging
fruit” around which there is a strong consensus.
Further, identifying embedded requirements and
translating them into testable specs provides valuable
knowledge for subsequent development by
establishing common points of reference in the
community. This embedding of requirements is
similar to “best practices” transcending their place of
production as they are instantiated in commercial
software packages (Pollock & Williams, 2009).

Replicating MRI behavior. As embedded
requirements are uncovered and translated into
testable specs, it becomes increasingly feasible for the

Computing Requirements for Open Source Software

1236

developers—especially core committers—to shift to
writing code (i.e., engaging in design) that addresses
those requirements. Hence, the cognitive load is again
redistributed, as fewer developers can engage with the
increasing technical difficulty (as one of our
respondents put it, “brain melting” work) of
configuring the internal workings of Rubinius to
deliver the behaviors as described in specs.

Uncovering embedded requirements in distal artifacts
identifies requirements that are “inherited” from other
Ruby-related projects, which run Rubinius and test its
functionality. These external communities either test
their projects directly on Rubinius or on other
platforms (e.g., Engine Yard, Puma webserver, Travis
CI), which include Rubinius as the runtime
environment. The continuous backward flows from
test failures highlight new elements that need to be
accounted for. Additionally, these embedded requirements
provide insights into how requirements knowledge can be
transferred across social and structural boundaries.

4.3.3 Heuristics
In Rubinius, heuristics take the form of guidelines for
how developers should discover, consolidate, refine,

negotiate, and implement a certain requirement. The
heuristics combine social and structural resources to
simplify specific cognitive tasks associated with
requirements discovery, specification, and validation,
as well as the overall recursive process which
connects the three RE facets in an iterative loop.
Heuristics guide developers to coordinate knowledge
with specific groups of fellow developers and to
manipulate certain artifacts in order to sequence their
activities. For example, if the focal community finds a
behavior in MRI that is not addressed in Rubinius, it
would extract associated knowledge embedded in
MRI and transform it into verbal, graphical, and
literal representations in Rubinius (i.e., often a
“spec”). Apart from MRI, the other Ruby-related
projects provide alternative sources for developers to
identify missing behaviors that need to be implemented
in Rubinius. A set of representative heuristics observed
in Rubinius requirements computation are summarized
in Table 10. The table also indicates the primary RE
facet that the heuristic supports.

Table 10. Summary of Heuristics per RE Facet

Heuristics Social
elements

Structural
elements

Interaction of social
and structural

elements
Illustrative statements

Discovery

1. If a behavior can
be found in MRI,
then replicate it in
Rubinius

Focal
community

MRI Focal community
extracts
requirements
knowledge
embedded in MRI

“For every method [in the MRI source
code] I would take the textual description
and break it down into as many distinct
facets of behavior as I could, and then
write a specification for each of those.”

Pull request: “I’ve implemented an initial
run of building Rubinius into static and
shared libraries . . . I was mainly
following what MRI does in that case.”

2. If a use-case
exists in defining
MRI behavior,
then replicate it in
Rubinius

Focal
community

Sponsor

External
community

MRI

Ruby-related
projects

Focal community,
sponsor, and
external
community
identifies use-case
from Ruby- related
projects

“We provide feedback [from real-world
use cases] to the Rubinius project and we
think it’s a big value for any open source
project to have real-world use cases that
it uses just to figure out if it’s actually
delivering what it’s trying to deliver.”

Specification

3. If a feature is
experimental,
separate it as a side
branch

Core
committers

GitHub Core committers
utilize Github as
documentary
foundation of
requirements
knowledge

“If [a feature] takes longer than using the
local branch or if it’s something that we
want other people to review . . . then we
sometimes use a feature branch.”

Journal of the Association for Information Systems

1237

Table 10. Summary of Heuristics per RE Facet

4. If a developer is
trying to
understand an
established feature,
then check
documentation

Focal
community

Web
resources
(esp. Ruby
Spec)

Focal community
referred to certain
web resources to
explore problems
and identify
solutions

IRC channel: “xxx look in
spec/ruby/optional/ffi/string_spec.rb and
see if the code you’re looking at is in
there.”

Pull request: “In the future, please
separate spec/ruby patches from the rest.
See http://rubini.us/doc/en/specs/ for the
reason why.”

5. If a developer is
trying to
understand an in-
development
feature, then go to
IRC and talk to
Core

Focal
community

External
community

Communicat
ion channels
(esp. IRC)

Focal community
and external
community discuss
in-development
requirements via
communication
channels

IRC channel:

yyy: “hey, I want to work on the 1.9
compatibility. What should I attack?”

zzz: “depends what you want to work on.
small request, do small bits and push
frequently. work on the hydra branch.”

6. If a spec has
been coded and
passes the test,
mark it as
completed

Core
committers

RubySpec

MRI

GitHub

Core committers
test Rubinius specs
against RubySpec
and MRI

“You write the specs. You get them to
pass on Ruby 1.9 and then you get them
to fail on Rubinius and then you go about
implementing them on Rubinius.”

Validation

7. If code passes
tests, then
distribute the code
through the master
branch

Core
committers

MRI

GitHub

Core committers
disseminate code
baseline of
Rubinius, which
had been tested
against MRI, in
Github platform

“Master is something that we really keep
very stable, so if you want the best
Rubinius version out there, you just grab
today’s Master.”

8. If tests fail or
Rubinius crashes,
then identify the
bug

Focal
community

External
community

Engine Yard
platform

Related
projects

GitHub

Focal and external
communities use
various system
artifacts to identify
bugs

“When you have an actual user bug, one
of the big processes is just trying to
isolate it and refine the code into
something much smaller—this tiny bit of
code that shows the bug.”

9. If a bug has been
identified, then
report it in the bug
tracker

Focal
community

External
community

GitHub

Travis CI

Focal and external
communities
identify bugs and
convert knowledge
into bug tracker
held in Github

“If [it] appeared to be a bug or some
conflict with the documentation, then we
would file a bug report and ask for
clarification.”

Pull request: “I tried to compile rubinius
on my archlinux machine and got a
warning/error regarding an implicit case
of (unsigned int) to (const int32_t). . . .
Here is my setup and the exact error.”

Computing Requirements for Open Source Software

1238

Table 10. Summary of Heuristics per RE Facet

Recursion

10. If a bug is
related to
faulty/missing
specs, then go to
“Discovery”

Focal
community

MRI

RubySpec

GitHub

Focal community
referred to MRI
and/or RubySpec
to identify
faulty/missing
specs

“When we hit a bug that we don’t have a
RubySpec for, we look at the specs,
figure out where we’re missing all those
things.”

Pull request: “This is a patch to correct
the behavior of Class#dup in Rubinius.
The patch ensures the proper ancestry for
the duplicated singleton class. Included
are specs for the correct behavior (met by
MRI).”

11. If a bug is
related to
problematic code,
then go to
“Specification”

Focal
community

MRI

RubySpec

GitHub

Focal community
referred to MRI
and/or RubySpec
to identify
problematic code

“I thought there would be a bug in
Rubinius . . . so I went through RubySpec
and then go back and fix Rubinius.”

