429 research outputs found

    Gradient optimization of RF amplifiers for digital communications

    Full text link
    A gradient optimization methodology for use with nonlinear envelope simulation is presented. Emphasis is placed on efficient evaluation of cost function gradients. To this end, an envelope sensitivity equation is derived and methods for its efficient solution are proposed. In the case of circuits of moderate size, the solution of the sensitivity equation is shown to be simple and inexpensive. The more troublesome case of larger circuits is treated by a novel application of a recently developed iterative linear equation solver. The result is a general-purpose, rigorous optimization methodology for the fine tuning of gain, adjacent channel power, power efficiency, and related performance measures in radio frequency (RF) amplifiers for digital communications. As an illustrative example, the optimization of a feedforward-linearized power amplifier is presented. © 2000 John Wiley & Sons, Inc. Int J RF and Microwave CAE 10, 353–365, 2000.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35228/1/4_ftp.pd

    Parallel Algorithms for Time and Frequency Domain Circuit Simulation

    Get PDF
    As a most critical form of pre-silicon verification, transistor-level circuit simulation is an indispensable step before committing to an expensive manufacturing process. However, considering the nature of circuit simulation, it can be computationally expensive, especially for ever-larger transistor circuits with more complex device models. Therefore, it is becoming increasingly desirable to accelerate circuit simulation. On the other hand, the emergence of multi-core machines offers a promising solution to circuit simulation besides the known application of distributed-memory clustered computing platforms, which provides abundant hardware computing resources. This research addresses the limitations of traditional serial circuit simulations and proposes new techniques for both time-domain and frequency-domain parallel circuit simulations. For time-domain simulation, this dissertation presents a parallel transient simulation methodology. This new approach, called WavePipe, exploits coarse-grained application-level parallelism by simultaneously computing circuit solutions at multiple adjacent time points in a way resembling hardware pipelining. There are two embodiments in WavePipe: backward and forward pipelining schemes. While the former creates independent computing tasks that contribute to a larger future time step, the latter performs predictive computing along the forward direction. Unlike existing relaxation methods, WavePipe facilitates parallel circuit simulation without jeopardizing convergence and accuracy. As a coarse-grained parallel approach, it requires low parallel programming effort, furthermore it creates new avenues to have a full utilization of increasingly parallel hardware by going beyond conventional finer grained parallel device model evaluation and matrix solutions. This dissertation also exploits the recently developed explicit telescopic projective integration method for efficient parallel transient circuit simulation by addressing the stability limitation of explicit numerical integration. The new method allows the effective time step controlled by accuracy requirement instead of stability limitation. Therefore, it not only leads to noticeable efficiency improvement, but also lends itself to straightforward parallelization due to its explicit nature. For frequency-domain simulation, this dissertation presents a parallel harmonic balance approach, applicable to the steady-state and envelope-following analyses of both driven and autonomous circuits. The new approach is centered on a naturally-parallelizable preconditioning technique that speeds up the core computation in harmonic balance based analysis. The proposed method facilitates parallel computing via the use of domain knowledge and simplifies parallel programming compared with fine-grained strategies. As a result, favorable runtime speedups are achieved

    Co-Design Strategies for Energy-Efficient UWB and UHF Wireless Systems

    Get PDF
    This paper reviews the most recent methods, combining nonlinear harmonic-balance-based analysis with electromagnetic (EM) simulation, for optimizing, at the circuit level, modern radiative RF/microwave systems. In order to maximize the system efficiency, each subsystem must be designed layoutwise, accounting for the presence of the others, that is, accounting for its actual terminations, rather than the ideal ones (50 Ω). In this way, the twofold goal of minimizing size and losses of the system is obtained by reducing intersystem matching networks. Indeed, terminations are complex, frequency-dispersive, and variable with the signal level, if active operations are concerned, and are responsible for performance degradation if not properly optimized. This approach is nowadays necessary, given the ever increased spread of pervasively distributed RF microsystems adopting miniaturized antennas, such as radio frequency identification (RFID) or wireless sensor networks, that must be low-cost, low-profile, low-power, and must simultaneously perform localization, identification, and sensing. For the design of a transmitter and a receiver connected with the respective antennas, suitable figures of merit are considered, encompassing radiation and nonlinear performance. Recent representative low-profile realizations, adopting ultra-wideband (UWB) excitations are used to highlight the benefit of the proposed nonlinear/EM approach for next generation energy autonomous microsystem, such as UWB-RFID tags

