443,376 research outputs found

    A Fully Polynomial-Time Approximation Scheme for Speed Scaling with Sleep State

    Full text link
    We study classical deadline-based preemptive scheduling of tasks in a computing environment equipped with both dynamic speed scaling and sleep state capabilities: Each task is specified by a release time, a deadline and a processing volume, and has to be scheduled on a single, speed-scalable processor that is supplied with a sleep state. In the sleep state, the processor consumes no energy, but a constant wake-up cost is required to transition back to the active state. In contrast to speed scaling alone, the addition of a sleep state makes it sometimes beneficial to accelerate the processing of tasks in order to transition the processor to the sleep state for longer amounts of time and incur further energy savings. The goal is to output a feasible schedule that minimizes the energy consumption. Since the introduction of the problem by Irani et al. [16], its exact computational complexity has been repeatedly posed as an open question (see e.g. [2,8,15]). The currently best known upper and lower bounds are a 4/3-approximation algorithm and NP-hardness due to [2] and [2,17], respectively. We close the aforementioned gap between the upper and lower bound on the computational complexity of speed scaling with sleep state by presenting a fully polynomial-time approximation scheme for the problem. The scheme is based on a transformation to a non-preemptive variant of the problem, and a discretization that exploits a carefully defined lexicographical ordering among schedules

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Benchmark Analysis of Representative Deep Neural Network Architectures

    Full text link
    This work presents an in-depth analysis of the majority of the deep neural networks (DNNs) proposed in the state of the art for image recognition. For each DNN multiple performance indices are observed, such as recognition accuracy, model complexity, computational complexity, memory usage, and inference time. The behavior of such performance indices and some combinations of them are analyzed and discussed. To measure the indices we experiment the use of DNNs on two different computer architectures, a workstation equipped with a NVIDIA Titan X Pascal and an embedded system based on a NVIDIA Jetson TX1 board. This experimentation allows a direct comparison between DNNs running on machines with very different computational capacity. This study is useful for researchers to have a complete view of what solutions have been explored so far and in which research directions are worth exploring in the future; and for practitioners to select the DNN architecture(s) that better fit the resource constraints of practical deployments and applications. To complete this work, all the DNNs, as well as the software used for the analysis, are available online.Comment: Will appear in IEEE Acces

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature
    • …
    corecore