4.4 Generalized Computational Structure
Based on our analysis, we can synthesize a
generalized framework of OSS RE “computation.”
The framework is graphically depicted in Figure 1,
with an emphasis on how requirements knowledge
“flows” through the cognitive system and how the
cognitive system as a whole “reconfigures” itself as
the computation unfolds. Specifically, the model
illustrates how the tripartite functions of RE
(discovery, specification, and validation) become
enacted in Rubinius through the ongoing

reconfiguration of three forms of distribution. This
results in different temporary configurations of social
and structural distribution of actors, artifacts, and
heuristics to perform the cognitive work necessary to
satisfy the goals of each RE facet. Notably, although
the figure shows the computational structure as a
sequential process, it does not imply a “linear” flow
of RE activity; rather, the three patterns evolve and
interact through threaded iterative loops as different
requirements emerge and evolve toward closure,
enabling a new release.

Discovery Specification Validation

Root Artifacts Focal Community

Code/Specs Core

Representations-as-conditions

Representations-as-experiments

Excavation

Representations-as-discrepancies

Baseline
Implementation

External
CommunitiesInstantiation

Testing in the Wild

Patterns: Patterning of cognitive activities across releases

Trends: Changes in the technological enviornment

1, 2

3-6
7-9

10 11

Note: The numbers in the figure refer to the application of the 11 heuristics detailed in Table 10.

Figure 1. Computational Framework of RE in OSS

The framework also reveals how requirements,
understood as representational states, become
propagated through the distributed cognitive system
from discovery through validation. It also highlights
where the flow is likely to “break,” such as when

someone drops a requirement by failing to note it in
an IRC channel or the system “forgets” a requirement
by failing to record it. It also shows where
requirements typically “hang up” in the system due to
inadequate feedback mechanisms to earlier stages of

Journal of the Association for Information Systems

1239

each RE process. Such propagation “failures” or
“lags” emerge especially when the requirements
knowledge needs to travel from one subsystem to
another. Next, we delineate in detail the
computational processes and the dynamic flow of
representational states captured in Figure 1.

4.4.1 Trends and Patterns
The long-term temporal structuring mechanisms
reflected in RE computation (i.e., trends and patterns)
have an effect on the overall computational system.
Trends drive the characteristics and directions of the
overall RE process. For example, the specific focus
on concurrency in Rubinius during the study period
provided a cognitive framing through which
individual requirements were interpreted and
indicated what sort of expertise needed to be
mobilized. Those requirements necessary to support
runtime concurrency or benefiting from it became
favored, while those which did not were pushed to the
background. Patterns provide a consistent temporal
structure for a set of distributed cognitive efforts
within the release cycle. For example, identification
of requirements from root artifacts had to be pursued
early on, whereas the evaluation of possible solutions
was shifted to later stages. Similarly, excavating
requirements from distal artifacts was shunted toward
the end of the release cycle. Such sequencing
principles enabled the overall cognitive system to
attend to separate tasks at different times throughout a
release cycle and thus economized the use of the
cognitive resources. We next discuss specific classes
of requirements computation along with the specific
heuristics that drive these broader patterns.

4.4.2 Discovery
In this facet, requirements are discovered through a
process of excavation (Luckham, 2001) enabled by
the rich social and structural interconnections within
the project. “Root” artifacts, such as MRI, establish
constraints to which proposed solutions must
conform. By drawing on such root artifacts,
developers excavate requirements (using Heuristics 1
and 2 in Table 10), which are then integrated into the
focal software. In excavation, representations include
suggestions and challenges expressed in IRC or
future-state vision descriptions in Skype dialogues.
We refer to these as representations-as-conditions,
because they operationalize requirements knowledge
in the form of assumptions, logic, and rules about the
existing environment. Throughout excavation, the
focal community focuses on identifying a set of
requirements that it deems important and feasible
based on the current matching of competencies and
opportunities emerging from trends.

As embedded requirements are excavated and
transformed into tangible conditions, they are carried

forward to a specification. This movement relies on
the use of heuristics for mapping elements of root
artifacts to Rubinius specs. This is the first step
toward instantiating representations-as-conditions
into a representational form (i.e., specs) for which
code can be developed and tested. This is a process of
looking for “low-hanging fruit”—i.e., less-demanding
cognitive tasks that are appropriate for inexperienced
developers. Such tasks often include either writing
specs (tests) or fixing bugs so as to make specs pass.
For example, in one pull request, a developer stated:

This patch makes the String#squessze spec
pass on 1.9. The spec only specified what
error should be thrown, so I copied the
message that gets thrown from MRI 1.9.2. . .
This is my first pull request here . . . I
couldn’t tell if there were any other tests I
should run to make sure I didn’t break
anything else, so that is where I stopped.

This process guides developers to seek voluntary
contributions that match their level of experience.

4.4.3 Specification
In this facet, requirements become specified through
the interplay of the core committers where specific
heuristics (3-6) guide developers to produce code and
specs derived from representations-as-conditions.
Interestingly, specification involves a smaller and
more limited group of developers and artifacts.
During this task, more experienced core developers
work collaboratively, drawing upon their collective
technical expertise to convert the requirements
knowledge into readable and executable forms. We
refer to this as instantiation, a process of detailing the
technical implications of discovered requirements.
Importantly, this process involves substantial trial-
and-error learning, as developers expand or narrow
requirements while they explore their technical
consequences. In light of the extensive
experimentation employed, we can say that this core
instantiation process results in representations-as-
experiments. In the case of concurrency, the core
committers conducted a “first experiment to remove
GIL,” followed by “experiments with concurrent
allocation and full stop GC.” During this phase,
several requirements may be instantiated in parallel.
When experiments composed of working code and
feasible specs have been produced, the newly
computed representations-as-experiments are
transmitted to the next phase—validation (Heuristic 7).

4.4.4 Validation
In this facet, a baseline implementation is transmitted
to the wider community for testing. Cognitive effort
in this task centers on testing-in-the-wild through the
“scaffolding” (Clark, 1998) of multiple external

 Computing Requirements for Open Source Software

1240

artifacts—e.g., MRI, RubySpec, Engine Yard
platform, Puma IO, Travis CI. These artifacts are
used to expose a multitude of bugs and additional
necessary requirements. In contrast to the narrowing
of the social distribution in specification, testing-in-
the-wild expands the social distribution, with multiple
developers and users integrating Rubinius into their
local tasks (i.e., requirements embedded in distal
artifacts). Any challenges that emerge in these tests
give rise to representations-as-discrepancies, in the
form of bug reports and feature requests. These
representations-as-discrepancies reflect disconnects
between the expectations and actual performance.
Hence, Heuristic 8 guides developers to revise code
based on bug reports so as to harmonize different
parts of the code base, and Heuristic 9 guides the
handling of bugs. In contrast to feature development,
bug fixing is viewed as being less demanding cognitively
and is therefore often conducted by peripheral developers.
This effectively distributes the system’s cognitive
resources across a large number of bugs as they emerge.
Testing-in-the-wild uncovers previously unexcavated new
requirements and creates a recursive loop that feeds back
to discovery and specification.

