3,654 research outputs found

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    Evolutionary programming with q-Gaussian mutation for dynamic optimization problems

    Get PDF
    This article is posted here with permission from IEEE - Copyright @ 2008 IEEEThe use of evolutionary programming algorithms with self-adaptation of the mutation distribution for dynamic optimization problems is investigated in this paper. In the proposed method, the q-Gaussian distribution is employed to generate new candidate solutions by mutation. A real parameter q, which defines the shape of the distribution, is encoded in the chromosome of individuals and is allowed to evolve. Algorithms with self-adapted mutation generated from isotropic and anisotropic distributions are presented. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on three dynamic optimization problems.This work was supported by Brazil FAPESP under Grant 04/04289-6 and UK EPSRC under Grant No. EP/E060722/01

    Rank-normalization, folding, and localization: An improved R^\widehat{R} for assessing convergence of MCMC

    Full text link
    Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic R^\widehat{R} of Gelman and Rubin (1992) has serious flaws. Traditional R^\widehat{R} will fail to correctly diagnose convergence failures when the chain has a heavy tail or when the variance varies across the chains. In this paper we propose an alternative rank-based diagnostic that fixes these problems. We also introduce a collection of quantile-based local efficiency measures, along with a practical approach for computing Monte Carlo error estimates for quantiles. We suggest that common trace plots should be replaced with rank plots from multiple chains. Finally, we give recommendations for how these methods should be used in practice.Comment: Minor revision for improved clarit

    Rank-normalization, folding, and localization: An improved R^\widehat{R} for assessing convergence of MCMC

    Get PDF
    Markov chain Monte Carlo is a key computational tool in Bayesian statistics, but it can be challenging to monitor the convergence of an iterative stochastic algorithm. In this paper we show that the convergence diagnostic R^\widehat{R} of Gelman and Rubin (1992) has serious flaws. Traditional R^\widehat{R} will fail to correctly diagnose convergence failures when the chain has a heavy tail or when the variance varies across the chains. In this paper we propose an alternative rank-based diagnostic that fixes these problems. We also introduce a collection of quantile-based local efficiency measures, along with a practical approach for computing Monte Carlo error estimates for quantiles. We suggest that common trace plots should be replaced with rank plots from multiple chains. Finally, we give recommendations for how these methods should be used in practice.Comment: Minor revision for improved clarit

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form minf(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure
    corecore