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Abstract 

 

Volterra Series (VS) is often used in the analysis of mildly nonlinear circuits. In this approach, 

nonlinear circuit analysis is converted into the analysis of a series of linear circuits. The main 

benefit of this approach is that linear circuit analysis is well established and direct frequency 

domain analysis of a nonlinear circuit becomes possible.  

Sensitivity analysis is useful in comparing the quality of two designs and the evaluation of 

gradient, Jacobian or Hessian matrices, in analog Computer Aided Design. This thesis presents, for 

the first time, the sensitivity analysis of mildly nonlinear circuits in the frequency domain as an 

extension of the VS approach. To overcome efficiency limitation due to multiple mixing effects, 

Nonlinear Transfer Matrix (NTM) is introduced. It is the first explicit representation of the 

complicated multiple mixing effects. The application of NTM in sensitivity analysis is capable of 

two orders of magnitude speedup.  

Per-element distortion decomposition determines the contribution towards the total distortion 

from an individual nonlinearity. It is useful in design optimization, symbolic simplification and 

nonlinear model reduction. In this thesis, a numerical distortion decomposition technique is 

introduced which combines the insight of traditional symbolic analysis with the numerical 

advantages of SPICE like simulators. The use of NTM leads to an efficient implementation. The 

proposed method greatly extends the size of the circuit and the complexity of the transistor model 

that can be handled. For example, industry standard compact model, such as BSIM3V3 [35] was 

used for the first time in distortion analysis. The decomposition can be achieved at device, transistor 

and block level, all with device level accuracy.  

The theories have been implemented in a computer program and validated on examples. The 

proposed methods will leverage the performance of present VS based distortion analysis to the next 

level. 

 



 iv

 

 

 

 

Acknowledgements 

This work would have been impossible without the inputs from many people.  

A few words cannot express all my gratitude to my supervisor, Professor Ajoy Opal. I would 

like to thank him for introducing me to this exciting field, for his excellent guidance and valuable 

comments throughout this research, and for his financial support for my graduate studies at 

Waterloo. 

I am grateful to Professor James Barby, who not only gave me good advice, but also spent so 

much time and energy in reading my thesis and helping me to refine it. Thanks to the interesting 

class ECE644 he offered in winter 2006, I built my background in computer aided design of circuits, 

which made my research much easier.  

I would like to thank all my friends who have provided me with joy and warmth throughout 

these years, especially Raymond Zhu, who is like my older brother and introduced me to the area of 

entrepreneurship.  

Finally, I would like to thank my parents for their continued love, support and understanding. I 

love you too.  

 

 

 

 



 v

Contents 

 

1  Introduction                    1 

1.1   Volterra Series Analysis of Weakly Nonlinear Circuits  ……….…………….………..1 

1.2   Sensitivity Analysis of Weakly Nonlinear Circuit  ……….……….……………….…..3 

1.3   Per-element Distortion Decomposition  .…….……….……………………….………..4 

     1.3.1  Previous Approaches  ………….……….………………………………………4 

1.3.2  Proposed Method  …..………….……….………………………………………5 

1.4   Thesis Organization  …………………..………….……….………………….………..6 

 

2  Schetzen’s Frequency Domain Nonlinear Network Analysis         7 

2.1   Schetzen’s Nonlinear Network Analysis Method  ……..……….………………….…..7 

2.2   Numerical Example—Nonlinear RC Circuit  …...……….……….…………………..14 

2.3   Multi-dimensional Nonlinearity  ………….……….………………………….............17 

2.4   Frequency Domain Response of Nonlinear Circuit  …...……….……….……............20 

2.5   Multidimensional Example—Cascode Amplifier  .…………………………...............21 

 

3  Sensitivity Analysis of Mildly Nonlinear Circuits                  27 

3.1   Sensitivity Analysis  ……..……….……………………………………………...........27 

3.2   Adjoint Method of Sensitivity Calculation  …...……….……….…………………….30 

3.3   Computation Cost Analysis  ……..……….…………………………………………...32 

3.4   Nonlinear Transfer Matrix  ……………….…...……….……….…………………….34 

3.5   Numerical Examples  ……..……….………………………………………….............41 

3.5.1  Nonlinear RC circuit  ………….……..….……………………………………..41 

3.5.2  Cascode Amplifier  …..………………….……………………………………..45 

3.5.3  Third Order Elliptical Filter  …..………………………………………………48 



 vi

 

4   Per-Element Distortion Decomposition            50 

4.1   Motivation and Challenge  ……..……….…………………………………………….51 

4.2   Per-Element Distortion Decomposition  ……..……….………………………………52 

4.3   Numerical Implementation by Nonlinearity Transfer Matrix  ………………………..56 

4.4   Numerical Examples  ……………………………………….………………………...60 

4.4.1  5.8Ghz Folded Cascode LNA   .……..….……………………………………..60 

4.4.2  Two-Stage Folded Cascode Op-Amp  …..………………….………………….62 

4.4.3  Third Order Elliptical Filter  …..………………………………………………69 

 

5   Conclusion and Future Work               70 

5.1   Application of Distortion Sensitivity analysis in EDA  ……..……….……………….70 

5.2   Applications of Nonlinear Transfer Matrix  ……..……….…………………………..71 

5.3   Applications of Distortion Decomposition  …………………………………………..72 

 

A  Simplified CMOS Transistor Model                73 

A.1. Mobility Reduction due to Velocity Saturation  ……..……….………………………...73 

A.2. Mobility Reduction due to Vertical Field  ……..……….………………………………73 

A.3. Variation of the Depletion Layer  ………………………………………………...…….74 

A.4 Transistor Model    ……………………………………………………………………..75 

Bibliography  ………………………………………….. ……………………………………….77

           

 
 
 



 vii

 
 
 

 

List of Tables 

 

3.1   Entries in NG.2  …..……….…………………………………………………………...39 

3.2   Entries in NG.3  …..……….…………………………………………………………...39 

3.3   Time and speedup of NTM based sensitivity calculation  …..……….………………48 

4.1   Most Important Contributions to IM3 of LNA  …..……….…………………………61 

4.2   Most Important Contributions to HD3 of Op-Amp   …..……….……………………64 

4.3   Efficieincy Performance  …..……….………………………………………………..69 

A.1  Technology parameters for a mµ8.0  Silicon-Gate Bulk CMOS n-well process  .…...77 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii

 
 
 

 

List of Figures 

 

2.1   Nonlinear Capacitor and its equivalent circuit  …..……….…………………….…….9 

2.2   Equivalent circuit for nonlinear capacitance given by (2.2)  …..……….……………11 

2.3   Nonlinear elements and their Volterra circuits  …..……….…………………………13 

2.4   (a). Nonlinear RC circuit. (b). First order equivalent circuit (c) Higher-order equivalent 

circuit  …..……….…………………………………………………………………..14 

2.5   Transconductances of different dimensions and their Volterra circuits   …..………...19 

2.6   (a). Cascode amplifier. (b). First order equivalent circuit (c) Higher-order equivalent 

circuit  …..……….…………………………………………………………………..22 

2.7   Nonlinear circuit analysis procedure  …..……….…………………….……………..23 

2.8   Plot of HD3 w.r.t. frequency  …..……….…………………….………………………26 

3.1   Equivalent Volterra series and sensitivity circuits of 1-D transconductance  …..……35 

3.2   Equivalent Volterra series and sensitivity circuits of 2-D transconductance  …..……36 

3.3   Equivalent Volterra series and sensitivity circuits of 3-D transconductance  …..……37 

3.4   (a). Nonlinear RC circuit. (b). First order equivalent circuit (c). i-th order equivalent 

circuit  …..……….…………………………………………………………………..42 

3.5   (a) Sensitivity of HD3  w.r.t. 1-D Nonlinear Coefficients (b) Sensitivity of HD3  w.r.t. 

2-D and 3-D nonlinear coefficients  …..……….…………………….……………...46 

3.6   Prediction of HD3 due to temperature and widthn change  …..……….……………...47 

4.1   (a) Nonlinear RLC circuit. (b) First order equivalent circuit (c) i-th order equivalent 



 ix

circuit  …..……….…………………………………………………………………..56 

4.2   5.8GHz folded cascode LNA  …..……….…………………….……………..............60 

4.3   Third Order Intermodulation Plot  …..……….…………………….…………….......62 

4.4   Two-stage Folded Cascode Miller Op-Amp  …..……….…………………….……...63 

4.5   Third Order Harmonic Versus Frequency  …..……….…………………….………..63 

4.6   Transistor Level Distortion Decomposition  …..……….……………………............65 

4.7   Block Level Distortion Decomposition at 70MHz  …..……….……………………..66 

4.8   Two-stage folded cascode Miller opamp with single-ended output  …..……….……67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

List of Abbreviations 

 

AC   All Contributions 

CAD  Computer Aided Design 

DR   Dynamic Range  

EDA  Electronic Design Automation 

FD   Finite Difference 

HD3   Third Order Harmonics 

HF   High Frequency 

IM3   Third Order Intermodulation 

MIC   Most Important Contributor 

MNA  Modified Nodal Analysis 

NTM  Nonlinear Transfer Matrix 

Op-Amp  Operational Amplifier 

PA    Power Amplifier  

PI   Polynomial Interpolation 

RF   Radio  Frequency 

SBG  Simplifications Before Generation  

SDG  Simplifications During Generation  

VS   Volterra Series 

nX    variable in the n-th order Volterra circuit 

jh     j-th order nonlinear coefficient 

( )⋅F    Fourier transform 

⊗     Convolution operation  



 1

 

Chapter 1 

 

Introduction 

 

1.1 Volterra Series Analysis of Weakly Nonlinear Circuits 

 

Generally, it is more difficult to analyze a nonlinear circuit as compared to a linear one. A Taylor 

Series expansion can be used to simplify the distortion analysis, but it is only feasible for small 

circuits at low frequencies, with only a few nonlinearities. Traditional approaches for nonlinear 

circuit simulation are time domain analysis followed by a Fourier transform (classical SPICE 

approach) [18], Harmonic Balance [31,40] and Shooting methods [32, 33]. These methods 

compute the total distortion response iteratively. They do not indicate which nonlinearity in the 

circuit is mainly responsible for the observed nonlinear behavior. Hence such methods are 

suitable for verification of already designed circuits. If simulation results fail to meet the 

pre-determined specifications, they cannot provide insight for further improvement. To meet such 

requirements, Volterra Series (VS) analysis is commonly used. VS approach is capable of 

analyzing weakly nonlinear circuits in the frequency domain. It plays an important role in the 

field of distortion analysis.  

In the VS approach, each nonlinearity in the original circuit is first substituted with the 

corresponding Taylor series approximation of the i-th order. Based on the equivalent circuit, the 

distortion response can be computed by recursively solving the same linear circuit i times with 
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corresponding equivalent sources. The VS method can be used to separate different distortion 

contributions exactly in the same way engineers are accustomed to do in noise analysis: the 

dominant ones can be listed so that designers can target them first.  

Dynamic range (DR) is an important figure-of-merit in system level design. It is defined as 

the ratio between the maximum and minimum detectable signals while maintaining a prescribed 

performance quality. The upper floor of DR is determined by distortion and the lower floor by 

noise. It can be maximized either by highly linear design or by reducing the noise floor. Notice 

that many figure-of-merits, including noise figure and gain, are first order analysis results. Thus, 

they are essentially a byproduct of distortion analysis.  

Finally, since VS analysis is performed entirely in the frequency domain, there is no 

restriction on the input signal. This makes VS the ideal method for multi-tone distortion analysis, 

e.g. Ultra Wide Band systems.    

However, VS analysis has some limitations: firstly, since a Taylor series expansion is used 

around a bias point, it is accurate only for small variations around the bias point. In practice, the 

polynomial approximations are limited to low degrees, e.g. analysis is typical up to the third order. 

Higher order analysis, e.g. 5th order analysis, is used to study the dependency of IM3 on the signal 

amplitude in Power Amplifiers (PA) [21]. This is due to (1), the computational cost grows rapidly 

as the degree of analysis increases; (2), even if numerically efficient simulators are available, the 

present compact models are not accurate for high frequency distortion analysis. Lower order VS 

analysis inevitably leads to truncation error, especially in circuits with large signal excitation, e.g. 

PA. 