4.4.5 Recursion
By excavating additional requirements that maintain
the software’s integrity, the feedback mechanisms
from validation to discovery (Heuristic 10) and
specification (Heuristic 11) can invoke additional
combinations of developers and artifacts to recompute
successive instantiations of the same set of
requirements. Based on our observations, however,
this recursion sometimes fails, due to inconsistencies
across the structural distribution, ineffective
configurations of developers, or failure on part on
developers to apply heuristics appropriately. One
breakdown of the cognitive system illustrates several
of these failures:

I actually broke Rubinius really badly at
one point because I merged in a pull request
from someone else. At the time I didn’t
spend too much time on Rubinius . . . So at
the time you would merge the pull request
locally and then run all the tests and then
maybe do the automated testing locally and
do some manual playing with it.

Here the peripheral committer misunderstood the
social distribution mechanism. The external
community might devote technical skills and
experience with other Ruby-related projects to
Rubinius, but they were not as familiar with
Rubinius-specific RE practices. Therefore, the focal
community generally took charge of the workflow
and acted as “gatekeepers,” helping to convert
external insights into internalized Rubinius
requirements. When a peripheral committer did not

follow the proper heuristics (i.e., 10 or 11), this
resulted in a faulty merge. The feedback mechanisms
thus call for reconfiguration of social and structural
elements and recomputing of requirements
discovery/specification shouldered by, for example,
MRI/RubySpec. Overall, the above incident was
ultimately a failure to follow an established computational
structure within the distributed cognitive system.

5 Discussion
In this study, we have considered how RE is made
possible in OSS development despite highly
distributed teams and lack of formal governance.
Accordingly, we approach OSS RE as a
sociotechnical, distributed cognitive task whereby RE
knowledge is maintained and computed within the
sociotechnical system. We use this lens to analyze RE
in a midsize successful OSS project called Rubinius.
Through our analysis, we identify and illustrate the
dynamic relationships between actors and artifacts
within the Rubinius community (RQ1). In addition,
we articulate three-layered temporal structuring
mechanisms (i.e., trends, patterns, and heuristics),
through which requirements knowledge is propagated
in Rubinius (RQ2). By identifying the temporally
ordered cognitive processes of excavation,
instantiation, and testing-in-the-wild, we show how
the Rubinius project transformed discovered
requirements through a series of mappings between
specific representational states that change
requirements knowledge from representations-as-
conditions, and representation-as-experiments, to
representations-as-discrepancies. These mappings
resulted over time in a collectively accepted
understanding of the design requirements for a release
(RQ3). Our inquiry offers a number of important
insights for both IS scholars and OSS developers.
With respect to research, our study fosters a broader
understanding of requirements-oriented activity and
the nature of software requirements. With respect
to developers, our research suggests ways in
which practitioners can effectively leverage
resources and enhance project sustainability by
attending to the sociotechnical distribution of
cognitive effort in OSS projects.

5.1 Implications for Research
This study offers two primary research contributions:
(1) providing an integrated and theoretically grounded
model on how OSS communities, despite the lack of
formal governance mechanisms and the presence of
high distribution, can garner a robust and shared set
of requirements through the interplay of actors,
artifacts, and temporal structuring mechanisms; (2) an
articulation of how OSS RE is different from RE in
waterfall and agile contexts.

Journal of the Association for Information Systems

1241

To the best of our knowledge, this study provides the
first empirically based, theoretically grounded view
of the computational mechanisms through which
requirements are effectively managed in OSS
development. Our exploratory analysis of the
Rubinius project’s computational structure outlines a
generic set of generative cognitive mechanisms
(Anderson et al., 2006)—a system of actors and
artifacts which interact over time to compute
requirements. Since OSS represents a relatively novel
form of organizing (Puranam, Alexy, & Reitzig,
2014) in which collective action is possible despite
the challenges of voluntary contribution, emergent
coordination, and asynchronous work (Howison &
Crowston, 2014), understanding how complex
knowledge coordination is achieved in such a context
is an important endeavor (Tuertscher, Garud, &
Kumaraswamy, 2014). By integrating consideration
of the actors, artifacts, and temporal mechanisms
shaping the evolution of OSS systems, our model
helps discern how OSS projects foster a shared
understanding of requirements, despite their highly
distributed nature. Specifically, the study suggests
several key factors which contribute to the robustness
of RE in OSS projects—including the leveraging of
embedded requirements in distal artifacts, the
integration of knowledge flows from external
communities, and policies that foster broader
engagement of community members (e.g., an open
commit policy). Future research can build upon these
insights to operationalize formal comparisons of
distinct OSS communities with respect to their
outcomes and sustainability.

The study also contributes to the broader research on
RE. Our analysis illustrates the value of analyzing RE
as a sociotechnical cognitive process, with an eye
toward the dynamic relationships between actors and
artifacts. Indeed, the distributed cognitive framing
enables us to highlight several ways in which the OSS
context differs from either waterfall or agile
approaches with respect to the nature of social
interactions, the role of artifacts, and the temporal
sequencing of cognitive effort. These distinctions
hold regardless of whether waterfall or agile
approaches are distributed geographically (Espinosa,
Slaughter, Kraut, & Herbsleb, 2007). OSS
development eschews both the formal documentation
of the waterfall model and the intense face-to-face
interaction of agile development, and thereby moves
away from both the strict phasing approach typical of
waterfall and the locally constrained social iterations
preferred in the agile approach. This has important
implications for how we see the role of artifacts,
social interactions, and temporal structuring.

First, our study indicates the curious role that digital
artifacts (Kallinikos, Aaltonen, & Marton, 2013) play
in mediating the OSS RE process. Rather than serving

as centralized deposits of knowledge, which is
common in waterfall and agile, artifacts become
distributed and dynamically engaged in the process of
discovering and implementing requirements. Here,
the DCog perspective allows us to show the ways in
which artifacts participate in the process of
computing requirements, rather than simply being
passive information repositories assumed in other
approaches. When such artifacts are engaged in the
process of requirements computation, they are
continuously updated, and often serve as the original
source for specific requirements, rather than just
being used as ledgers where requirements emanating
from the customer get recorded. When artifacts are
viewed in this way, they become central to the ability
of OSS projects to dynamically pick up requirements
across a set of disparate subcommunities distributed
in both space and time.

