68,303 research outputs found

    Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    Get PDF
    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the “off” and “on” allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target

    Hot-spot analysis for drug discovery targeting protein-protein interactions

    Get PDF
    Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    DBAC: A simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts

    Get PDF
    Background: A protein binding hot spot is a cluster of residues in the interface that are energetically important for the binding of the protein with its interaction partner. Identifying protein binding hot spots can give useful information to protein engineering and drug design, and can also deepen our understanding of protein-protein interaction. These residues are usually buried inside the interface with very low solvent accessible surface area (SASA). Thus SASA is widely used as an outstanding feature in hot spot prediction by many computational methods. However, SASA is not capable of distinguishing slightly buried residues, of which most are non hot spots, and deeply buried ones that are usually inside a hot spot.Results: We propose a new descriptor called " burial level" for characterizing residues, atoms and atomic contacts. Specifically, burial level captures the depth the residues are buried. We identify different kinds of deeply buried atomic contacts (DBAC) at different burial levels that are directly broken in alanine substitution. We use their numbers as input for SVM to classify between hot spot or non hot spot residues. We achieve F measure of 0.6237 under the leave-one-out cross-validation on a data set containing 258 mutations. This performance is better than other computational methods.Conclusions: Our results show that hot spot residues tend to be deeply buried in the interface, not just having a low SASA value. This indicates that a high burial level is not only a necessary but also a more sufficient condition than a low SASA for a residue to be a hot spot residue. We find that those deeply buried atoms become increasingly more important when their burial levels rise up. This work also confirms the contribution of deeply buried interfacial atomic contacts to the energy of protein binding hot spot. © 2011 Li et al; licensee BioMed Central Ltd

    Geometrically centered region: A "wet" model of protein binding hot spots not excluding water molecules

    Full text link
    A protein interface can be as "wet" as a protein surface in terms of the number of immobilized water molecules. This important water information has not been explicitly taken by computational methods to model and identify protein binding hot spots, overlooking the water role in forming interface hydrogen bonds and in filing cavities. Hot spot residues are usually clustered at the core of the protein binding interfaces. However, traditional machine learning methods often identify the hot spot residues individually, breaking the cooperativity of the energetic contribution. Our idea in this work is to explore the role of immobilized water and meanwhile to capture two essential properties of hot spots: the compactness in contact and the far distance from bulk solvent. Our model is named geometrically centered region (GCR). The detection of GCRs is based on novel tripartite graphs, and atom burial levels which are a concept more intuitive than SASA. Applying to a data set containing 355 mutations, we achieved an F measure of 0.6414 when δδG ≥ 1.0 kcal/mol was used to define hot spots. This performance is better than Robetta, a benchmark method in the field. We found that all but only one of the GCRs contain water to a certain degree, and most of the outstanding hot spot residues have water-mediated contacts. If the water is excluded, the burial level values are poorly related to the δδG, and the model loses its performance remarkably. We also presented a definition for the O-ring of a GCR as the set of immediate neighbors of the residues in the GCR. Comparative analysis between the O-rings and GCRs reveals that the newly defined O-ring is indeed energetically less important than the GCR hot spot, confirming a long-standing hypothesis. Proteins 2010. © 2010 Wiley-Liss, Inc

    Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows

    Get PDF
    We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido

    Generalized Interpolation Material Point Approach to High Melting Explosive with Cavities Under Shock

    Full text link
    Criterion for contacting is critically important for the Generalized Interpolation Material Point(GIMP) method. We present an improved criterion by adding a switching function. With the method dynamical response of high melting explosive(HMX) with cavities under shock is investigated. The physical model used in the present work is an elastic-to-plastic and thermal-dynamical model with Mie-Gr\"uneissen equation of state. We mainly concern the influence of various parameters, including the impacting velocity vv, cavity size RR, etc, to the dynamical and thermodynamical behaviors of the material. For the colliding of two bodies with a cavity in each, a secondary impacting is observed. Correspondingly, the separation distance DD of the two bodies has a maximum value DmaxD_{\max} in between the initial and second impacts. When the initial impacting velocity vv is not large enough, the cavity collapses in a nearly symmetric fashion, the maximum separation distance DmaxD_{\max} increases with vv. When the initial shock wave is strong enough to collapse the cavity asymmetrically along the shock direction, the variation of DmaxD_{\max} with vv does not show monotonic behavior. Our numerical results show clear indication that the existence of cavities in explosive helps the creation of ``hot spots''.Comment: Figs.2,4,7,11 in JPG format; Accepted for publication in J. Phys. D: Applied Physic
    corecore