VS analysis is based on nonlinear coefficients obtained from a Taylor Series expansion, 

while circuit designers are accustomed to design circuits in terms of transistor sizing and biasing. 

To make the matters worse, complicated transistor model makes the relationship between design 

parameters and the nonlinear coefficients complicated and obscure. Thus, VS is commonly used 
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for simple circuits with a couple of transistors (e.g. PA or low noise amplifier) or moderate scale 

analog circuits including 10 to 20 transistors but with simplified models ( e.g. op-amps [9]).  

In summary, VS analysis is used because of its efficient distortion analysis, it has been 

implemented in simulators such as SPICE3 [18], HSPICE [16], Voltaire XL [17] and a 5th order 

electro-thermal multi-tone simulator for PA study [19]. 

In this thesis, methods to analyze weakly nonlinear circuits are given. A system is defined to 

be weakly nonlinear if it can be accurately represented by a Volterra series with a small number of 

terms. Many analog circuits are weakly nonlinear, and they constitute the majority of continuous 

time analog integrated building blocks, including active filters, RF front ends for telecom systems, 

analog circuits in audio applications, Op-Amps, etc. In a weakly nonlinear circuit, if sinusoidal 

signals at different frequencies are applied, the output contains not only the input frequencies and 

their harmonics but also the linear combinations of the input frequencies called intermodulation 

components.  

 

1.2 Sensitivity Analysis of Weakly Nonlinear Circuit 

 

In addition to distortion analysis, sensitivity analysis of nonlinear circuits is required. It is used to 

compare the quality of two designs and in the evaluation of the gradient, Jacobian or Hessian 

matrices. In currently available RF circuit simulators, sensitivity of distortion can only be 

approximated by finite difference (FD). If p is the dimension of the design parameter vector, 2p 

additional simulations are required to estimate the two-sided FD. Sensitivity approximation by 

FD requires significant computational cost and is prone to numerical errors.  

In Chapter 3, we present the VS based sensitivity analysis of mildly nonlinear circuits in the 
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frequency domain, as an extension of the frequency analysis of linear circuits. The application of 

the Adjoint method improves the numerical efficiency of sensitivity calculations. However, 

because of multiple mixing effects, the sensitivity calculation may be expensive. To improve 

efficiency, the Nonlinear Transfer Matrix (NTM) is introduced. Experiments show it is capable of 

up to two orders of magnitude speedup for the analysis of large analog circuits.  

 

1.3 Per-element Distortion Decomposition 

 

Per-element distortion decomposition determines the contribution to total distortion from an 

individual nonlinearity, e.g. a single nonlinear coefficient, a group of nonlinear coefficients (e.g. a 

transistor) or a group of transistors (e.g. an analog building block in a large circuit). In this manner, 

it is different from the existing VS based simulators, mentioned in Section 1.1[16-19], which 

determine the overall distortion response only. Per-element distortion decomposition can be used 

in design optimization, symbolic analysis and nonlinear model reduction. 

 

1.3.1 Previous Approaches 

 
Currently available distortion decomposition methods can be classified into three categories. The 

first is call “Brute Force” method. In this method, the difference between two distortion analyses is 

calculated. The first analysis is done by setting the nonlinearity of interest to zero and the second 

by introducing the nonlinearity in the circuit. The “Brute Force” method is not used due to 

numerical error and computation cost.            

 The second method is most intuitive and widely used [8]. First, an analytical expression of 
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distortion response is calculated based on VS, either by hand or symbolic analysis [34]. Based on 

the full expression, the contribution from each nonlinearity can then be identified.  

The third method is based on PI (polynomial interpolation) [3]. It has been applied in symbolic 

analysis and component-level behavioral model reduction [4, 9]. The procedure is, firstly, the 

contribution from each nonlinearity is calculated as a function of frequency s, while circuit 

elements (small signal and nonlinear coefficients) take on numerical values. The result consists of 

a product of polynomials in s. Decomposition can thus be achieved by weighting the contribution 

from each nonlinearity to the total response, both represented as a function of frequency.  

PI based methods seem to be the best choice for distortion decomposition so far. However, they 

are limited by two reasons. Firstly, although partly numerical (circuit elements take numerical 

values), it is still based on the symbolic representation of frequency s. Secondly, when calculating 

the contribution to higher order distortion response from lower order nonlinear coefficients, 

numerical errors in the evaluation of the polynomial functions might not be negligible. In other 

words, PI based methods are limited because they are partly symbolic.  

Generally, symbolic analysis of distortion is complicated and expensive. This limits the size of the 

circuit and the complexity of the transistor model the above approaches can handle. Simplifications 

based on previous knowledge (experience with low frequency small signal analysis) are commonly 

performed [4, 8]. In addition, they are inadequate for multi-tone test [30] or decomposition of higher 

order distortion response [19]. Decomposition of total distortion at transistor level exists [15]. 

However, sometimes detailed distortion information at device level is preferred, e.g. RF circuits 

which contain only a few transistors.  

 

1.3.2 Proposed Method 

 

In Chapter 4, a numerical distortion decomposition technique is introduced based on NTM. It starts  
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from the original full Spice level equivalent circuit. Because of its numerical efficiency, complex 

compact models can be used, it is the first distortion analysis tool that uses industry standard 

compact models, e.g. BSIM3V3 [35]. It is shown to outperform previous approaches in efficiency, 

accuracy and easy-of-use. We believe the proposed method will leverage the performance of 

present VS based distortion analysis to the next level.  

 

1.4 Thesis Organization  

 

Chapter 2 reviews Schetzen’s nonlinear network analysis method. Next, Schetzen’s method is 

extended to multi-dimensional nonlinearity in order to handle semiconductor device models. Chapter 

3 introduces the sensitivity analysis of mildly nonlinear circuits. Based on VS, for computational 

efficiency, it uses the Adjoint method of sensitivity calculation. Next, analysis shows that sensitivity 

analysis can be computationally expensive in some situations due to the complicated multiple mixing 

effects. To improve efficiency, the Nonlinear Transfer Matrix (NTM) is introduced. For the first time, 

the complicated multiple mixing effects can be explicitly expressed in analytical form. Numerical 

examples show that its application in sensitivity calculation is capable of up to a two order of 

magnitude speedup. Chapter 4 proposes an advanced distortion decomposition technique based on 

NTM. It combines the insight of traditional symbolic analysis, and the numerical advantages as well 

as generality of SPICE like simulators. The decomposition can be achieved at device, transistor and 

block level, all with device level accuracy. Numerical examples illustrate its applications in design 

optimization, symbolic simplification and nonlinear model reduction. Chapter 5 first talks about the 

applications of the above methods. Then it briefly discusses the extension of present algorithms to 

a special type of strongly nonlinearity, e.g. mixers. Finally, an interesting question is raised: can 

numerical simulator provide analytical insight like manual and symbolic analysis? 
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Chapter 2 

 

Schetzen’s Frequency Domain Nonlinear Network 

Analysis  

 

In this chapter Schetzen’s nonlinear network analysis procedure based on n-linear operators and 

power series expansion is reviewed. Next, the numerical calculation of a nonlinear system’s 

frequency domain response using MNA formulation is introduced. Following that, the frequency 

domain response of a simple RC circuit is calculated, both by hand and using the proposed 

method. The agreement of the results from both methods verifies the validity of the method. In 

Section 2.4, Schetzen’s nonlinear network analysis method is extended to multi-dimensional 

nonlinearity in order to handle semiconductor device models, as an example, a MOS transistor 

model is developed. Finally, the frequency domain response of a Cascode amplifier is calculated. 

 

2.1 Schetzen’s Nonlinear Network Analysis Method 

 

In this section Schetzen’s method [1] for the analysis of mildly nonlinear circuits is reviewed. The 
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method is particularly useful in the analysis of nonlinear circuits, since it gives physical insight 

into the effect of the nonlinear terms and avoids multiple integrals normally used in the original 

Volterra analysis [2]. However, it should be mentioned that Schetzen’s method is based on 

Volterra analysis and gives the same results. The first step in Schetzen’s method is to expand the 

nonlinear functions representing the element characteristics into a Taylor series 
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For electrical circuits, the independent and dependent variables are typically a voltage, current, 

charge or flux. For simplicity, initially only elements that depend upon one independent variable 

are considered. More complex elements, such as semiconductor devices, that depend on more 

than one independent variable are considered in Section 2.3. Consider a nonlinear capacitor, 

shown in Fig. 2.1(a), whose charge q is a nonlinear function of the voltage v 
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where )( 00 vfq = is the quiescent charge on the capacitor, 0v-vv=ˆ  is the change in voltage from 

the quiescent value v0, )( 01 vf'C = is the first order capacitance term, 2/)( 02 v'f'C = is the 

second order capacitance coefficient, and so on. The subscript on C determines the order of 

approximation, thus, C1 is the linear capacitance term and the remaining coefficients C2, C3 ... are 

the nonlinear terms. Eq. (2.1) can be represented as an equivalent circuit, shown in Fig. 2.1 (b), 

consisting of a charge source q0, voltage source v0 and a nonlinear capacitor, called the 

incremental nonlinear capacitance, given by )ˆ(ˆˆ vfq= , where 
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and qqq 0 ˆ+= . It is important to manipulate the nonlinear element into the form given by Fig. 

2.1(b) and Eq. (2.2), i.e. the constant sources q0 and v0 are removed from the representation, to 

keep the analysis mathematically tractable. A consequence of the series representation is that, if 

the independent variable v is scaled by a scalar constant α, then the n-th order term in the 

expansion is scaled by αn. Eq. (2.2) also shows the mechanism for generation of mixing and 

harmonics, if the independent variable is a sinusoid tjev ω=ˆ , then the dependent variable will 

contain the harmonics tjne ω . The same steps can be used for any element that is represented by a 

nonlinear function of one independent variable. 

The next step in Schetzen’s method consists of breaking up the complete response into a 

summation of the response of circuits of different order 
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where n is a Volterra series order and n = 1 corresponds to the first order linearized circuit. 

Starting with (2.2) and recalling that scaling the variables with a scalar constant α will scale the 

n-th component by αn,  
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is obtained. Expanding the double summation and collecting terms with common powers of α 

produces 
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By comparing co-efficients of different powers on both sides of (2.4),  
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can be identified. The general pattern in (2.5) is of the form 

),...,,,ˆ,...,ˆ,ˆ(ˆˆ 211211 CCCvvvgvCq nnnnnnn −−−+=      (2.6) 

where gn(•) is a function of lower order responses and g1(•) = 0. Thus, the n-th order Volterra 

representation of the incremental nonlinear element in (2.2) is given by (2.6) and can be 

represented by the equivalent circuit shown in Fig. 2.2. Note that each Volterra circuit contains 

the linear capacitance term denoted by C1, and a charge source that depends on lower order 

Volterra responses. 

To summarize, the steps used in obtaining the Volterra representation of each nonlinear 

capacitor given by (2.1) and Fig. 2.1(a), is to first extract the quiescent values and the incremental  



 11

nonlinear capacitor given by (2.2), as shown in Fig. 2.1(b). The next step is to replace the 

incremental nonlinear capacitor defined by (2.2) by the linear capacitor and charge sources, as 

given in Fig. 2.2. In the first order Volterra circuit the quiescent sources appear, along with the 

linear capacitance term, and there are no additional sources related to the nonlinear element. In 

Volterra circuits of orders greater than 1, the linear capacitance term along with a charge source 

that depends on lower order Volterra responses are present, the quiescent sources are not present. 

The circuits are solved sequentially, starting with the first order circuit and proceeding to higher 

order circuits. Since each order Volterra circuit is linear, linearity and superposition can be used to 

analyze the circuit. However since higher order circuits depend upon lower order responses in a 

complicated way, linearity and superposition can not be used across circuits of different orders. 

For mildly nonlinear circuits it is expected that the Taylor expansion (2.1) converges rapidly, 

so only a few terms are required to accurately approximate the nonlinear function. Typically, the 

expansion is truncated after N terms. The term given by gn(•) in (2.5) and (2.6) depends upon all 

lower order responses and the Taylor series co-efficients. Thus, even if the Taylor series is 

truncated after order N, the Volterra circuits of order greater than N will still produce a response. 

It is expected that the Volterra circuits will eventually converge based on converging values for 

gn(•) and can also be truncated after a few terms. 