Second, while the lack of face-to-face interaction
crucial to agile practices weakens the ability of a core
group to communicate in an intensive manner, the use
of distributed artifacts with related dialogues radically
expands the diversity and socialization of individuals
who may participate in the RE process (Dabbish,
Stuart, Tsay, & Herbsleb, 2012). In a sense, the
distributed artifacts engaged in the requirements
computation process allow for “quasi-dialogues”
involving “invisible others” who lurk behind the
digital artifacts (Baralou & Tsoukas, 2015). This is
crucially different from the forms of geographical
distribution that we might observe in waterfall and
agile processes, because the artifacts, through their
dynamic participation, substitute for the formal
working relationships within software development
processes where all participants are paid either as
employees or consultants. In sum, the participants can
be spatially and temporally distributed, and may use
the software being developed for varying purposes.
This may lead to unexpected degrees of robustness, as
the software can effectively be “stress-tested” from a
multitude of angles. Third, while the temporal
structuring of waterfall and agile is established
beforehand (e.g., either as phased or iterative), the
temporal structuring of OSS is fluid and contingent.
Requirements move forward in the RE process if and
when they activate various heuristics by meeting
specific conditions. Each cycle of code revisions
called “superpositioning” (Howison & Crowston,
2014) is triggered by specific conditions being met.
This provides valuable knowledge with regard to
when work (1) gets deferred, and (2) is rendered easy
enough to be accomplished “with only a single
programmer working on any one task . . . rather than
being undertaken through structured team work”
(Howison & Crowston, 2014, p. 29).

To a certain extent, our framing challenges the RE
research community to reassess the fundamental

 Computing Requirements for Open Source Software

1242

understanding of the “requirements” concept. This
context necessitates a departure from the idea of
explicit requirements as a strict articulation of desired
functionality using formalized notation (Scacchi,
2002) to something which is improvised and
emergent. Such a shift would enable us to embrace
the complex sociotechnical mechanisms through
which knowledge about user needs or desired features
emerges, crystallizes, and evolves in a localized and
distributed manner. With the rise of less-structured
development approaches such as OSS and agile
methods new theoretically grounded approaches to
analyze RE processes become critical.

5.2 Implications for Practice
From a practice perspective, the framing of RE
activities as a distributed cognitive process can alert
OSS leaders to heed the critical roles played by
different stakeholders and artifacts. Given the high
rates of OSS project failure (Lee et al., 2009), a better
understanding of the elements that contribute to
effective requirements discovery is desirable. Most
notably, the research underscores the importance of
focusing on “OSS ecosystems” (Scacchi, Feller,
Fitzgerald, Hissam, & Lakhani, 2006; Thomas &
Hunt, 2004)—interrelated webs of developers,
technologies, and projects—rather than distinct
projects or tools. For example, our study highlights
the robustness gained by engaging external
stakeholders in the process of supplying
requirements. By fostering linkages with an extended
network of interested entities, a project can draw upon
a richer set of perceived needs for their focal platform.
In particular, the Rubinius case highlights the ways in
which strong channels of exchange within external
communities enhance discovery and validation.

The significant role of peripheral developers that we
observe also highlights the importance of distributed
requirements discovery. The integration of peripheral
committers enables new requirements to emerge
continuously as more established requirements are
addressed. The open commit policy adopted by
Rubinius, for example, ensures that requirements
discovery and distribution is not limited to a small
core; rather, requirements and possible solutions can
originate from a broader community of developers.
While the core team still controls the direction of the
software evolution, the broader engagement calls into
question the conventional framing of OSS core
developers as “benevolent dictators” (Shah, 2006).

The research also underscores the critical role of
artifacts in supporting or simplifying cognitive
processes within the cognitive system. At the most
fundamental level, artifacts serve an external memory
function by capturing requirements knowledge at
various points within a community. Given the
transitory nature of OSS participation, this

externalization remains a central consideration for a
community’s continuity and resiliency. In addition, as
we observed in Rubinius, artifacts are essential in
directing attention to new needs as they emerge. Such
attention shifts can be fostered by the discovery of
embedded requirements that mitigate the need for
“greenfield” discovery. Third, system artifacts
provide a material foundation for requirements
evolution. For example, during instantiation,
developers clarify requirements through
experimentation by using diverse representations and
exploring multiple solution possibilities—what
Latour (1986) calls “thinking with eyes and hands.”

Finally, the importance of heuristics in propagating
representational states in the cognitive system
suggests the value of conscious attention to the
maintenance and dissemination of heuristics
throughout a community. While heuristics provide
support for rapid cognitive processing in complex
environments (Kleinmuntz, 1985), inappropriate
filtering or a mismatch between the situation and the
heuristics can result in “severe and systematic errors”
(Tversky & Kahneman, 1974). Fortunately, heuristics
are also subject to conscious design and evaluation
(Gigerenzer, 2008). Therefore, OSS project leaders
may benefit from directed and constant evaluation of
heuristics for excavation, instantiation, and testing.
Such analysis could include identification of factors
that contribute to user satisfaction, search strategies,
and errors from past heuristics. In addition, OSS
communities could consider redesigning
communications media, processes, and tools that
reinforce effective heuristic use.

5.3 Limitations and Future Research
Generalizability of our findings is naturally limited by
the fact that we analyzed a single representative case.
Furthermore, we acknowledge that Rubinius has
some idiosyncratic characteristics, such as an open
commit policy, highly technical nature, and
significant interconnectedness with other OSS
artifacts. Though the forms of social, structural, and
temporal distribution within OSS communities may
vary widely, we contend that the sociotechnical
cognitive processes we identified are likely to remain
consistent in other OSS environments due to the
similarity in tasks, social organization, and deployed
artifacts. In this sense, we are claiming that our
proposed framework provides strong theoretical
generalizability (Lee & Baskerville, 2003), even
when specific facts of our case may not generalize to
all other OSS projects. Therefore, we expect the
theoretical mechanisms that we have proposed to
remain quite stable.

Several avenues are open for additional research. Our
DCog model can be applied to other software
environments, including structured development,

Journal of the Association for Information Systems

1243

“commercial off-the-shelf”-based development, and
agile development. The computational structures
employed in these environments are likely to vary
with respect to social, structural, and temporal forms
of cognitive activity distribution, as well as the
heuristics used. Consistent application of the perspective
to multiple environments should foster inductive theory-
driven identification of appropriate computational
configurations that influence software project success,
developer or user satisfaction, and innovativeness.

6 Conclusion
We inquired into how DCog can account for RE
management in OSS. We find that establishing
requirements is a “computational” process, whereby
requirements knowledge is transformed across a
system that is distributed socially, structurally, and
temporally. Distinct components and mechanisms
within each form of distribution carry out distinct
roles within the cognitive system, which collectively
computes requirements in the absence of formal

planning or hierarchical authority. The study offers
important insights for both research and practice in
OSS. From a research perspective, the study
underscores the importance of attending to the
temporal unfolding of interactions between human
and structural elements in software development.
From a practice perspective, the study highlights a
range of cognitive dynamics, which can inform
OSS leaders as they seek to support and maintain
vibrant development communities.

Acknowledgements
The authors sincerely thank the senior editor Sandeep
Purao and the two anonymous reviewers for their
valuable feedback throughout the review process. The
authors also thank all participants of the Rubinius
project who gave their time and support voluntarily
and with excitement. This research was partially
supported by a grant from the CISE division of the
U.S. National Science Foundation [1217345].