    Spectral methods for circuit analysis

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 119-124).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Harmonic balance (HB) methods are frequency-domain algorithms used for high accuracy computation of the periodic steady-state of circuits. Matrix-implicit Krylov-subspace techniques have made it possible for these methods to simulate large circuits more efficiently. However, the harmonic balance methods are not so efficient in computing steady-state solutions of strongly nonlinear circuits with rapid transitions. While the time-domain shooting-Newton methods can handle these problems, the low-order integration methods typically used with shooting-Newton methods are inefficient when high solution accuracy is required. We first examine possible enhancements to the standard state-of-the-art preconditioned matrix-implicit Krylovsubspace HB method. We formulate the BDF time-domain preconditioners and show that they can be quite effective for strongly nonlinear circuits, speeding up the HB runtimes by several times compared to using the frequency-domain block-diagonal preconditioner. Also, an approximate Galerkin HB formulation is derived, yielding a small improvement in accuracy over the standard pseudospectral HB formulation, and about a factor of 1.5 runtime speedup in runs reaching identical solution error. Next, we introduce and develop the Time-Mapped Harmonic Balance method (TMHB) as a fast Krylov-subspace spectral method that overcomes the inefficiency of standard harmonic balance for circuits with rapid transitions. TMHB features a non-uniform grid and a time-map function to resolve the sharp features in the signals. At the core of the TMHB method is the notion of pseudo Fourier approximations. The rapid transitions in the solution waveforms are well approximated with pseudo Fourier interpolants, whose building blocks are complex exponential basis functions with smoothly varying frequencies. The TMHB features a matrix-implicit Krylov-subspace solution approach of same complexity as the standard harmonic balance method. As the TMHB solution is computed in a pseudo domain, we give a procedure for computing the real Fourier coefficients of the solution, and we also detail the construction of the time-map function. The convergence properties of TMHB are analyzed and demonstrated on analytic waveforms. The success of TMHB is critically dependent on the selection of a non-uniform grid. Two grid selection strategies, direct and iterative, are introduced and studied. Both strategies are a priori schemes, and are designed to obey accuracy and stability requirements. Practical issues associated with their use are also addressed. Results of applying the TMHB method on several circuit examples demonstrate that the TMHB method achieves up to five orders of magnitude improvement in accuracy compared to the standard harmonic balance method. The solution error in TMHB decays exponentially faster than the standard HB method when the size of the Fourier basis increases linearly. The TMHB method is also up to six times faster than the standard harmonic balance method in reaching identical solution accuracy, and uses up to five times less computer memory. The TMHB runtime speedup factor and storage savings favorably increase for stricter accuracy requirements, making TMHB well suited for high accuracy simulations of large strongly nonlinear circuits with rapid transitions.by Ognen J. Nastov.Ph.D

    Time-Varying Volterra Analysis of Nonlinear Circuits

    Get PDF
    Today’s advances in communication systems and VLSI circuits increases the performance requirements and complexity of circuits. The performance of RF and mixed-signal circuits is normally limited by the nonlinear behavior of the transistors used in the design. This makes simulation of nonlinear circuits more important. Volterra series is a method used for simulation of mildly nonlinear circuits. Using Volterra series the response of the nonlinear circuit is converted into a sum of multiple linear circuit responses. Thus, using Volterra series, simulation of nonlinear circuits in frequency-domain analysis becomes possible. However, Volterra series is not able to simulate strongly nonlinear circuits such as saturated Power Amplifiers. In this thesis, a new time-varying Volterra analysis is presented. The time-varying Volterra analysis is the generalization of conventional Volterra analysis where instead of using a DC expansion point a time-varying waveform has been used. Employing a time-varying expansion waveform for Volterra analysis, time-varying Volterra achieves better accuracy than conventional Volterra. The time-varying expansion waveforms are derived using a fast pre-analysis of the circuit. Using numerical examples, it has been shown that the time-varying Volterra is capable of simulating nonlinear circuits with better accuracy than conventional Volterra analysis. The time-varying Volterra analysis in both time and frequency domains are discussed in this thesis. The time-varying Volterra analysis has been used to simulate a saturated Class-F Power Amplifier in frequency-domain. The simulation results show good agreement with ELDO® steady-state and Harmonic Balance simulation results. The proposed method manages to simulate nonlinear circuits, such as saturated Power Amplifier, mixers and nonlinear microwave circuits, with good accuracy. Also, this method can be used to simulate circuit with large number of nonlinear elements without the convergence issues of Harmonic Balance

    Methodologies for Transient Simulation of Hybrid Electromagnetic/Circuit Systems with Multiple Time Scales

    Get PDF
    This work presents methodologies to facilitate the efficient cosimulation of electromagnetic/circuit systems while exploiting the multiple time scales that are often present in the numerical simulation of such systems. Three distinct approaches are presented to expedite such a simulation process, with the common theme that the methodologies should allow for the ability to utilize different timesteps in the simulation procedure for the different components appearing in a hybrid system. The first contribution involves a direct representation of each of Maxwell???s curl equations in terms of SPICE-equivalent circuit stamps. This provides for a full-wave, circuit-compatible description of a distributed structure that can very naturally be incorporated into a circuit simulation environment. This capability can be applied to circuit simulations of distributed structures, or it can facilitate the detailed simulation of an electrically small structure with full electromagnetic accuracy. The second contribution allows for the utilization of different numerical integration schemes and timesteps in the simulation of hybrid structures via a domain decomposition approach. By introducing a novel scheme to combine finite-difference time-domain simulation with SPICE-like circuit simulation, it is shown that the timestep used in the lumped circuit portions need not be limited by the Courant-Friedrichs-Lewy (CFL) limit which governs the timestep used in distributed portions. Additionally, the use of the Crank-Nicolson integration scheme is investigated for the simulation of transmission line structures, and an efficient methodology is proposed by combining the Crank-Nicolson integration of transmission lines and standard integration of circuits. Finally, the third contribution in this work involves efficient simulation of circuits involving multirate signals with widely separated time scales. An efficient representation of multirate signals is found by introducing a different time variable for each time scale in order to overcome the significant oversampling of such signals that arises from more traditional, univariate representations. This representation is then directly applied to the simulation of transmission line structures. It is found that the resulting methodologies provide for a significant speedup in the overall simulation time

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering
    • …
    corecore