The development of this method is compared with the commonly used small signal analysis 

of mildly nonlinear circuits. In small signal analysis only the first two terms in Taylor series 

Figure.2.2  Equivalent circuit for nonlinear capacitance given by (2.2) 

C1 ),...,,,ˆ,...,ˆ,ˆ( 21121 CCCvvvg nnnnn −−−
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expansion are used and  

)(ˆ 01010 vvCqvCqq −+=+≅ .      (2.7) 

Eq. (2.7) is the equation of a straight line in the q- v  plane, with slope C1 and intercept q0. Further, 

since the circuit is linear, superposition applies and the complete response q can be broken up into 

the quiescent (DC) response qDC and the change from AC, or AC response qAC 

q = qAC+ qDC        (2.8) 

Comparing (2.7) and (2.8) and noting that ACvvvv =−= 0ˆ ,  

qAC = C1 vAC        (2.9) 

is identified.  

 
To summarize, linearity and superposition simplifies the analysis considerably. The AC and 

DC analysis can be separated from each other. Eq. (2.9) is used to replace the nonlinear capacitor 

with a linear capacitor. In this way, AC analysis of the original nonlinear circuit turns into the 

frequency domain analysis of a linear circuit. Thus, small signal analysis is equivalent to taking 

only the first order term in Volterra series analysis. 

The same procedure is used to obtain the Volterra representation of any element. These are 

collected in Fig. 2.3 for the common one dimensional elements used in circuits. Nonlinear 

admittance and transformer can be derived in a similar way. By definition, independent sources 

are first-order elements. 

Using Fig. 2.3, an n-th order equivalent circuit is obtained in which the branch current and the 

nodal voltages are the n-th components of the original nonlinear circuit and the embedded 

independent sources are known function of circuit response of orders less than n. All circuits of 

different orders satisfy KCL and KVL laws. Based on these two points, the complete nonlinear 
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circuit analysis is reduced to sequential analyses of linear circuits. All the analysis methods and 

insights applicable to linear circuit can be used. 
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2.2 Numerical Example—Nonlinear RC Circuit 

In this section, as an example, consider a simple nonlinear RC in Fig. 2.4(a). 

Ω= 1R , FC 11 = , 02 =C , 2
3 /1 VFC = . Refer to Fig. 2.3 for parameter definitions. tAcos  

is the AC component in the independent source of the circuit. To make the following deduction 

easy to understand, the DC component in the independent source is set to zero. However, this 

does not influence the analysis procedure since DC component can be interpreted as one of a 

special AC component with zero frequency.  The quiescent values of the nonlinear capacitor can 

easily be found to be q0 = 0 and v0 = 0. Thus, for this specific circuit, no quiescent sources are 

present in the first order circuit.  

 

 

 

 

 

 

 

 

 

The voltage across the nonlinear capacitor outV  is of interest. Since 02 =C , there is no source 

in the second order equivalent circuit and 02. =outV . Referring to the capacitor model in Fig. 2.3, a 

third order equivalent circuit in Fig. 2.4(c) is obtained in which  

)( 3
1.33 outvsCJ ⋅=               (2.10) 

+ 

outV
 _ 

  
(a) 

  
(b) 

  
(c) 

Figure.2.4 
(a). Nonlinear RC circuit. (b). First order equivalent 

circuit (c) Higher-order equivalent circuit 
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outV  equals the sum of 1.outV  and 3.outV , the output of the first and third order Volterra 

Series. The voltage source is expressed in the complex exponential function form: 

.
22

cos jtjt
in eAeAtAV −+==            

Since  

1
1. 1

1
Cj

VV inout ω+
=                (2.11) 

Substituting 1,1 −=ω  into (2.11) produces the first order response: 

jtjt
out e

C

jCA
e

C

jCA
V −

+

+
+

+

−
=

)1(2

)1(

)1(2

)1(
2

1

1
2

1

1
1.      (2.12a) 

For simplicity, in the following derivation, a vector to represent a variable’s certain order 

component is used. In the vector, the response at different frequencies is organized in the form of 

a sequence of coordinates, separated by semicolons. The first number in the coordinate represents 

the angular frequencies; the second is the corresponding phasors, from which amplitude and 

phase information is easily derived. Notice for a given order, the two phasors for frequencies 

ω±  are complex conjugate of each other. Thus only the response corresponding to non-negative 

frequencies are given to keep the expression concise. In this way, (2.12a) turns into: 

)].
)1(2
)1(,1[( 2

1

1
1. C

jCAVout
+
−

=       (2.12b) 

Substituting (2.12b) into (2.10) produces the third order equivalent current source of the nonlinear 

capacitor: 

=3.CJ [ ( ) ( )))31()3((,3;))1()((,1 2
1

3
11

2
1

3
11 CjCCaCjCCa −+−+++ ].  (2.13) 

Where the constant is defined as 
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32
1

3
3

)1(8

3

C

AC
a

+
= .        (2.14) 

Considering  

1
3.3. 1

1
Cj

JV Cout ω+
−= ,             (2.15) 

the third order response is obtained after substituting (2.13) into (2.15):  

)],,3();,1[( 313. afafVout −−=          (2.16) 

in which  

=1f
1

2
1

3
11

1
)1()(

jC
CjCC

+
+++

 and        (2.17) 

1

2
1

3
11

3 31
)31()3(

jC
CjCCf

+
−+−

= .       (2.18) 

Substituting parameter values into (2.12b) and (2.16) produces: 

)].25.025.0,1[(1. jVout −=         (2.19) 

)].375.33875.1,3();3375.9,1[(3. jeeeVout −+−−−=     (2.20) 

(2.19) and (2.20) calculated by hand are the same as those from software based on the above 

algorithm. 

In [5], Volterra kernels are implemented assuming the standard description of nonlinear 

circuits by nonlinear algebraic-differential equations. However, as the size of circuit grows, the 

solution of the algebraic-differential equations may be very complicated. If more than one source 

exists and/or every source contains more than one frequency, in the “Volterra Kernel” [4] method, 

the third order Volterra Kernel will be a cumbersome tensor. In “phasor analysis” method [4], 
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different formulae are required for response at different frequency points, e.g. intermodulation, 

harmonics, and different computation procedures are required as the number of sources/frequency 

points change. In the proposed method, unlike the methods in [4,5], Volterra Kernels are not 

determined explicitly, however, the numerical results derived are the same. Thus, it is equivalent to 

“Volterra Kernel” and more generalized than “phasor analysis”. It is straightforward, easy to 

program and computationally cheap. 

 

2.3 Multi-dimensional Nonlinearity  

 

In Section 2.1, one dimensional nonlinear elements and their equivalent Volterra circuits were 

considered. In this section, multi-dimensional nonlinearities, which are used in semiconductor 

device models, are considered. For example, two-dimensional transconductance is needed to 

model the collector current of bipolar transistors including Early effect, three-dimensional charge 

models are used in BSIM3 models. The total drain current Di  of a MOS transistor is a function 

of VGS, VDS and VSB and can be expanded: 

).,,(),,(

),,(
),,(

sbdsgsdSBDSGSD

sbSBdsDSgsGSD

SBDSGSDD

vvviVVVI

vVvVvVi
vvvii

+=

+++=
=

    

(2.21) 

Using a power series expansion around the quiescent value, the total value of the current can 

be split into a quiescent part DI  and an AC part di as in (2.21). The AC value is given as 

follows. Notice that following the definition of power series expansion, all the coefficients in 

(2.22) are evaluated at the DC operating point GSV , SBV and DSV . 
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                 (2.22) 

The small signal drain current di can be split into three distinct parts. The first three power series 

contain only powers of one voltage. These series correspond to one-dimensional nonlinear 

transconductances. The next three power series contain only cross-products of two voltages, 

corresponding to two-dimensional transconductances. The final power series contains only 

cross-terms of three voltages. Since only nonlinear effects up to third order are considered, only 

the first term of this power series is taken into account. 

The first derivatives of Di  with respect to the controlling voltages GSv , SBv  and DSv are 

the small-signal parameters mg , mbg and og . The symbols of these parameters are used as the 

subscripts of the nonlinear coefficients.  

In general, the terms in (2.22) other than the linear ones can be expressed in the form of 

“ 321

321 &&
n
ds

n
sb

n
gsgongmbngmn vvvK ⋅⋅⋅ ” in which .....1,0=in , ( 3,2,1=i ). The nonlinearity coefficient 

gongmbngmnK
321 &&  is defined as: 

321

321

321

),,(
!

1
!

1
!

1

321
&& n

DS
n
SB

n
GS

DSSBGSD
nnn

gongmbngmn vvv
vvvi

nnn
K

∂∂∂
∂
⋅⋅⋅=

++

    (2.23) 

Since the drain current is linearly dependent on DSv  in (A.4) , the coefficients in (2.22) which are 

three 
one-dimensional  

transconductances

three 
two-dimensional 

transconductances

one three-dimensional 
transconductances 
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second or higher order derivatives of DSv  are zeros. 

Nonlinear transconductances of two and three dimensions and their equivalent Volterra 

Circuits are given in Fig. 2.5. For comparison, one dimensional nonlinearity is included as well. 
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Figure. 2.5  Transconductances of different dimensions and their Volterra circuits 
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Notice the equivalent Volterra Circuits in Fig. 2.5 are similar to the Volterra Kernels introduced 

in [4]. They have the same effect because both are based on [1]. 

 

2.4  Frequency Domain Response of Nonlinear Circuit 

 

In this section, the nonlinear system’s frequency domain response is calculated using MNA 

(Modified Nodal Analysis) formulation. Refer to [3] for more details about the entry of linear 

elements in MNA. The frequency domain response of a simple RC circuit is calculated both by 

hand and using the proposed method to verify the method. 

According to the rules in [3] for MNA, formulate the system of linear equations in the form 

nnn WXsCGXT =+= )(           (2.24) 

in which )( sCGT += . The only structural difference between first-order and higher-order 

equivalent circuits is the value and location of sources: independent sources appear only in the 

first-order circuit, while equivalent sources are added to higher-order ones. Expressed in MNA 

formulation, since the circuit structure does not change except the sources, G and C matrices are 

the same for all orders. Secondly, the equivalent sources for the nonlinear elements will have 

corresponding entries in the right hand side vector nW  and all the higher-order equivalent 

circuits have the same structure. This means for n >1, ng which represents the equivalent 

sources’ connections does not change, only the numerical values of Vn change. To summarize, the 

following algorithm is used to compute the nonlinear circuit’s frequency response: 

1. MNA formulation of the first order circuit, produces the G and C matrixes. Set n equal to 

1. n represents the present order under computation. Calculate the LU factors of T(s) 
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corresponding to different frequency points.  

2. Solve the system’s first order response using the independent sources.  

3. Increase n by 1, compute Wn based on the nonlinearity coefficients and known lower-order 

circuit variables. 

4. Substitute Wn and selected frequency, e.g. harmonics, in (2.24) and obtain the n-th order 

response Xn. 

5. If n equals the highest order, predetermined based on the precision requirement, then stop; 

else go to 3.  

 

2.5 Multidimensional Example—Cascode Amplifier 

 

In this section, the Cascode Amplifier in Fig. 2.6(a) is used to illustrate the frequency domain 

analysis of nonlinear circuits. The transistor model and technology parameters are given in 

Appendix A. The transistor sizes are  

mmLW AA µµ= 1/3/ ,  mmLW BB µµ= 1/3/ , mmLW CC µµ= 1/6/ . 

Biasing voltages are selected so the DC component of outV  is the midpoint between Gnd and 

DDV : 

VVbias 7.11 = , VVbias 05.32 = , VVbias 3.31 = , .5 VVDD =   

The DC operating point is calculated to be:  

VV 184.12 = , V2.6040V =3 , A157.78I D µ= , V0.9144VT =2 . 
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With the operating points, the coefficients for Volterra series analysis are easily computed 

following (2.23).  

