24,155 research outputs found

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Marked Ancestor Problems (Preliminary Version)

    Get PDF
    Consider a rooted tree whose nodes can be marked or unmarked. Given a node, we want to find its nearest marked ancestor. This generalises the well-known predecessor problem, where the tree is a path. We show tight upper and lower bounds for this problem. The lower bounds are proved in the cell probe model, the upper bounds run on a unit-cost RAM. As easy corollaries we prove (often optimal) lower bounds on a number of problems. These include planar range searching, including the existential or emptiness problem, priority search trees, static tree union-find, and several problems from dynamic computational geometry, including intersection problems, proximity problems, and ray shooting. Our upper bounds improve a number of algorithms from various fields, including dynamic dictionary matching and coloured ancestor problems

    Asymptotic invariants, complexity of groups and related problems

    Get PDF
    We survey results about computational complexity of the word problem in groups, Dehn functions of groups and related problems.Comment: 86 pages. Preliminary version, comments are welcome. v2: some references added, misprints fixed, some changes suggested by the readers are made. 88 pages. v3: more readers' suggestions implemented, index added, the list of references improved. This version is submitted to a journal. v4: The paper is accepted in Bulletin of Mathematical Science

    Algebraic and Combinatorial Methods in Computational Complexity

    Get PDF
    At its core, much of Computational Complexity is concerned with combinatorial objects and structures. But it has often proven true that the best way to prove things about these combinatorial objects is by establishing a connection (perhaps approximate) to a more well-behaved algebraic setting. Indeed, many of the deepest and most powerful results in Computational Complexity rely on algebraic proof techniques. The PCP characterization of NP and the Agrawal-Kayal-Saxena polynomial-time primality test are two prominent examples. Recently, there have been some works going in the opposite direction, giving alternative combinatorial proofs for results that were originally proved algebraically. These alternative proofs can yield important improvements because they are closer to the underlying problems and avoid the losses in passing to the algebraic setting. A prominent example is Dinur's proof of the PCP Theorem via gap amplification which yielded short PCPs with only a polylogarithmic length blowup (which had been the focus of significant research effort up to that point). We see here (and in a number of recent works) an exciting interplay between algebraic and combinatorial techniques. This seminar aims to capitalize on recent progress and bring together researchers who are using a diverse array of algebraic and combinatorial methods in a variety of settings

    Combinatorial complexity in o-minimal geometry

    Full text link
    In this paper we prove tight bounds on the combinatorial and topological complexity of sets defined in terms of nn definable sets belonging to some fixed definable family of sets in an o-minimal structure. This generalizes the combinatorial parts of similar bounds known in the case of semi-algebraic and semi-Pfaffian sets, and as a result vastly increases the applicability of results on combinatorial and topological complexity of arrangements studied in discrete and computational geometry. As a sample application, we extend a Ramsey-type theorem due to Alon et al., originally proved for semi-algebraic sets of fixed description complexity to this more general setting.Comment: 25 pages. Revised version. To appear in the Proc. London Math. So
    corecore