 Computing Requirements for Open Source Software

1244

References
Alexander, C. (1964). Notes on the synthesis of form.

Cambridge, MA: Harvard University Press.

Anderson, J. R. (2005). Cognitive psychology and its
implications (6th ed.). New York, NY: Worth.

Anderson, P. J. J., Blatt, R., Christianson, M. K.,
Grant, A. M., Marquis, C., Neuman, E. J.,
Sonenshein, S., & Sutcliffe, K. M. (2006).
Understanding mechanisms in organizational
research: Reflections from a collective journey.
Journal of Management Inquiry, 15(2), 102–
113.

Asundi, J., & Jayant, R. (2007). Patch review
processes in open source software
development communities: A comparative
case study. In Proceedings of the 40th Annual
Hawaii International Conference on System
Science. AIS.

Aurum, A., & Wohlin, C. (2005). Requirements
engineering: Setting the context. In A. Aurum
& C. Wohlin (Eds.), Engineering and
Managing Software Requirements (pp. 1–15).
Berlin: Springer.

Bahill, T. A., & Henderson, S. J. (2005).
Requirements development, verification, and
validation exhibited in famous failures.
Systems Engineering, 8(1), 1–14.

Baralou, E., & Tsoukas, H. (2015). How is new
organizational knowledge created in a virtual
context? An ethnographic study. Organization
Studies, 36(5), 593–620.

Beck, K., & Andres, C. (2004). Extreme
programming explained: Embrace change
(2nd ed.). Upper Saddle River, NJ: Addison-
Wesley.

Bell, T. E., & Thayer, T. A. (1976). Software
requirements: Are they really a problem? In
Proceedings of 2nd International Conference
on Software Engineering (pp. 61–68). IEEE.

Brooks, F. P. (1995). The mythical man-month:
essays on software engineering. Upper Saddle
River, NJ: Addison-Wesley Professional.

Callon, M. (1986). Some elements of a sociology of
translation: Domestication of the scallops and
the fishermen of St. Brieuc Bay. In J. Law
(Ed.), Power, Action, and Belief: A New
Sociology of Knowledge? (pp. 196–223).
London: Routledge.

Cao, L., & Ramesh, B. (2008). Agile requirements
engineering practices: An empirical study.
IEEE Software, 25(1), 60–67.

Cheng, B. H., & Atlee, J. M. (2009). Current and
future research directions in requirements
engineering. In K. J. Lyytinen, P. Loucopoulos,
J. Mylopoulos, & W. N. Robinson (Eds.),
Design requirements engineering: A ten-year
perspective (pp. 11–43). Berlin: Springer.

Clark, A. (1998). Being there: Putting brain, body
and world together again. Cambridge, MA:
Massachusetts Institute of Technology Press.

Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M.
(2011). People over process: Key challenges in
agile development. IEEE Software, 28(4), 48–
57.

Corbin, J., & Strauss, A. (2008). Basics of Qualitative
research: Techniques and procedures for
developing grounded theory (3rd ed.).
Thousand Oaks, CA: SAGE.

Cromwell, H. C., & Panksepp, J. (2011). Rethinking
the cognitive revolution from a neural
perspective: How overuse/misuse of the term
“cognition” and the neglect of affective
controls in behavioral neuroscience could be
delaying progress in understanding the
brainmind. Neuroscience and Biobehavioral
Reviews, 35(9), 2026–2035.

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software
development. First Monday, 10(2). Rerieved
from https://journals.uic.edu/ojs/index.php/fm/
article/view/1478/1393

Crowston, K., & Kammerer, E. (1998). Coordination
and collective mind in software requirements
development. IBM Systems Journal, 37(2),
227–245.

Crowston, K., Li, Q., Wei, K., Eseryel, Y. U., &
Howison, J. (2007). Self-Organization of
teams for free/libre open source software
development. Information and Software
Technology, 49(6), 564–575.

Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J.
(2012). Social coding in github: transparency
and collaboration in an open software
repository. In Proceedings of the ACM 2012
Conference on Computer Supported
Cooperative Work (pp. 1277–1286). ACM

Damian, D., Helms, R., Kwan, I., Marczak, S., &
Koelewijn, B. (2013). The role of domain
knowledge and cross-functional
communication in socio-technical coordination.
In Proceedings of the 2013 International
Conference on Software Engineering (pp.
442–451). IEEE.

Journal of the Association for Information Systems

1245

Eisenhardt, K. M. (1989). Building theories from case
study research. The Academy of Management
Review, 14(4), 532–550.

Ernst, N. A., & Murphy, G. C. (2012). Case studies in
just-in-time requirements analysis. In IEEE
2nd International Workshop on Empirical
Requirements Engineering (pp. 25–32). IEEE.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., &
Herbsleb, J. D. (2007). Team knowledge and
coordination in geographically distributed
software development. Journal of
Management Information Systems, 24(1), 135–
169.

Fitzgerald, G., & Avison, D. E. (2003). Where now
for development methodologies?
Communications of the ACM, 46(1), 79–82.

Fomin, V., & De Vaujany, F. X. (2008). Theories of
ICT design: Where social studies of
technology meet the distributed cognitive
perspective. In Proceedings of the 29th
International Conference on Information
Systems. AIS.

Fowler, M., & Highsmith, J. (2001). The agile
manifesto. Software Development, 9(8), 28–35.

Gigerenzer, G. (2008). Why heuristics work.
Perspectives on Psychological Science, 3(20),
20–29.

Glaser, B. G., & Strauss, A. L. (1967). The discovery
of grounded theory. International Journal of
Qualitative Methods, 5(1), 1–10.

Hansen, S., Berente, N., & Lyytinen, K. (2009).
Requirements in the 21st century: Current
practice and emerging trends. In K. Lyytinen,
P. Loucopoulos, J. Mylopoulos, & B.
Robinson (Eds.), Design Requirements
Engineering: A Ten-Year Perspective (pp. 44–
87). Berlin: Springer.

Hansen, S. W., Lyytinen, K., & Kharabe, A. (2015). a
tale of requirements computation in two
projects : A distributed cognition view. In
Proceedings of the 2015 International
Conference on Information Systems. AIS.

Hansen, S. W., Robinson, W. N., & Lyytinen, K. J.
(2012). Computing requirements: Cognitive
approaches to distributed requirements
engineering. In 2012 45th Hawaii
International Conference on System Sciences
(pp. 5224–5233). AIS.

Headland, T. N., Pike, K. L., & Harris, M. (1990).
Emics and etics: The insider/outsider debate.
Frontiers of anthropology vol. 7. Losa Angeles,
CA: SAGE.

Hickey, A. M., & Davis, A. M. (2003). Elicitation
technique selection: How do experts do it? In
Proceedings of the 11th IEEE International
Requirements Engineering Conference (pp.
169–178). IEEE.

Highsmith, J., & Cockburn, A. (2001). Agile software
development: The business of innovation.
Computer, 34(9), 120–127.

