3 research outputs found

    A Post-Accident Analysis of Civil Remotely-Piloted Aircraft System Accidents and Incidents

    Get PDF
    A sample of 152 accidents and incidents involving Remotely Piloted Aircraft Systems, more commonly referred to as drones , have been analysed. The data was collected from a 10-year period, 2006 to 2015, conveniently sourced from a limited population owing to the scarcity of reports. Results indicate that safety occurrences involving Remotely Piloted Aircraft Systems (RPAS) have a significantly different distribution of contributing factors when sorted into distinct categories. This provides a thorough and up-to-date characterization of the safety deficiencies specific to RPAS. In turn, this contributes to the development of adequate safety management systems applicable to the RPAS sector. The majority of RPAS occurrences involved system component failures which were the result of equipment problems. Therefore, airworthiness instead of pilot licensing needs to be considered first when regulating the Remotely Piloted Aircraft System industry. Human factors and loss of control in-flight were found to be the second most common contributing factor and occurrence category , respectively; Remotely Piloted Aircraft pilot licensing will help reduce the probability of these secondary occurrences. The most significant conclusion is that reporting systems must be implemented to address RPAS accidents and incidents specifically, such that more useful data is available, and further analysis is possible facilitating an improved understanding and greater awareness

    Computational concerns in the integration of Unmanned Airborne Systems into controlled airspace

    No full text
    Unmanned Airborne Systems (UAS) offer significant benefits for long duration missions. They can also be used in situations where it is inappropriate to expose aircrew to increased levels of risk. Partly in consequence, they continue to experience accident rates that are significantly higher than those for most conventional aircraft. It can also be argued that increased mishap rates are due to lower standards of design and maintenance. UAS are, therefore, largely confined to segregated areas that are well away from other airspace users. There are growing commercial and political pressures for them to be integrated into airspace that is directly under the control of air traffic management. Police agencies would like to deploy miniature UAS in populated areas, for example, to augment conventional helicopter operations. There are proposals to operate unmanned freight operations from existing airports. Longer-term proposals include the use of UAS technology to replace the co-pilot. Automated systems might intervene only if the single human pilot is incapacitated. The following pages focus on the computational issues that form one part of wider set of ‘system safety’ concerns that must be addressed before UAS operations can be integrated into controlled airspace

    Computational concerns in the integration of unmanned airborne systems into controlled airspace

    No full text
    Unmanned Airborne Systems (UAS) offer significant benefits for long duration missions. They can also be used in situations where it is inappropriate to expose aircrew to increased levels of risk. Partly in consequence, they continue to experience accident rates that are significantly higher than those for most conventional aircraft. It can also be argued that increased mishap rates are due to lower standards of design and maintenance. UAS are, therefore, largely confined to segregated areas that are well away from other airspace users. There are growing commercial and political pressures for them to be integrated into airspace that is directly under the control of air traffic management. Police agencies would like to deploy miniature UAS in populated areas, for example, to augment conventional helicopter operations. There are proposals to operate unmanned freight operations from existing airports. Longer-term proposals include the use of UAS technology to replace the co-pilot. Automated systems might intervene only if the single human pilot is incapacitated. The following pages focus on the computational issues that form one part of wider set of 'system safety' concerns that must be addressed before UAS operations can be integrated into controlled airspace. Document type: Part of book or chapter of boo
    corecore