The flow diagram for simulation is shown is Fig. 2.7, which follows the same manner as 

SPICE like simulators. In SPICE, small signal analysis follows DC analysis; here Volterra 

Analysis follows  

operating point analysis. Operating point analysis provides an appropriate starting point for the Taylor 

Series expansion to calculate nonlinear coefficients. As mentioned in Section 2.2, the DC sources need 

not be taken into account in operating point analysis alone. If there is a difference between the 

operating point analysis result and the response from DC sources, the difference can be thought of as 

the “AC” input signal with zero frequency. It can thus be included in the first order Volterra circuit. In 

other words, on the nonlinear function curves, the expansion does not have to be performed exactly at 

the quiescent point; it can be any point in the surrounding region, so long as convergence is 

guaranteed. However, in practical applications, the response from quiescent DC analysis is usually 

taken as the starting point. The general analysis procedure of “operating point + Volterra” degenerates 

Circuit Netlist 
Input 

Operating Point 
Analysis 

Nonlinear Coefficient 
Calculation 

Transistor 
Model 

Technology 
File 

Volterra Equivalent 
Circuit Netlist Generation

Distortion Analysis 

Output Display 

Figure 2.7 Nonlinear circuit analysis procedure 
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into “DC+Volterra”. This is based on two reasons: 

1. In some circuits, strong nonlinearities exist, e.g. the exponential current-voltage relationship in 

diodes or bipolar transistors. In these circuits, if the operating point of one variable deviates even 

slightly from the quiescent point, a large deviation can be caused in other variables. This can cause 

convergence problem in Volterra analysis. 

2. Unless the operating point is chosen at the quiescent point, higher order Volterra analysis might 

be required to achieve high accuracy. However, this is impractical since for the commonly used 

transistor compact models, (a). higher order derivatives are extremely complicated to evaluate  (b). 

the accuracy of higher order derivatives is usually unsatisfactory. Besides, it usually takes a couple of 

extra Newton-Raphson iterations to reach the quiescent point. It follows that, generally, it will be 

computationally cheaper to choose the quiescent point as the operating point.  

However, certain situations exist when it might not be a good idea to choose the DC quiescent 

point as the operating point for Volterra analysis: 

1. Theoretically, the best accuracy is achieved through Volterra analysis at the transient quiescent 

point. In general, the transient quiescent point is not the DC quiescent point, because of the DC 

components generated from even order nonlinearities of the circuit. In most situations, the difference 

is small and can be neglected. However, in the cases that the nonlinearity is strong, high precision is 

desired or the input signal is large, such differences can not be neglected and the transient quiescent 

point is required. It can be achieved through a high-precision transient analysis long enough to ensure 

the steady state is reached. It can also be calculated from a preceding Volterra analysis: the transient 

quiescent point is the sum of the DC quiescent point and the DC components from all the even order 

Volterra analyses.  

2. Consider the case when distortion response is of interest when one or all of the DC sources are 

swept. If the change in DC bias is kept within certain limits, Volterra analyses can be performed at the 

same bias point for different DC sources. The difference in DC sources will be taken into account in 

the first order Volterra analysis. The reason is: model function evaluation usually represents the 
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majority of the simulation time and it is generally expensive to calculate nonlinear coefficients at each 

bias point. Thus, if precision is not of utmost concern, efficiency and precision can be traded off.  

For the cascode amplifier in Fig. 2.6 (a), following the general guideline, the operating point is 

calculated through DC analysis. Then the small signal coefficients such as those in (2.22) are extracted 

based on the transistor model, technology parameters and the DC operating point. These coefficients 

can be used to generate the small signal netlist based on circuit topology. The netlist is then fed to the 

simulator for distortion analysis. The equivalent circuits of the Cascode amplifier are shown in Fig. 

2.6 (b, c). Notice, since the DC quiescent point is used as the operating point, there is no DC term in 

the first order Volterra circuit. 

The MNA formulation coefficients in (2.24) are as follows: 
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In which, 

),,;,(),,;( .2&.&2.&21_2.3.2.1_1. AgogmAgogmAgogmdAgmAgmAmdAeq KKKvviKKgviI +=     (2.28) 
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0I C.eq =          (2.30) 

From (2.28- 2.30), there are 16 nonlinear coefficients in this Cascode Amplifier, 4 from MA, the 

rest from MB; none comes from MC because its source and gate are DC connected and output 

resistance is linear in this transistor model.  

Following the Volterra analysis procedure in Fig. 2.7, the plot of the third order harmonic 

(HD3) at the output node, under the input AC excitation with amplitude of 1mV, is plotted in Fig. 2.8. 

 

 

 

 

 

 
 
 
 

Figure. 2.8 Plot of HD3 w.r.t. frequency 
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Chapter 3 

 

Sensitivity Analysis of Mildly Nonlinear Circuits 

 

Sensitivity analysis plays an important role in analog Computer Aided Design (CAD). Based on 

the Volterra analysis introduced in Chapter 2, the sensitivity analysis of mildly nonlinear circuits 

is introduced in Section 3.1, and its computational cost is analyzed. To maintain accuracy while 

improving efficiency, a novel sensitivity calculation technique based on Nonlinearity Transfer 

Matrix (NTM) is proposed in Section 3.2, and its physical significance is also examined. Finally, 

two examples show over 100 times speedup in sensitivity calculations based on NTM, with the 

same accuracy. More savings are expected in higher order distortion analysis with multi-tone 

excitation. Application of the proposed method is expected to produce improvement in efficiency, 

capability and accuracy in different areas of electronic design automation.  

 

3.1 Sensitivity Analysis 

 

In this section, we introduce a straightforward numerical method to calculate sensitivity w.r.t. 

parameters of a mildly nonlinear circuit in frequency domain. It is a natural extension of the 

Volterra analysis approach from Chapter 2. The validity of the algorithm is proven by comparing 
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results derived from hand calculation and from the simulation software.  

Firstly, the sensitivity of a variable outV  w.r.t. any parameter h, defined by 
hd

Vd out  is 

calculated. For the circuit in Figure. 2.4 (a), the parameters are 1C , 2C  and 3C . Theoretically, 

there are nine sensitivities to calculate since outV  is the sum of three terms: 321nV nout ,,,. =  and 

the capacitor has three coefficients 321jC j ,,, = .  However, 
j

nout

Cd
Vd . is zero for jn <  since a 

higher-order nonlinearity has no influence on lower-order response, so only six sensitivities are 

left: 13out CdVd /. , 12out CdVd /. , 11out CdVd /. , 23out CdVd /. , 22out CdVd /. , 33out CdVd /. . Although 2C  

and 2.outV are zero, the sensitivities associated with them are usually nonzero. The capacitor’s 

influence on third-order response in the output is taken as an example. The analytical expression 

for 23out CdVd /.  is nonzero and complicated, so it is not given here. Differentiate Eq. (2.16) w.r.t 

jC , =j 1, 3, results in: 
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Since 3C  does not show up in 1f  or 3f , 3/ Cdfd 1  and 3/ Cdfd 3  are zero, and 
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Substituting Eq. (3.2-3.5) into Eq. (3.1) and using the parameter values given in Section 2.3 results 

in: 

)];10)375.1225.2(,3(;)10)375.975.18(,1[( 33

1

3. −− ⋅−⋅+= jj
Cd

Vd out    (3.6)

 )].10)75.3875.1(,3(;)10375.9,1[( 22

3

3. −− ⋅+⋅−= j
Cd

Vd out     (3.7) 

Consider 3=ω  in Eq. (3.7) to explain the physical meaning of sensitivity. As given in 

Section 2.2,  

)].1075.310875.1,3();10375.9,1[(3. jV 333
out

−−− ⋅+⋅⋅−=  

If 3C  undergoes a small perturbation, for example 1% from 0.1 to 0.101, then  
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3

2
3
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−

−−

==

⋅+=

⋅+⋅+⋅+=

⋅∆+≅
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j0010j

Cd
Vd

CVV

3

out
3103Cout10103Cout

 

The phasor 3.outV changes from 310)75.3875.1( −⋅+ j  to 310)( −⋅+ j3.78751.89375 .  As shown 

above, although it is a simple circuit with one nonlinear element, one independent source and one 

input frequency, the hand analysis is tedious. This motivates the search for computer methods to 

calculate sensitivity in frequency domain. 

 

3.2 Adjoint Method of Sensitivity Calculation 

 

In this section, the numerical computation of nonlinear circuit coefficient sensitivity in frequency  
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domain, using Adjoint system method [3] is introduced. Based on this, the sensitivities of any 

objective function w.r.t. all the parameters can easily be computed.  

In this work, jh  represents j-th order nonlinear coefficient, e.g. h3 represents some third order 

nonlinear coefficient. Subscript n is added if necessary to variables to differentiate different orders, 

e.g. X3 represents the second order circuit response. N is the highest order considered. Let the 

output be a scalar variable )(Xφ . For simplicity, we restrict )(Xφ  to be a linear combination of 

components in X in the following way: 

Xd t=φ ,          (3.8) 

where d  is a constant vector. Differentiate Eq. (2.24) of the n-th order w.r.t. hj,  

j

n
n

jj

n

hd
Wd

X
hd
Td

hd
Xd

T +−= ,        (3.9) 

Rearrangement of terms results in: 

)(1

j

n
n

jj

n

hd
Wd

X
hd
TdT

hd
Xd

−−= − .        (3.10) 

Combining Eq. (3.8) and (3.10) results in: 

)(1

j

n
n

j

t

j

n

h
W

X
h
TTd

h ∂
∂

−
∂
∂

−=
∂
φ∂ − .             (3.11) 

Define Adjoint vector a
nX  as 

1)( −−= TdX tta
n .          (3.12) 

where a
nX  is the solution of the equation: 

dXT a
n

t −= .        (3.13) 

Substitute Eq. (3.12) into Eq. (3.11) produces the final form for the sensitivity calculation 



 31

j

nta
nn

j

ta
n

j

n

hd
Wd

XX
hd
TdX

hd
d

)()( −=
φ .            (3.14) 

 There are some comments about Eq. (3.14) to simplify computation: 

(1) If n<j, jn hdd /φ  is zero since higher-order nonlinearity has no influence on lower-order 

response. 

(2) If j>1, the first term in the RHS of Eq. (3.14) disappears since higher-order nonlinearity hj 

does not appear in the T matrix, so 0
hd
Td

j

= . If j=1 and all the sensitivities are of interest, except 

those w.r.t independent sources, the second term disappears since first-order coefficients appear 

only in the T matrix and 0
hd
Wd

j

i = .  

(3) The same LU factors for T can be used for the calculation of aX  in Eq. (3.13).  

(4) As mentioned before, the above sensitivity calculation need only be evaluated at the 

frequency points of interest.  

(5) The phasors in Xn and jn hdd /φ , corresponding to mirror frequencies, are conjugate of each 

other. This reduces the computation by 50% in both frequency response and sensitivity 

calculations. 

For the nonlinear RC circuit in Fig. 2.4, sensitivities calculated based on the above algorithm 

are the same as the hand calculation results Eq. (3.6) and (3.7). As shown above, the frequency 

response computation is closely related to network topology. Based on this, the sensitivity analysis 

shows the effect of the network nonlinearities on various circuit variables. It can be used in either 

gradient based optimization or circuit analysis.  

 

 



 32

3.3 Computation Cost Analysis 

 

In this section, the computation cost of the sensitivity calculation technique, from the previous 

section, is analyzed. This will point out the bottleneck in the Adjoint method based sensitivity 

calculation.  

The n-th order Volterra analysis is as follows:  

nn WTX = .           (3.15) 

The computation of Eq. (3.15) includes two parts: the generation of equivalent source Wn, and the 

solution of system equation. The complexity of the latter is determined by the size of T, or the 

number of total nodes. On the other hand, the complexity in generating Wn is determined by two 

parts: firstly, the number of nonlinear coefficients and, secondly, how each nonlinear coefficient 

contributes to Wn. As shown below, system equation solution dominates in the first order Volterra 

analysis; while the formulation of Wn dominates in the higher order ones.   

First, compare the number of nodes and nonlinear coefficients. Suppose the circuit is 

composed of T transistors, each transistor has K nodes, and the analysis is N-th order. Then the 

number of nodes and nonlinear coefficients are O(TK) and O(TNK), respectively. Consider the 

simple example of a MOS transistor in common-source configuration, T=1. The nonlinear 

elements considered are the drain current DSI  and terminal charges ,BQ GQ  and .DQ  K=3 

because the controlling variables are GSv , DSv  and BSv . In a third order Volterra analysis, N=3. 

In this example, there are 3 nodes (except ground) and 64 nonlinear coefficients. In general, 

nonlinear coefficients outnumber nodes in the Volterra analysis of a practical circuit.  