Hollan, J., Hutchins, E., & Kirsh, D. (2000).
Distributed cognition: Toward a new
foundation for human-computer interaction
research. ACM Transactions on Computer-
Human Interaction, 7(2), 174–196.

Howison, J., & Crowston, K. (2014). Collaboration
through open superposition: A theory of the
open source way. MIS Quarterly, 38(1), 29–50.

Hutchins, E. (1995). Cognition in the wild.
Cambridge, MA: Massachusetts Institute of
Technology Press.

Hutchins, E., & Klausen, T. (1996). Distributed
cognition in an airline cockpit. In Y.
Engeström & D. Middleton (Eds.), Cognition
and Communication at Work (pp. 15–34).
Cambridge, U.K.: Cambridge University Press.

Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos,
J., & Robinson, W. (2011). The brave new
world of design requirements. Information
Systems, 36(7), 992–1008.

Kallinikos, J., Aaltonen, A., & Marton, A. (2013).
The ambivalent ontology of digital artifacts.
MIS Quarterly, 37(2), 357–370.

Kleinmuntz, D. N. (1985). Cognitive heuristics and
feedback in a dynamic decision environment.
Management Science, 31(6), 680–702.

Larman, C., & Basili, V. R. (2003). Iterative and
incremental development: A brief history.
Computer, 36(6), 47–56.

Latour, B. (1986). Visualization and cognition:
Thinking with eyes and hands. In H. Kuklick
(Ed.), Knowledge and society studies in the
sociology of culture past and present (pp. 1–
40). Greenwich, CT: Jai.

Latour, B. (1987). Science in action: How to follow
scientists and engineers through society.
Cambridge, MA: Harvard University Press.

Lave, J. (1988). Cognition in practice. Cambridge,
U.K.: Cambridge University Press.

Lee, A. S., & Baskerville, R. L. (2003). Generalizing
generalizability in information systems
research. Information Systems Research, 14(3),
221–243.

 Computing Requirements for Open Source Software

1246

Lee, S. Y. T., Kim, H. W., & Gupta, S. (2009).
Measuring open source software success.
Omega, 37(2), 426–438.

Leont’ev, A. N. (1981). Problems of the development
of mind. Moscow: Progress.

Luckham, D. C. (2001). The Power of events: An
introduction to complex event processing in
distributed enterprise systems. Boston, MA:
Addison-Wesley.

Mangalaraj, G., Nerur, S., Mahapatra, R., & Price, K.
H. (2014). Distributed cognition in software
design: An experimental investigation of the
role of design patterns and collaboration. MIS
Quarterly, 38(1), 249–274.

Mathiassen, L., Tuunanen, T., Saarinen, T., & Rossi,
M. (2007). A contingency model for
requirements development. Journal of the
Association for Information Systems, 8(11),
569–597.

Metzler, T., & Shea, K. (2011). Taxonomy of
cognitive functions. In Proceedings of the 18th
International Conference on Engineering
Design (pp. 330–341). Design Society.

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002).
Two case studies of open source software
development: Apache and Mozilla. ACM
Transactions on Software Engineering and
Methodology, 11(3), 309–346.

Nardi, B. (1996). Studying Context: A comparison of
activity theory, situated action models, and
distributed cognition. In B. Nardi (Ed.),
Context and consciousness: Activity theory
and human-computer interaction. Cambridge,
MA: Massachusetts Institute of Technology
Press.

Noll, J., & Liu, W.-M. (2010). Requirements
elicitation in open source software
development. In Proceedings of the 3rd
International Workshop on Emerging Trends
in Free/Libre/Open Source Software Research
and Development (pp. 35–40). ACM.

Perkins, D. N. (1993). Person-plus: A Distributed
view of thinking and learning. In S. Gavriel
(Ed.), Distributed cognitions: Psychological
and educational considerations (pp. 88–110).
Cambridge, U.K.: Cambridge University Press.

Petersen, K., & Wohlin, C. (2010). The effect of
moving from a plan-driven to an incremental
software development approach with agile
practices: An industrial case study. Empirical
Software Engineering, 15(6), 654–693.

Pollock, N., & Williams, R. (2009). Global software
and its provenance: generification work in the

production of organisational software packages.
In V. Alex, M. Hartswood, R. Procter, M.
Rouncefield, R. Slack, & M. Büscher (Eds.),
Configuring user-designer relations:
interdisciplinary perspective (pp. 193–218).
London: Springer.

Port, D., & Bui, T. (2009). Simulating mixed agile
and plan-based requirements prioritization
strategies: Proof-of-concept and practical
implications. European Journal of Information
Systems, 18(4), 317–331.

Puranam, P., Alexy, O., & Reitzig, M. (2014). What’s
“new” about new forms of organizing?
Academy of Management Review, 39(2), 162–
180.

Ramesh, B., Mohan, K., & Cao, L. (2012).
Ambidexterity in agile distributed
development : An ambidexterity in agile
distributed development : An empirical
Investigation. Information Systems Journal,
23(2), 323–339.

Raymond, E. (1999). The Cathedral and the bazaar.
Knowledge, Technology & Policy, 12(3), 23–
49.

Robles, G., & Gonzalez-Barahona, J. M. (2006).
Contributor turnover in libre software projects.
In E. Damian, B. Fitzgerald, W. Scacchi, M.
Scotto, & G. Succi (Eds.), Open source
systems (pp. 273–286). Boston: Springer.

Rogers, Y., & Ellis, J. (1994). Distributed cognition:
An alternative framework for analysing and
explaining collaborative working. Journal of
Information Technology, 9(2), 119–128.

Royce, W. (1970). Managing the development of
large software systems. In Proceedings of
IEEE WESCON (pp. 1–9). IEEE.

Scacchi, W. (2002). Understanding the requirements
for developing open source software systems.
iEE Proceedings Software, 149(1), 24–39.

Scacchi, W. (2009). Understanding requirements for
open source software. In K. Lyytinen, P.
Loucopoulos, J. Mylopoulos, & B. Robinson
(Eds.), Design requirements engineering: A
ten-year perspective (pp. 467–494). Berlin:
Springer.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., &
Lakhani, K. (2006). Understanding free/open
source software development processes.
Software Process: Improvement and Practice,
11(2), 95–105.

Shah, S. K. (2006). Motivation, governance, and the
viability of hybrid forms in open source

Journal of the Association for Information Systems

1247

software development. Management Science,
52(7), 1000–1014.

Shettleworth, S. J. (2009). Cognition, evolution, and
behavior. Oxford, U.K.: Oxford University
Press.

Simon, H. A. (1980). Cognitive science: The newest
science of the artificial. Cognitive Science, 4,
33–46.

Strauss, A., & Corbin, J. (1990). Basics of qualitative
research: Grounded theory procedures and
techniques. Newbury Park, CA: SAGE.

Suchman, L. (1987). Plans and situated actions.
Cambridge, U.K.: Cambridge University Press.

Thomas, D., & Hunt, A. (2004). Open source
ecosystems. IEEE Software, 21(4), 89–91.

