7 research outputs found

    Computational Complexity and Phase Transitions

    Full text link
    Phase transitions in combinatorial problems have recently been shown to be useful in locating "hard" instances of combinatorial problems. The connection between computational complexity and the existence of phase transitions has been addressed in Statistical Mechanics and Artificial Intelligence, but not studied rigorously. We take a step in this direction by investigating the existence of sharp thresholds for the class of generalized satisfiability problems defined by Schaefer. In the case when all constraints are clauses we give a complete characterization of such problems that have a sharp threshold. While NP-completeness does not imply (even in this restricted case) the existence of a sharp threshold, it "almost implies" this, since clausal generalized satisfiability problems that lack a sharp threshold are either 1. polynomial time solvable, or 2. predicted, with success probability lower bounded by some positive constant by across all the probability range, by a single, trivial procedure.Comment: A (slightly) revised version of the paper submitted to the 15th IEEE Conference on Computational Complexit

    Measuring the fluctuation-dissipation ratio in glassy systems with no perturbing field

    Get PDF
    A method is presented for measuring the integrated response in Ising spin system without applying any perturbing field. Large-scale simulations are performed in order to show how the method works. Very precise measurements of the fluctuation-dissipation ratio are presented for 3 different Ising models: the 2-dimensional ferromagnetic model, the mean-field diluted 3-spin model, and the 3-dimensional Edwards-Anderson model.Comment: 4 pages, 4 figure

    A Framework for Structured Quantum Search

    Get PDF
    A quantum algorithm for general combinatorial search that uses the underlying structure of the search space to increase the probability of finding a solution is presented. This algorithm shows how coherent quantum systems can be matched to the underlying structure of abstract search spaces, and is analytically simpler than previous structured search methods. The algorithm is evaluated empirically with a variety of search problems, and shown to be particularly effective for searches with many constraints. Furthermore, the algorithm provides a simple framework for utilizing search heuristics. It also exhibits the same phase transition in search difficulty as found for sophisticated classical search methods, indicating it is effectively using the problem structure.Comment: 18 pages, Latex, 7 figures, further information available at ftp://parcftp.xerox.com/pub/dynamics/quantum.htm

    q-Overlaps in the Random Exact Cover Problem

    Full text link
    We prove upper and lower bounds for the threshold of the q-overlap-k-Exact cover problem. These results are motivated by the one-step replica symmetry breaking approach of Statistical Physics, and the hope of using an approach based on that of Mezard et al. (2005) to rigorously prove that for some values of the order parameter the overlap distribution of k-Exact Cover has discontinuous support.Comment: In Proceedings FROM 2023, arXiv:2309.1295
    corecore