Secondly, each nonlinear coefficient contributes to Wn by generating a polynomial based on 

lower order circuit response, from X1 to Xn-1. The polynomial usually contains a few terms which 

are also frequency dependent. For example, bdmK &&  contributes to W5 by generating  



 33

).( 1.1.3.1.3.1.1.1.3.1.2.2.1.2.2.1.2.2.&& gsbsdsdsbsgsbsdsgsgsbsdsdsbsgsbsdsgsbdm vvvvvvvvvvvvvvvvvvK +++++  

In general, the total number of operations required to generate the polynomial is the product of 

the number of terms, variables per term and the number of frequency components in each variable. 

For example, it takes 176 additions and 192 multiplications to compute the above entry in W5 in a 

two-tone analysis. This analysis shows, the generation of Wn is the bottleneck in VS analysis, due 

to the large number of nonlinear coefficients and the corresponding polynomial entries.  

Next, analyze the computational cost of the Adjoint method based sensitivity calculation 

technique. Eq. (3.9) shows jn hdXd /  can be interpreted as the response to an equivalent 

sensitivity circuit, which has the same structure as the corresponding Volterra analysis. The only 

difference is the right hand side. At the same time, through reusing the same LU factors, the 

solution of system equation in the sensitivity analysis of Eq. (3.9) is cheaper than that of the 

Volterra analysis of Eq. (3.15).  

Next compare the complexity in the generation of the RHS of Eq. (3.9) and Eq. (3.15). The 

first term in the RHS of (3.9) is not of a problem since jdhdT /  is nonzero only when 1j=  and 

it contains at most 4 nonzero entries. If j>1 and j=n, the second term is also cheap to evaluate 

since it contains at most two nonzero entries; otherwise, however, jn dhWd /  becomes extremely 

complicated. The reason is that Wn depends on all the lower order circuit responses, some of 

which are also dependent on hj. The polynomial entries of nonlinearities in jn dhWd /  thus get 

more complicated than their counterparts in nW . For example, examine how h1 influences X3: 

firstly, 1h  influences X1, which then affects W2. W2 generates X2 in the second order circuit. 

Finally, X1 and X2  generate W3 together. That is, 13 dhdW /  is computationally expensive due to: 

(1). 12 dhXd /  and 11 dhXd /  need to be computed; (2). every polynomial entry in 13 dhdW /  is 

more complicated than its counterpart in 3W , as is obvious by comparing the equivalent Volterra 



 34

and sensitivity circuits in Fig. 3.1-3.3.  

The first problem is not of a significant concern since the repetitive system solution of Eq. 

(3.9) is greatly simplified by the Adjoint method and the sharing of LU factors. The second 

problem results from multiple mixing effects. This makes the formulation of jn dhdW / ( jn > ) 

the computational bottleneck in sensitivity calculation.  

 

3.4 Nonlinear Transfer Matrix  

 

The previous section shows in certain situations, sensitivity calculation is computationally more 

expensive than the corresponding Volterra analysis of the same order. Recall sensitivity can either 

be computed by direct calculation or approximated by finite difference, which needs an extra 

Volterra analysis. This implies that although more accurate, the direct sensitivity calculation 

technique is more expensive than approximation by finite difference. In order to improve 

efficiency, the concept of the Nonlinear Transfer Matrix is proposed in this section.  

jn hdWd /  is the bottleneck in sensitivity analysis (3.9) when n>j, because of the multiple 

mixing effects. In order to make the data dependency explicit, jn hdWd /  is expanded in the time 

domain. First separate equivalent source W  into two parts, GW  and CW , as in Eq. (3.16):  

dt
Wd

WW C.n
G.nn += .       (3.16) 

GW  is formulated by frequency independent nonlinearity, e.g. transconductances, and CW  is 

formulated by frequency dependent nonlinearity, e.g. capacitor. Expressed in this way, both G.nW  

and C.nW  can be formulated by performing only basic operations (addition, multiplication) on 
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the nonlinear coefficients and circuit response. Notice jh  influences nW  in two ways: firstly, 

jh  directly appears in nW ; secondly, jh  influences nW  indirectly through multiple mixing 

effects: jh  influences lower order circuit response ( jX , 1jX + … 1-nX ) first, which then 

influences nW . To distinguish the “direct” and “indirect” influence, jn hdWd /  can be expanded: 

D
j

n
I

j

n

j

n

hd
Wd

hd
Wd

hd
Wd

)()( +=          (3.17) 

in which 

j

n
D

j

n

h
W

hd
Wd

∂
∂

=)(           (3.18) 

and 

][)(
11

j

k
n

jk k

C.n

j

k
n

jk k

G.n
I

j

n

dh
dX

X
W

dt
d

dh
dX

X
W

hd
Wd

∑∑
−

=

−

= ∂
∂

+
∂
∂

=      (3.19) 

Notice Eq. (3.18) is zero when j=1, otherwise it has at most two nonzero entries. Its 

formulation from (trans)conductances is given in Fig. 3.1-3.3, the entries for nonlinear capacitors 

(inductors) can be derived similarly. In Eq. (3.19), kG.n XW ∂∂ /  and kC.n XW ∂∂ /  are 

vector-vector partial derivatives. It can be shown, kG.n XW ∂∂ /  and kC.n XW ∂∂ /  can be 

expressed analytically by nonlinear coefficients and circuit response, which are fixed. Thus, 

kG.n XW ∂∂ /  and kC.n XW ∂∂ /  are constant matrices for a given design and can be pre-computed. 

They are defined as Nonlinear Transfer Matrix (NTM) as follows,  

)( .
..

k

nG
knG X

W
N

∂
∂

= ,           (3.20) 

and 
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= .          (3.21) 

The meanings of the subscripts of NTM are self-explicit by examining the corresponding RHS of 

Eq. (3.20) and (3.21). Substitute Eq. (3.20) and (3.21) into Eq. (3.19), the indirect influence 

component Ijn hdWd )/(  can be expanded as follows: 

][)(
1

..

1

..
j

k
n

jk
knC

j

k
n

jk
knGI

j

n

dh
dX

N
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d
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N
hd
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=

−

=

+= .      (3.22) 

 

Figure.3.1 Equivalent volterra series and sensitivity 
circuits of 1-D transconductance
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Take a 1-D nonlinear transconductance for example. Referring to Fig. 3.1, its entry in 

13 hdWd /  is 
1

a2
a12a

1

a12
a13aa22a dh

vdv2K
dh
vdv3Kv2K )()( ++ . The two terms in the brackets, 

)( 2
a13aa22a v3Kv2K +  and )( a12av2K , are formulated by nonlinear coefficients and circuit 

response. They are entries in NTM 13GN ..  and 23GN .. , respectively.  

The first term in the RHS of Eq. (3.22) explicitly shows how jh  influences InGW )( .  in two 

steps: firstly, jh  influences circuit response kX , represented by jk dhdX / ; the circuit response  

 

Figure.3.2 Equivalent Volterra series and sensitivity 
circuits of 2-D transconductance 
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then influences the equivalent source through knGN .. . knGN ..  ( knCN .. ) thus represents how the 

k-th order circuit response generates the frequency independent (dependent) part of n-th order 

equivalent source nGW . ( nCW . ). The analysis so far is performed in time domain. However, in the 

developed simulator, the above algorithms are realized in the frequency domain. The symbol 

( )⋅F  is used to represent the Fourier transform. Since multiplication in time domain is 

transformed to convolution in frequency domain, the formulation of NTM in computer 

programming can be easily derived based on the time domain descriptions in Table 3.1 and Table 

Figure.3.3 Equivalent Volterra series and sensitivity 
circuits of 3-D transconductance 
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3.2. After performing a Fourier transform on both sides of Eq. (3.22), the following expression 

results:  
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Eq. (3.9), (3.17), (3.18) and (3.23) together constitute the NTM based sensitivity calculation 

in the frequency domain. With NTM, the formulation of RHS in Eq. (3.9) is now simplified to a 

few matrix-vector operations, which have the same size as the system equation. The 

computational cost of jnRHS .  is thus reduced to the same level as system equation solution. 

Examination of Fig. 3.1- Fig. 3.3, Table 3.1 and Table 3.2 also shows the similarity of the entries 

in Wn and NTM. This implies NTM and Wn can be formulated together. Besides, generally, the 

number of transistors connected to one node is between one and three. This means, for CMOS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.3.1 Entries in NG.2

Table.3.2 Entries in NG.3 
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circuits, there are usually between 4 to 10 nonzero entries in each row in NTM. The NTM is thus 

sparse for circuits of medium to large size.  

Consider the example of a single common source connected MOS transistor. Suppose both 

I/V and Q/V nonlinearities are considered and one is interested in the sensitivity of HD3 w.r.t. gm. 

Then it takes 492 multiplications to formulate )/( 3 mgW ∂∂  in the Adjoint method sensitivity 

calculation. With the introduction of NTM, the number of multiplications is reduced to 48. 

Greater efficiency improvement is possible in higher order Volterra analysis, multiple tone 

excitation or larger circuits, as more computation can be saved through the pre-computation of 

NTM.  

Next, the physical meaning of NTM is examined. By definition, knN .  represents how kX  

influences nW , and thus nX , from the (n-k+1)-th nonlinearity of the circuit. For example, the 

5th element on the 4th row of 13GN ..  shows how the 4th entry in WG3 is exclusively determined 

by the 5th entry in x1, from the third order nonlinearity. Generally, the formulation in the form of 

Eq. (3.21) provides the insight into how lower order responses contribute to higher order response, 

from the nonlinearity of the circuit. Since nonlinearity is the intrinsic characteristic of the circuit, 

knN .  is solely determined by (n-k+1), the difference between n and k, instead of their specific 

values. It can be proven:  

1.ik&1knNN ikinkn ≥+≥>∀= ++ ,..       (3.24) 

Thus, the two subscripts in the NTM can be reduced to one, e.g. knN .  can be simplified to 

1knN +− . For example, 2N  ( 23N . ) shows how 2X  contributes to W3 from the second order 

nonlinearity; similarly, 2N  ( 12N . ) shows how the second order nonlinearity generates W2 from 

1X . This means only 2(N-1) NTM need to be pre-computed in N-th order distortion analysis. The 

speedup is achieved at the cost of the pre-computation and storage of the extra 2(N -1) matrices. 
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Numerical examples in the next section show, the overhead is negligible compared to the savings.  

 

3.5 Numerical Examples 

 

3.5.1 Nonlinear RC circuit 

 

A simple example is used to illustrate the details in the sensitivity calculation based on NTM. The 

nonlinear RC circuit in Fig. 3.4 is used. The G and C matrices in Eq. (3.15) and (3.9) are:  
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⎡
=

000
0c0
000

C 1 .     (3.25) 

First consider distortion analysis, the RHS in Eq. (3.15) is given below. Notice for n>1, nW  has 

been decomposed based on frequency dependency.  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

ωtjAe
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cnGnn W
dt
dWW += , for n>1,        (3.27) 

in which 
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The above equations are rewritten in a more compact forms, which reflects the formats used in 

computer implementation, as follows: 

2
12 asgG.2 vgeW ⋅= , 2

12 bscC.2 vceW ⋅= ,       (3.30) 

)( 112
3

a32aasgG.3 vgvvg2eW +⋅=  and b2bscC.3 vv2ceW 12⋅= ,    (3.31) 

in which  

Xev T
aa =            (3.32) 

Xev T
bb = ,          (3.33) 

Figure3.4. (a). Nonlinear RC circuit. (b). First order 
equivalent circuit (c). n-th order equivalent circuit

(a)

(c)(b) 

)cos( tω  

)cos( tω  
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with 
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Substituting the above equations into Eq. (3.15), after sequential solutions of system equations, 

circuit response X1, X2 and X3 can be calculated. Next look at NTM based sensitivity calculation. 

Following Table 3.1 and Table 3.2, NTM are formulated based on the known circuit response and 

nonlinear coefficients as follows: 
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Recall the formulation of Ijn dhdW )/(  is the computational bottleneck in sensitivity calculation 

Eq. (3.9), now with NTM available, Ijn dhdW )/(  can be computed from Eq. (3.23) efficiently. 