Tuertscher, P., Garud, R., & Kumaraswamy, A.
(2014). Justification and interlaced knowledge
at ATLAS, CERN. Organization Science,
25(6), 1579–1608.

Tversky, A., & Kahneman, D. (1974). Judgment
under uncertainty: Heuristics and biases.
Science, 185(4157), 1124–1131.

Valverde, S., & Solé, R. V. (2007). Self-organization
versus hierarchy in open-source social
networks. Physical Review E, 76(4).

Vidgen, R., & Wang, X. (2009). Coevolving systems
and the organization of agile software
development. Information Systems Research,
20(3), 355–376.

Vygotsky, L. S. (1987). Thinking and speech. New
York, NY: Plenum.

Wegner, D. M. (1995). A computer network model of
human transactive memory. Social Cognition,
13(3), 319–339.

Yin, R. K. (2009). Case study research: Design and
methods (4th ed.). Thousand Oaks, CA: SAGE.

 Computing Requirements for Open Source Software

1248

Appendix A. Software Development Methodologies
In Table 11 below we provide an overview of the main characteristics of waterfall, agile, and open source.

Table 11. Comparison of Three RE Approaches

Qualities Waterfall

(Bell & Thayer, 1976; Royce,
1970)

Agile development

(Fowler & Highsmith, 2001;
Vidgen & Wang, 2009)

Open source

(Howison & Crowston, 2014;
Scacchi, 2009)

Methodological Characteristics

Team structure Stable Stable Fluid

Location Mainly colocated Mainly colocated Distributed

Role of developer Employee or hired for work Employee or hired for work Volunteer (secondary employee)

Coordination
mechanisms

Formal planning &
documentation, scripting

Face-to-face exchange, “big &
visible” displays of project
knowledge

Emergent and largely computer-
mediated (e.g., via GitHub)

Requirements Facets

Discovery Formal planning; requirements set
prior to design and implementation

Close collaboration in a core team;
cocreation with customers

Developer-driven exploration
features and
“scratching itches”

Specification Formal documentation;
standardized requirements
specification documents

List of flexible backlogs; mock-
ups/prototypes

“Informalisms” (e.g., discussion
forums, email messages, test
results)

Validation Document review and sign-off Iterative review and test-driven
development

Informal ex ante evaluation

Post hoc evaluation and use;
testing platforms

Appendix B. The Rubinius Project
Rubinius is an implementation of the Ruby programming language through a virtual machine (VM) that provides a
runtime environment and a dynamic compiler for Ruby. As a partially sponsored OSS project, Rubinius has been
relatively successful in this highly specialized domain. The project was initiated in 2005 as a hobby by Evan
Phoenix who intended to write Ruby in Ruby, making it analogous to C and Java whose major functionalities
available to programmers are written in the language itself. Subsequently, Rubinius ceased to be written purely in
Ruby when the VM was rewritten in C++ to improve efficiency. The project has a large base of committers built
around a core committer team, primarily due to its highly open commit policy (i.e., if one pull request has been
accepted, the developer who submitted the pull request will become a committer and be entitled to commit directly
to the project).

In late 2007, Engine Yard Company—one of the biggest privately held companies focused on Ruby on Rails and
PHP development and management—began to sponsor several committers of Rubinius to work full-time on the
project. On May 14, 2010, the first released version of Rubinius 1.0 (Fabius) was launched. Our data collection
focused primarily on the period after that initial release, because it indicated a new round of efforts to prepare for a
Rubinius 2.0 release. The new release will introduce significant changes to the system and involves substantial
updates to the base functions of the implementation with additional features, bug fixes, and significant performance
improvements. Interestingly, in the middle of 2012, after seven years of enthusiastic involvement, the initiator
elected not to slot himself in the core committer team, citing a change in his professional work and the intention to
seek new challenges. Although it changed the dynamic within the core development team somewhat, the leadership
transition has not substantively impeded the overall development effort.

Journal of the Association for Information Systems

1249

The requirements of the new release were determined through diverse efforts by a large number of participants.
While there was no formalized approach in place to manage requirements, the informal resources generated by
collaborative engagements together with robust coding, testing and coordination infrastructures (GitHub) and other
artifacts employed played a significant role in shouldering RE practices. In the context of Rubinius, one important
artifact is RubySpec which is highly relevant in RE management. RubySpec consists of an executable specification
for the Ruby programming language and describes Ruby language syntax and its standard library classes. It captures
behaviors of Matz’s Ruby Interpreter (MRI, i.e., the reference implementation of the Ruby programming language
setting the de facto standard for any Ruby interpreter) and tells how Rubinius should execute the same behavior so
as to evaluate the correctness of its implementation. In contrast to the traditional specification documents which are
usually written in a formal, literal way upfront, RubySpec is a living open source project repository on GitHub
composed of executable specs and test cases. For example, a spec named array_spec.rb can be represented in the
RubySpec as follows:

 “require File.dirname(__FILE__) + '/../../spec_helper'
 describe “Array” do
 it "includes Enumerable" do
 Array.ancestors.include?(Enumerable).should == true
 end
 end”

Appendix C. Interview Protocol
This interview intended to explore evolution of coding and requirements engineering practices. Specifically, the
interviews focused on interviewee’s personal experiences/views of these practices.

Background

• Could you tell us about your background, and how you came to work on this project?

• Could you describe your process of entering the community of this particular project?

• When do you usually spend your energy on the project? How many hours do you usually spend?

Coding/Requirements engineering practices

• Could you provide an overview of events since you joined the project? Were there any notable events of
importance during this period?

• Were there any conversations or chats discussing what the project was going to do before the event? Where
did the conversations or chats take place? Did they happen on a regular basis? Did anyone within the
community take primary responsibility for documenting them? Where were they documented?

• Which tasks do you take on within the project? Why did you choose those tasks?

• Please walk us through a typical/recent issue or commit you submitted.

o Where did your idea come from? Why did you think the problem was necessary to address?

o What techniques did you employ to identify the problem you were addressing? What development
tools or resources were used in identifying the problem?

o Were there any people that you turned to for identifying the problem? Could you tell us about your
interactions with other project members, particularly as it pertains to the identification of the
problem? How did you initiate contact, with whom did you make contact, and why was the process
done this way?

o Could you describe how you solved the problem? What technology platforms, modeling techniques
and tools were used? What were specific reasons for choosing them?

o Were there any project members or any resources that you turned to for solving the problem? How
did they help you in this regard? Which communication channels did you use?

 Computing Requirements for Open Source Software

1250

o Did you and other project members share the same understanding of what needed to be done during
the process? Were there any disagreements? If there were conflicts, how did you negotiate them and
achieve consensus?

Next steps

• We would like to have a continuing relationship. Would it be possible for us to talk again in the future?

• What would be interesting for you to find out? What would you like to have visibility into?

• Who else can we talk to?

Appendix D. Selection of Archival Entries Based on Keywords
Based on the coding of the interviews we identified a set of emic (Headland et al., 1990) keywords that capture
salient topics within the Rubinius project. We identified 20 such keywords:

1. MRI / Matz Ruby Interpreter

2. Flip Flop / FlipFlop / Flip-Flop

3. Concurrency / concurrent

4. GLI / Global Interpreter Lock

5. IO / I/O

6. Hydra

7. GC / Garbage Collection

8. Puma

9. Travis

10. CI / Continuous Integration

11. Engine Yard / EngineYard

12. Rspec

13. RDocs

14. RubySpec

15. GitHub

16. Git

17. Gdb

18. Insiter

19. Real-time web / realtime web

20. Multicore / multicore / processors / CPUs

These keywords were then used to search the GitHub repository, project website, developer mailing list, as well as
IRC, for the time period May 14, 2010 (when Rubinius 1.0 was launched) to November 2, 2012 (when the Rubinius
2.0 preview was launched). All items in these archival data sources that matched any of these search terms were then
selected for coding. The selected archival items were then loaded into Dedoose, and were then coded using the
theoretical codes extracted from the interview data. Overall, the data funnel can be seen in Table 12 below.

Table 12. Archival Analysis Data Funnel

 Issues Pull requests Blog posts Mailing List threadsa

Total 1082 604 26 35

Selected 816 233 19 25

a Each thread contains multiple emails

The data were collected from these hyperlinks, corresponding to the columns in Table 12:

• https://github.com/rubinius/rubinius/issues

• https://github.com/rubinius/rubinius/pulls

• https://github.com/rubinius/rubinius-archive/tree/master/_posts

• https://groups.google.com/forum/#!forum/rubinius-dev

Journal of the Association for Information Systems

1251

Appendix E. Coding Protocol
The initial round of coding focused on the identification of themes (i.e., themes and concepts) and central
explanatory categories within the interview data, concerning the ways in which requirements knowledge is processed
across actors and artifacts over time. Additional codes and analytical memos were developed during the coding
process. This initial round of coding was followed by a round of axial coding in which we consolidated some of the
codes from the open coding phase. During axial coding, we identified key relationships between and higher-level
categorization of the preliminary codes. The technique of constant comparison was employed in the development of
these higher level categories (Corbin & Strauss, 2008). Finally, we conducted a round of selective coding to
determine consistent patterns of interaction between social, structural, and temporal modes of cognitive distribution
and to formulate a computational framework that reflected the RE processes at play in the Rubinius community.

At the point where substantive categories had emerged and we had gained a certain level of stability and saturation,
we approached the archival data sources. Due to the overwhelming amounts of archival data (thousands of email
conversations, workflows, and public documents), the themes that emerged from the interviews were used as
guideposts. By searching archives using keywords associated with prominent themes, relevant passages were
identified and coded to support comparisons as well as to increase the richness and integration of the emerging
theory.

Comparing across both interviews and archival data, we refined the categories until a systematic explanation of RE
distribution patterns was formulated. As a result, the final selective coding structure emerged during iterative coding
of all interviews and archival data sources. Code generation and refinement proceeded until the researchers deemed
that theoretical saturation was achieved (Eisenhardt, 1989; Glaser & Strauss, 1967). The research findings were
presented to the informants and other members of our research team with in-depth discussions feeding back into the
analysis process to validate the emerging theoretical scheme (Corbin & Strauss, 2008). In the end, 611 codable
moments were recognized along with 13 analytical memos and 87 distinctive codes.

 Computing Requirements for Open Source Software

1252

About the Authors
Xuan Xiao is an assistant professor at the School of Management, Guangzhou University. She received her PhD in
Business Administration from Harbin Institute of Technology, China. Her research interests include social
networking service and open source software. She has published in a number of peer-reviewed journals and
conferences including the International Conference on Information Systems, Hawaii International Conference on
System Sciences, and the Academy of Management meeting.

Aron Lindberg is an assistant professor of information systems at the School of Business, Stevens Institute of
Technology. He received his PhD at Case Western Reserve University, and primarily studies complex design
processes, often using a combination of qualitative and computational methods. His research has been published or is
forthcoming in major journals such as Information Systems Research, Journal of the Association for Information
Systems, Communications of the Association for Information Systems, and IEEE Computer.

Sean Hansen Sean Hansen is an associate professor of management information systems and chair of the
Department of MIS, Marketing, & Digital Business at Rochester Institute of Technology’s Saunders College of
Business. He earned his PhD and MBA from the Weatherhead School of Management at Case Western Reserve
University. His research interests include information systems development, health IT, requirements engineering,
and distributed cognition

Kalle Lyytinen Kalle Lyytinen (PhD, Computer Science, University of Jyväskylä; Dr. h.c. Umeå University,
Copenhagen Business School, Lappeenranta University of Technology) is Distinguished University Professor and
Iris S. Wolstein Professor of Management Design at Case Western Reserve University, and a distinguished visiting
professor at Aalto University, Finland. Between 1992 and 2012 he was the third most productive scholar in the IS
field when measured by the AIS Basket of 8 journals; he is among the top five IS scholars in terms of his h-index
(83); he is a LEO Award recipient (2013), Association for Information Systems fellow (2004), and the former chair
of IFIP WG 8.2 “Information systems and organizations.” His Erdos number is 3 and he has the highest network
centrality among all published IS scholars. He has published over 350 refereed articles and edited or written over 30
books or special issues. He conducts research that explores digital innovation, especially in relation to nature and
organization of digital innovation, design work, requirements in large scale systems, diffusion and assimilation of
digital innovations, and emergence digital infrastructures.

Copyright © 2018 by the Association for Information Systems. Permission to make digital or hard copies of all or
part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for
components of this work owned by others than the Association for Information Systems must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O.
Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via email from publications@aisnet.org.

	1 Introduction
	2 Theoretical Background
	2.1 Requirements Engineering and the Changing Face of Development
	2.2 Cognitive Foundations
	2.3 Distributed Cognition

	3 Research Design
	3.1 Project Selection
	3.2 Data Collection
	3.3 Data Analysis

	4 Findings
	4.1 Three Vignettes Illustrating Requirement Engineering Computation
	4.2 Social and Structural Distribution Mechanisms
	4.2.1 Social Distribution
	4.2.2 Structural Distribution

	4.3 Temporal Structuring Mechanisms
	4.3.1 Trends
	4.3.2 Patterns
	4.3.3 Heuristics

	4.4 Generalized Computational Structure
	4.4.1 Trends and Patterns
	4.4.2 Discovery
	4.4.3 Specification
	4.4.4 Validation
	4.4.5 Recursion

	5 Discussion
	5.1 Implications for Research
	5.2 Implications for Practice
	5.3 Limitations and Future Research

	6 Conclusion
	Acknowledgements
	References
	Appendix A. Software Development Methodologies
	Appendix B. The Rubinius Project
	Appendix C. Interview Protocol
	Appendix D. Selection of Archival Entries Based on Keywords
	Appendix E. Coding Protocol
	About the Authors