Notice Eq. (3.35)-(3.38) all take the form of sparse vector-scalar-vector multiplication. Because the 

present circuit is very simple (one nonlinear conductance and one nonlinear capacitor), there is 

only one term in each NTM. However, in a practical circuit, there are a large number of 

nonlinearities and the complexity to formulate NTM will greatly increase: Eq. (3.35)-(3.38) will 

grow into a summation of terms, with the number of terms equal to the number of corresponding 

nonlinearities. The pre-computation of NTM can prevent its repetitive evaluation in each 
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sensitivity calculation, and that is where the computation saving comes from, compared to the 

straightforward sensitivity calculation in Section 3.1.  

Next examine other parts in the calculation of RHS of Eq.- (3.9). First look at 

“ nj XhdTd )/(− ”, it is nonzero only when j=1. jhdTd /  is given in Eq. (3.39) and (3.40) for 

h1=g1 and h1=c1, respectively:   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
011-
01-1

hdTd j/ ,      (3.39) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
010
000

hdTd j/ .      (3.40) 

Next, Djn dhdW )/(  is nonzero only when j>1, take the example of j=2 and n=3. For h2=g2, 

Djn dhdW )/(  is 

2aasgD vv2edhdW 123 )/( ⋅= ;         (3.41) 

and for h2=c2, 

dt
vv2ed

dhdW b2bsc
D

))((
)/( 1

23
⋅

= .      (3.42) 

 Next consider the situation with Eq. (3.39)-(3.42) in a practical circuit with a large number of 

nonlinearities: if j=1, “ nj XhdTd )/(− ” will remain a sparse matrix-vector multiplication, like Eq. 

(3.39) and (3.40) [3]; otherwise, Djn dhdW )/(  will remain a sparse vector like Eq. (3.41) and 

(3.42), as shown in Table 3.1 and Table 3.2. In both cases, the formulation is simple. 
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3.5.2 Cascode Amplifier 

 

The Cascode Amplifier from Section 2.5 will be used to show the accuracy and usefulness of the 

proposed method in the sensitivity calculation of the distortion response to design, process or 

environmental parameters.  

The expression for the normalized sensitivity of Third order Harmonic, HD3, is defined as: 

|
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=        (3.43) 

The normalized sensitivity of HD3 with respect to h can be expressed as [3]: 
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In Eq. (3.44), 
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Following the definition in Eq. (3.44), the normalized sensitivity of HD3 w.r.t. all the nonlinear 

coefficients, at the nominal operating point, are given in Table 3.2. Based on that, the calculations 

of HD3  due to temperature change from 265 K to 335 K and the input transistor width variation 

(over the whole range to ensure the transistor remains in saturation) are plotted in Fig. 3.6.  
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Figure. 3.5 (a) Sensitivity of HD3  w.r.t. 1-D nonlinear coefficients 
 

Figure. 3.5 (b) Sensitivity of HD3  w.r.t. 2-D and 3-D nonlinear coefficients 
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(a) 

(b) 
Figure. 3.6 Prediction of HD3 due to temperature and widthn change 
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3.5.3 Third Order Elliptical Filter 

 

The third example is a third order elliptical low pass filter [30] with the Op-Amp realized by 

the low distortion two stage folded cascode Op-Amp in Fig. 4.4. It contains 104 MOS transistors 

and the full BSIM3V3 model is adopted. Generally, NTM is expected to bring more 

computational saving when the analysis order is high or when there are more than one driving 

frequency. However, only a relatively low order – third order – analysis, in one-tone test is 

considered here. This demonstrates even for lower order analyses with one input frequency, NTM 

can still bring significant computational saving.  

In total, there are 2191 small signal coefficients, 3088 second and 4908 third order nonlinear 

coefficients. On a P4 computer with 1.6 GHz CPU and 768 MB RAM, one Volterra Series based 

frequency analysis takes 1.18s and it takes 6 hours and 41 minutes to approximate sensitivities of 

HD3 w.r.t. of all the 10187 coefficients by finite difference. The NTM based numerical sensitivity  

calculation accomplishes the same work in 3 minutes and 27 seconds. It takes 10 seconds to 

construct NTM. The overhead in storage is a negligible 103 kB. On average, accurate sensitivity 

calculation is achieved with over 100 times speedup, compared to finite difference approximation. 

The time and speedup for the sensitivity calculation of different order coefficients are given in 

Table 3.3.  

The above examples show that NTM based nonlinear circuit sensitivity calculation provides both 

accuracy and efficiency in computation. 
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Table. 3.3 Time and speedup of NTM based sensitivity calculation 

Sensitivity Time(ms)
Speedup 

(times) 

13 hX ∂∂ /  53 45 

23 hX ∂∂ /  25.5 93 

33 hX ∂∂ /  2.6 908 
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Chapter 4 

 

Per-Element Distortion Decomposition 

 

In this chapter, a method to decompose distortion on a per nonlinear element basis is given [48]. It 

can be used in design optimization, symbolic analysis and nonlinear model reduction. Fully 

symbolic [8,38,39] and polynomial interpolation [3,7] are the common distortion decomposition 

methods available so far. However, their efficiency and accuracy is limited since they use full or 

partial symbolic analysis.  

Decomposition based on previous methods is normally made possible by using simplified 

transistor models [36,42,43], however, even the most popular compact models are inadequate for 

high frequency (HF) distortion analysis [37] and an accurate HF MOSFET model is essential in 

distortion analysis. This Chapter proposes a distortion decomposition technique based on 

Nonlinearity Transfer Matrix, it combines the insight of traditional symbolic analysis, and the 

handling capability, efficiency and accuracy of commercial numerical simulators.   

Section 4.1 briefly reviews the bottleneck in VS based distortion analysis--the complicated 

mixing effects. Section 4.2 takes a simple nonlinear RLC circuit and performs the distortion 

decomposition. With the help of examples, section 4.3 demonstrates that the use of NTM leads to 

an efficient and accurate numerical distortion decomposition method.  
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4.1 Motivation and Challenge 

 

Based on the equivalent circuit of each nonlinear element as given in Fig. 2.1 to Fig. 2.3, the i-th 

order equivalent circuit can be formulated as in Eq. (2.24). Frequency response can then be 

calculated based on VS following the procedure in Section 2.2. This procedure provides the overall 

nonlinear response. However, it is sometimes desirable for designers to obtain a table, similar to 

noise and sensitivity analysis, listing the detailed distortion contributions from different nonlinear 

elements, including both amplitude and phase information.   

The desired distortion decomposition technique starts from the original Spice level netlist. 

Instead of simplified models, it uses the most reliable and, thus, usually complex compact 

transistor models. After distortion decomposition, a table that gives the contribution from each 

coefficient is obtained. The dominant entries in this table offer the insight into the origin of 

distortion. The amplitude and phase information can be used in interactive design optimization.  

The insignificant entries identify negligible coefficients that can be pruned to simplify the model. 

The best tradeoff between accuracy and compactness can thus be achieved in symbolic 

simplification, which is required in symbolic distortion analysis [7]. Based on this, [7] presents a 

generalization of compact nonlinear modeling for mixed signal co-simulation and system level 

design, e.g. telecom front-ends.  

The ever increasing complexity of RFIC and transistor models requires efficient computation, 

accuracy and larger handling capability. In general, nonlinear coefficient hj influences Wn, n j≥ , 

in two ways. Firstly, hj appears directly in n-th order equivalent circuit. For example, in MNA, hj 

appears in at most two locations of Wn; for each entry, hj contributes only one term. Since this part 

of contribution is direct, it is called direct contribution and is easy to calculate. Secondly, if n>j, hj 

also contributes to Wn indirectly by generating lower order circuit responses first, which then 
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contribute to all the entries in Wn by mixing with other nonlinear coefficients and circuit responses. 

It is this indirect contribution, resulting from Multiple Mixing Effect, that makes it a challenging 

task to determinate the contribution from lower order nonlinearity to higher order distortion. 

 

 

4.2 Per-Element Distortion Decomposition 

 

In this section, a simple example is used to show how numerical distortion decomposition can be 

achieved. The nonlinear RLC circuit in Fig. 4.1 is used and the object is to:      

(a) Decompose the contributions to X2 from h={g2 ,c2}.    

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. (a) Nonlinear RLC circuit. (b) First order 
equivalent circuit (c) n-th order equivalent circuit

(c)(b) 

(a)

)cos( tω  

)cos( tω  
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 (b) Based on (a) and the solution of Eq. (2.24), decompose the contributions to X3 from 

h={g2 ,c2, g3}.  

The variables in Eq. (2.24), formulated by MNA, are given as follows: 
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In this chapter, subscript “hj” is added to variables to represent the contribution from 

nonlinearity hj. Symbol prime denotes “complement”, e.g. W’3.g2 is the contribution to W3 from all 

nonlinearities except g2. Start with the decomposition of X2 with respect to h={g2 ,c2}. Based on 

the above definitions, for h=g2: 

 W2=W2.g2+ W’2.g2,         (4.1) 

X2=X2.g2+ X’2.g2.        (4.2) 
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Substitute Eq. (4.1) and (4.2) into Eq. (2.24), the application of superposition for linear system 

leads to Eq. (4.3). Eq. (4.3) shows that decomposition of Xn, in general, can be transformed to the 

decomposition of Wn 

2.2 gsg22,g22, JeWXT ⋅==⋅ ,                   (4.3) 

In which  

        2
122.22.2 ' bcg vgJJ ⋅== .            (4.4) 

Similarly, the expression for 2.2 cJ can be derived: 

][' 2
122.22.2 bgc vc

dt
dJJ ⋅== .            (4.5) 

Substitute J2.g2 in Eq. (4.3) with J2.c2 from Eq. (4.5), X2.c2 can also be calculated. Based on Eq. 

(4.2-4.5), it can easily be shown that, in the above decomposition, no overlap exists between X2.c2 

and X2.g2, besides, their sum equals X2.  As can be shown, this kind of decomposition can always 

be achieved if the distortion response comes from the same order nonlinearities only, e.g. Xn.n with 

n>1. In other words, only direct contribution exists. Besides, since there is no mixing effect, the 

associated computation cost is low. Next, move to X3.g2. As discussed in Section 4.1, for higher 

order distortion, mixing effects combine the contributions from different lower order nonlinearities. 

In addition, the mixing effect complicates the formulation of the equivalent sources, and is the 

computation bottleneck in VS analysis of nonlinear circuit. In the next section it is shown that 

NTM reduces this bottleneck. Rewrite Eq. (4.3) for X3 and expand the expression for J3:  

2.g3sg23,g23, JeWXT ⋅==⋅ ,       (4.6) 

3
13

2.22.212
2.22.2123

)]'(2[
)'(2 b

cbcbb
gbgbb vg

dt
vvvcd

vvvgJ +
+

++= .   (4.7)   
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Because of mixing effects, decomposition gets much more complicated and different approaches 

exist: 

 

(1) Direct Contribution Decomposition 

 

Let the nonlinearity of interest be h, and set all other variables and coefficients independent of h 

to zero, then the contribution from h can be determined. This ignores mixing effects. For example, 

by setting all the terms in Eq. (4.7) unrelated to g2 to zero, J3.g2 can be identified:   

           2.2122.3 2 gbbg vvgJ = .          (4.8a) 

Similarly, J3.c2 and J3.g3 can be derived: 

dt
vvcdJ cbb

c
)2( 2.212

2.3 = ,       (4.8b)  

3
133.3 bg vgJ = .             (4.8c) 

 Comparison with Eq. (4.7) shows there is still no overlap between different contributions in 

Eq. (4.8); but the decomposed contributions underestimate the total distortion: the sum of Eq. (4.8) 

contains 3 terms, compared to 5 in the total distortion of Eq. (4.7). Two terms in Eq. (4.7), 

2.2122 cbb vvg  and dtvvcd gbb /)2( 2.212 , are missing. This is caused by neglecting the mixing 

effects, e.g. 2.2122 cbb vvg  is the combined effects from both g2 and c2 . 

 

(2) Per-Nonlinearity Decomposition 

 

The inclusion of the mixing effects leads to the second approach: Per-Nonlinearity 

decomposition. For J3.g2, let h= g2, prune all the terms in Eq. (4.7) unless it contains either g2 or  
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v2.g2. The same procedure leads to J3.c2 and J3.g3: 

2.212
2.212

2.2122.3 '2
)2(

2 gbb
gbb

gbbg vvg
dt

vvcd
vvgJ ++= ,      (4.9a) 

dt
vvcd

dt
vvcd

vvgJ cbbcbb
cbb c

)'2()2(
2 2.2122.212

2.2122.3 ++= ,    (4.9b)                 

 3
133.3 bg vgJ = .           (4.9c) 

In Eq. (4.9a), the first two terms are the indirect contribution part and originate from lower 

order response v2.g2; the last term is the direct contribution part and comes from g2. Comparison of 

Eq. (4.9) with Eq. (4.7) shows that the sum of individual per-nonlinearity decomposition might 

overestimate the total distortion. Recall Eq. (4.4-4.5), the third term of Eq. (4.9a) is the same as the 

first term of Eq. (4.9b) and the third term of Eq. (4.9b) is the same as the first term of Eq. (4.9a). 

The sum of Eq. (4.9) thus contains 7 terms, compared to 5 in Eq. (4.7). Since mixing effects 

represents the interaction between different nonlinearities, its inclusion in each relevant entry 

—derived from physical basis—inevitably introduces the overestimation in Per-Nonlinearity 

Decomposition. 

 

4.3 Numerical Implementation by Nonlinearity Transfer Matrix 

 

The previous section shows that there are different decomposition approaches based on the 

inclusion or exclusion of the mixing effect. “Direct contribution” is computationally cheap but 

neglects mixing effects. “Per-Nonlinearity” includes indirect contribution from mixing effects, but 

may overestimate the results. Next, consider circuits of practical complexity and deal with the 

efficiency issue. Because of its physical insight and more computational cost requirement, 

Per-Nonlinearity decomposition is used for illustration. The BSIM3V3 model contains 88 
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nonlinear coefficients in third order distortion analysis. For a circuit of practical size with common 

compact transistor models, the number of 2nd order nonlinearities easily grows to thousands or 

more. They constitute the indirect contribution component in W3.h2. Specifically, the direct 

contribution part, the last term in each equation of (4.9), remains the same if extended to practical 

circuit; while the indirect contribution will grow from the first two terms in Eq. (4.9a,b) to an 

enormously complex expression. However, careful observation of the indirect contribution 

components in Eq. (4.9a,b) shows similarity in their expressions. In order to use this similarity to 

save computation, considering Wn=jn es, rewrite Eq. (4.9a,b) and after some term rearrangements: 

sgbb
g

T
bsb

g
T

bsbg evvg
dt

veevcd
veevgW )'2(

})])(2{[(
)])(2[( 2.212

2.212
2.2122.3 +

⋅
+⋅= ,   (4.10a) 

dt
evvcd

dt
veevcd

veevgW scbbc
T

bsb
c

T
bsbc

))'2((})])(2{[(
)])(2[( 2.2122.212

2.2122.3 +
⋅

+⋅= .   (4.10b)  

In Eq. (4.10a-4.10b), the similarity is explicitly revealed: the common part is enclosed in “[]”. 

The expression in the first “[]” comes from mixing effect due to g2 and the part in the second “[]” 

comes from mixing effect of c2. Besides, each term in “[]” is expressed in the form of scalar-matrix 

multiplication. The scalar is formulated by first order response and second order nonlinearities. 

The matrix is sparse and has at most 4 nonzero entries for MNA. Eq. (4.10a-4.10b) can be 

rewritten as:   

D3.h2
2.h2C.2

2.h2G.23.h2 W
dt

XNdXNW )()(
+

⋅
+⋅= .    (4.11)  

     Eq. (4.11) is the generalized decomposition expression. In practical circuits, (W3.2h)D, the 

direct contribution, contains only one term, the same as Eq. (4.10a-4.10b). In computer 

programming, (W3.2h)D has at most two nonzero entries and can be easily derived. The careful 

arrangement of terms will result in regularity in both NG.2 and NC.2: the summation of many terms, 

each has the same structure as the term in “[]” of Eq. (4.10). NG.2 and NC.2 are called Nonlinearity 
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Transfer Matrices (NTM). In NTM, the first subscript, G or C, depends on whether NTM is 

formulated by frequency independent or dependent nonlinearities; the second subscript is the order 

of nonlinearity. The NTM for the simple nonlinear RLC example are:  
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For example, NG.2 represents how X2 contributes to the frequency independent part of W3 from the 

second order nonlinearity. The details about the definitions of NG.k and NC.k are covered in Section 

3.4 and rewritten below. WC.i+k-1 and WG.i+k-1 are the frequency dependent and independent part of 

Wn+k-1, respectively. Notice the following definitions are given in time domain.  

i

1kiG
kG X

WN
∂

∂
= −+.

. , 1k > & 1.i ≥∀              (3.19) 

i

1kiC
kC X

WN
∂

∂
= −+.

. , 1k > & 1.i ≥∀                 (3.20) 

As the name implies, NTM represents the complicated mixing effect of how i-th order circuit 

response Xi indirectly influences (i+k-1)-th order equivalent source Wi+k-1, from k-th order 

nonlinearity of the circuit. The formulation of NTM is complicated because it includes all the 

complexity of multiple mixing effects. However, since nonlinearities are intrinsic characteristics of 

the circuit, NTM are constant matrixes. NTM is composed of nonlinear coefficients and distortion 

response of the circuit, which are all determined for a design. The formulation of NTM is thus 

possible and straightforward. It needs to be done only once for the distortion decomposition of a 

fixed design at each frequency. Details about its computer programming implementation are given 

in Table 3.1 and Table 3.2.  
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2k
1.hjk-nC.k1j-n
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1.hjk-nG.kn.hj W
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XNd
XNW )(
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⋅
+⋅=

∑
∑

+

=
++

=
+    (4.12)  

hjn,hjn, WXT =⋅ , n≥ j≥ 2       (4.13) 

The sequential solution of Eq. (4.12-4.13) in the increasing order of n forms the generalized 

“Per-Nonlinearity” distortion decomposition of contributions to n-th order distortion Xn from j-th 

order nonlinearity hj. Notice Eq. (4.12) is described in time domain, although the corresponding 

frequency domain operations are performed in the simulator. If only the last term in Eq. (4.12) is 

considered, they degenerate into “Direct Contribution” decomposition. The overhead in the 

pre-computation of NTM is averaged out in its repeated use in the distortion decomposition 

process, considering the large number of nonlinear coefficients in a practical circuit. Eq. (4.12) 

shows the use of NTM transforms the bottleneck in traditional VS based nonlinearity analysis, the 

construction of equivalent source, to cheap sparse matrix-vector operations. Besides, notice Eq. 

(4.13) is solved repetitively with different right hand sides; instead of the whole vector Xn,hj, only a 

few of its entries are of interest, e.g. certain nodal voltage or branch current. These two points 

suggest further reduction in the linear system solution Eq. (4.13) is possible through sharing LU 

factors and the use of Adjoint Method.  

Finally, it is worth mentioning that there are two kinds of sensitivities: differential and large 

change sensitivity. Differential sensitivity is defined as the change in output due to infinitesimal 

change in parameters; while large change sensitivity measures the variation in output when the 

parameters are subjected to large variations. Specifically, this can be how the inclusion or deletion 

of some nonlinearity influences the distortion response of the whole system. Distortion 

decomposition is thus essentially large change sensitivity of nonlinear coefficients. Nonlinearity 

Transfer Matrix was first proposed in Section 3.3 to overcome the complexity of “multiple mixing 

effects” and improve the efficiency in differential sensitivity calculation. The similar physical 
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origin naturally leads to the application of NTM to solve “multiple mixing effects” in distortion 

decomposition.  

 

4.4   Numerical Examples 

 

4.4.1 5.8Ghz Folded Cascode LNA 

 

In this section a low distortion 5.8GHz folded-cascode LNA [8], shown in Fig. 4.2, is used as an 

example. Fig. 4.3 plots IM3, the Third-order Intermodulation over the 3dB band. With full 

BSIM3V3 model, it takes a P4 computer 90 ms to perform per-nonlinearity distortion 

decomposition at one frequency point.  

 

Table 4.1summarizes the list of Most Important Contributor (MIC) versus All Contributions 

Fig.4.2  5.8GHz folded cascode LNA 
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(AC), depending on different error criterion. The first two columns, avg∈  and max∈ , are the 

average and maximum errors over the whole frequency range. The error is calculated between 

total distortion of the original circuit including all the nonlinearities, and the approximation by 

keeping MIC only and pruning all the other nonlinear coefficients. The error reflects how well the  

TABLE 4.1 MOST IMPORTANT CONTRIBUTIONS TO IM3 OF LNA 

)(dBavg∈  )(dBmax∈  #MIC/#AC MIC 

0.74  1.31 1/176 Km3-1 

0.16 0.25 3/176 Km3-1, Km2-1, KQm3-1 

0.08 0.10 4/176 Km3-1, Km2-1 KQm2-1, KQm3-1 

 

identified MIC can be used to represent AC in terms of distortion.  

Based on Table 4.1, we can create different abstraction levels easily by trading off between 

accuracy and complexity. For higher accuracy the MIC in the second row of Table 4.1 can be 

chosen. To capture the third-order nonlinear behavior we have to take into account only three 

contributions. These three contributions—about 1.7% of the overall quantity of 

contributions—cover almost 98% of the third-order nonlinear behavior in the observed frequency 

range. In case compactness is preferred, MIC in the first row can be chosen. It includes only one 

contributor, Kgm3-1, the third order nonlinearity of transconductance of the input transistor. It 

represents 92% of the total distortion. This means, by targeting one nonlinearity only, designers 

can estimate IM3 of the LNA correctly with a 1dB tolerance.  

The above results validate the previous assumption that weakly nonlinear behavior is usually 

due to only a few important contributions. Such compactness and insight can greatly simplify the 
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analysis and optimization of nonlinear behavior for designers. In addition, it also makes it feasible 

to construct a compact and accurate high-level model.  

 

Table 4.1 also shows, interestingly, two of the top 4 MIC come from the nonlinearity of 

channel charge w.r.t. Vgs. This is the first time that Q/V equations have been reported as the major 

source of distortion in LNA study. This is because, this is the first work to use full compact model 

in CMOS LNA distortion analysis. To achieve the same accuracy of 1dB error, 6 MIC is needed in 

a similar design [7], compared to 1 here. Because of the simplified transistor model, 2-4dB error 

already exists in the total distortion in [8] for the same design, even before any simplification is 

performed.  

 

 

4.4.2 Two-Stage Folded Cascode Op-Amp 

 

Fig. 4.4 is a two-stage folded Cascode Op-Amp [9,43] in 0.18 mµ  technology, BSIM3V3 

model is used in the analysis again. Fig. 4.5 is the plot of third order harmonic distortion, HD3, vs. 

Fig. 4.3 Third Order Intermodulation Plot 
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frequency in the whole application frequency range of the Op-Amp (0-150MHz). The transistor 

level  

 

 

Fig. 4.5. Third Order Harmonic Versus Frequency. 

Fig. 4.4. Two-stage Folded Cascode Miller Op-Amp.
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distortion decomposition is given in Fig. 4.6. It plots the normalized contributions to the total HD3 

from the three dominant nonlinearity sources. The plot shows, in the low frequency range (0-50 

MHz), M4 and M5 in the output stage are the dominant distortion source; between 50 MHz and 

100 MHz, contributions from input stage (M1+M2) and Cascode stage (M12+M13) start to get 

significant and even comparable to the output stage; beyond 100 MHz, contributions from both 

output and Cascode stages start to diminish and the input stage takes over to be the only dominant 

distortion source. The accuracy of the approximation, by representing the 1144 AC with the 

extracted MIC, is shown in Table 4.2. In [9], the “weakly nonlinear model” is used and the circuit 

includes 208 nonlinear coefficients. Average and maximum errors of 2 dB and 7 dB, respectively, 

exist in HD3 compared to simulation with full BSIM3V3 model [9]. In Fig. 4.5, by representing  

TABLE 4.2 MOST IMPORTANT CONTRIBUTIONS TO HD3 OF OP AMP 

Preference I: Higher Accuracy  

avg∈ =0.51 dB max∈ =0.84 dB #MIC/#AC=19/1144 

Most Important Contributions 

m2_1K b_1&mK m2_2K m3_2K b_2&2mK   

m2_4K m3_4K d3_4K d_4&mK 2d_4&mK d3_5K  

m3_12K d_12&mK d_12&2mK 2d_12&mK  

m3_13K m2_13K d_13&2mK 2d_13&mK  

 

Preference II: More Compactness 

avg∈ =0.74 dB max∈ =2.9 dB #MIC/#AC=8/1144 

Most Important Contributions 

m2_1K b_1&mK                 

m2_4K m3_4K d3_4K d_4&mK 2d_4&mK d3_5K  
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AC with the top 8 MIC, average and maximum errors of only 0.8 dB and 3 dB, respectively, are 

observed. Again, the improvement results from the accurate full models used.  

 

 

The extracted MIC provides significant physical insight for distortion mechanisms, in a very 

concise way. Besides, the selected MIC can also be used to generate compact and accurate 

symbolic expressions and behavioral models for Mixed signal co-simulation. Fig. 4.5 shows the 

local optimum of HD3 appears at 70 MHz. Fig. 4.7 is the vector diagram of different distortion 

components at 70 MHz. It reveals the underlying cancellation mechanism due to opposite phase 

angles.  

Finally, Fig. 4.8 shows the distortion decomposition at device level, at frequency points 10 

MHz, 40 MHz, 70 MHz and 200 MHz. Since amplitude and phase relationships between different 

contributions, as well as their dependency on frequency, can be visualized, distortion origins can 

be pinpointed and exploited for further optimization. For example, Fig. 4.8(a) shows at low 

frequency, all the dominant nonlinearity comes from M4. This agrees with the transistor level  

Fig. 4.6. Transistor Level Distortion Decomposition.
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decomposition in Fig. 4.6, which shows the output stage contributes nearly 90% of the distortion in 

lower frequency band (0-20 MHz). Further, it shows most of the distortion in M4 comes from the 

nonlinearity of output impedance. This is because the voltage at the output node is the controlling 

variable for the nonlinear output impedance, and it undergoes the largest voltage swing. Fig. 4.8(a) 

shows, the second dominant nonlinearity source is the nonlinear transconductance of M4. This is 

because the nonlinear coefficients of transconductance are much larger than those of output 

impedance. For example, -0.3871Km3_4 =  and 0.0007K d3_4 = . The small signal analysis 

shows, at low frequency, the output stage is an inverting amplification stage with gain 

approximately equal to 11. This means 11−≈ds_4.1.1 gs_4 v /v . Remember m3_4K  and d3_4K  

contribute the terms 3
gs_4.1m3_4 vK ⋅  and 3

ds_4.1d3_4 vK ⋅ , respectively, to the equivalent source. 

Combining the above relationships, it can be estimated at low frequency the contribution from 

d3_4K  is around 2.4 times that of m3_4K  in amplitude, with the same phase angle. Referring to 

Fig. 4.7. Block Level Distortion Decomposition at 70MHz.  
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Fig. 

Fig.4.8 Two-stage folded cascode Miller opamp with single-ended output 

(d) 

(c) 

(b) 

(a)
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4.8(a), the normalized contribution from d3_4K  is 32% while that from m3_4K  is 14%. This 

agrees very well with the estimation (32/14=2.3). Besides, there is a small phase angle difference 

(around 20o ) between the two contributors, this is because at 10 MHz, frequency dependency has 

already started, especially due to the addition of the Miller capacitor, (the phase of the the output 

stage gain is -174o).  

Comparing Fig. 4.8(a) and Fig. 4.8(b), it can be seen that because of the frequency 

dependency in the phases of different contributions, there is less cancellation due to opposite 

phase angles as frequency increases. This partly explains the increase in distortion up till 40 MHz. 

As frequency further increases to 70 MHz, another “optimum” cancellation point between the 

significant contributors is reached, as shown in Fig. 4.8(c). This explains the local optimum in Fig. 

4.5 at 70 MHz. However, there are many other insignificant distortion contributors in the circuit, 

for example, those from the cascode stage. Their influence stands out when the significant 

contributors cancel each other. It is thus difficult to reach the “idealistic” optimum as some might 

expect based on simplified transistor models. Finally, as frequency increases to 200 MHz, the 

gain of the output stage drops to half its value at low frequency. The contribution from input stage 

starts to get dominant, consistent with the results in transistor level distortion decomposition Fig. 

4.6.  

Fig. 4.8 also illustrates that the influence of certain nonlinearities is limited to a certain 

frequency range. This suggests the possibility of neglecting coefficients that contribute 

significantly in a frequency band outside the region of interest. If instead of the whole operating 

frequency range (0-150 MHz), the Op-Amp is used only in low frequency band, then 

morecompact MIC set than those in Table 4.2 can be derived. For example, if 0-20 MHz band is 

of interest, then only the nonlinear coefficients from the output stage are needed.  
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4.4.3 Third Order Elliptical Filter 

 

The third example is a third order elliptical low pass filter with the Op-Amp taken from Fig. 

4.4. It contains 104 CMOS transistors, 280 nodes (including internal nodes in BSIM3V3 models). 

As shown in the last section, the higher order the nonlinearity, the more driving frequencies, the 

more computational intensive it is to perform distortion decomposition because of the complicated 

mixing effect. However, only a third order response in one-tone test is considered here. This will 

help demonstrate great computation cost saving can still be achieved even for lower order 

nonlinearity with one exciting frequencies benefiting from NTM. There are in total 3088 second 

and 4908 third order nonlinear coefficients. One Volterra Series based distortion analysis takes 

1.18s and it takes 2 hours and 37 minutes to approximate contributions to HD3 from all the 7996 

coefficients by the “brute force” method--finite difference; while it only takes 1 minutes and 32 

seconds for the proposed distortion decomposition method. The overhead to calculate NTM is 

negligible: 3 seconds and 34kB memory for storage. An extra 20 seconds is required to calculate 

the nonlinear coefficients from DC simulation results. In terms of handling capability, the largest 

number of nonlinear coefficients that previous methods can handle is of the order of hundred [9], 

compared to 10,000 here. On average, accurate sensitivity result is achieved with an over 100 

times speedup, as compared to crude approximation. The time per decomposition and speedup for 

the sensitivity calculation of different order coefficients are given in Table 4.3.  

TABLE 4.3 EFFICIEINCY PERFORMANCE 

Contributor Time 
(ms) 

Speedup 
(times) 

2h3,X  25.5 93 

3h3,X  2.6 908 
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Chapter 5 

 

Conclusions  

 

The main contributions of this thesis to the computer aided design of mildly nonlinear circuits are: 

(1) A Volterra Series based sensitivity analysis method, 

(2) Introduction of Nonlinear Transfer Matrix, which explicitly reveals multiple mixing effects 

and 

(3) Numerical per-element distortion decomposition technique 

This chapter discusses the applications of the above algorithms. Some of them are good 

candidates for future research. The work done in this thesis is applicable to mildly nonlinear 

circuits. It is possible that the same algorithms can be extended to an important class of strongly 

nonlinear circuits such as mixers and periodically switching networks. The attempt would be 

similar to the work in [26, 27], which use time-varying Volterra series. In those work, the 

strongly nonlinear circuits are treated as periodically time-varying weakly nonlinear systems w.r.t. 

the small-signal input of interest.  
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5.1 Application of Distortion Sensitivity analysis in EDA 

 

In this section, the possible applications of the proposed distortion and sensitivity calculation in 

analog EDA are discussed. Sensitivity calculation can help solve the bottleneck in performance 

space exploration, the expensive evaluation of Jacobian and Hessian matrix [6,24]. With 

sensitivity information available at a reasonable price, there are ways to combine global 

optimization and fast convergence in automatic nominal sizing: introduction of weighted 

gradient-based moves in the annealing process; following genetic global search by fast local 

gradient search [10-12]. Sensitivity information is also important in yield optimization, e.g. to 

calculate yield gradients [6] or to linearize the feasible region [13]. Further, since sensitivity 

analysis quantifies the impact of layout parasitics on circuit performance, it can be directly 

applied in layout automation and postlayout “smart extraction” [10, 11, 12, 14].  

 

5.2 Applications of Nonlinear Transfer Matrix 

 

Nonlinear transfer matrix shows how lower order response generates higher order distortion from 

nonlinearity of different orders. It explicitly represents the obscure and complicated multiple 

mixing effects. Aside from speedup in sensitivity calculation and distortion decomposition, NTM 

can also be applied in the distortion study of small circuit, for example, the optimization of out of 

band terminal impedances for low distortion design of power amplifier (PA) [21]. In a two-tone 

test, the IM3 at output is not only the sum of the effects from cubic nonlinearity, but also the 

cascaded quadratic nonlinearities. Since the power of the second order signal lies well away from 

the fundamental, filtering can be used to improve linearity by optimizing out-of-band 

impedances.  
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5.3 Applications of Distortion Decomposition 

 

It is our genuine hope that designers will adopt the numerical distortion decomposition technique 

so that they can be liberated from the laborious symbolic/manual distortion analysis. Specifically, 

the applications in the following areas can serve as motivating success stories.  

The proposed distortion decomposition can be applied in Simplification Before Generation 

(SBG) of symbolic expression as follows: first perform distortion decomposition at device level. 

Then by weighing the magnitude of different contributions, the original equivalent circuit can be 

simplified. In this way, we can achieve the best tradeoff between accuracy and compactness in the 

resultant symbolic expression [20] and component-level Volterra model [30,38]. 

Low distortion is commonly achieved by either symmetric circuit topology [22] or perfect 

tracking between the distortion and pre-distortion blocks [23]. In either case, the theoretical 

optimum design is very sensitive to process variations and parasitics. Because of the numerical 

advantages, we can use compact models including statistical process variation and parasitics in 

the distortion decomposition process. In this way, we can not only study the feasibility of the 

theoretical optimum but also pinpoint the weak point in the circuit under process variations. This 

can assist the selection of robust topology and layout automation.  
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Appendix  

 

Simplified CMOS Transistor Model 

 

The simplified CMOS transistor model adopted in this thesis is a combination of Level 1 and 

Level 3 models in [4, 44-47]. It takes into consideration the first order effects of mobility 

reduction due to vertical field and velocity saturation, linear variation of the depletion layer along 

the channel and body effect. 

 

A.1. Mobility Reduction due to Velocity Saturation 

 

Electron mobility µ  depends on many effects, including the position in the channel and on the 

applied voltages. A simple model of mobility reduction is given by: 

)(1
0

TGS Vv −θ+
µ

=µ        (A.1) 

 

A.2. Mobility Reduction due to Vertical Field 
 

The assumption that the drift velocity of carriers is linearly proportional to the lateral electric field 

by xEv µ= ,in which the proportionality is the mobility, is not correct when the drift velocity is 

comparable to the thermal velocity of carriers satv , which is about scm /107 for silicon at room 

temperature. As the drift velocity approaches the thermal velocity, the velocity will not increase 
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much anymore. This saturation effect is referred to as velocity saturation. The relationship 

between velocity and field reduces to: 

c

x

xeff

E
E
E

v
+

=
1

µ

         (A.2) 

Here effµ is the effective mobility, xE  is the lateral electrical field and cE is the critical electric 

field.  

 

A.3. Variation of the Depletion Layer 

 

If variation of the depletion layer along the channel is taken into account, we assume it changes 

linearly along the channel and characterize it with a : 

SB

SB

v
v

a
+

++
=

φ
γφ

2
2

        (A.3) 

 

A.4 Transistor Model 

 

The drain current in saturation region: 
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The function mobhot  indicates how much the drain current is reduced by the combination of 

mobility reduction due to a vertical field and velocity saturation. This function is always smaller 

than 1 

)(0 φφγ −++= SBTT vVV        (A.6) 

( )LDLLeff 2−=          (A.7) 

( )WDWWeff 2−=         (A.8) 

The capacitors in saturation region are: 

)( effGB LCGBOC =          (A.9) 

))((67.0)( effeffoxeffGS LWCWCGSOC +=     (A.10) 

)( effGD WCGDOC =          (A.11) 

Note that due to the approximations, the drain current and capacitors calculated at the boundary 

between triode and saturation are discontinuous. Since all the transistors operate in saturation 

region in the Cascode Amplifier example studied in this thesis, no smoothing function is 

considered to connect the drain and capacitor equations between triode and saturation regions.   

 

A.5 Technology Parameters 

 

Technology parameters for a typical mµ8.0 Silicon-Gate Bulk CMOS n-well process are used 

for the above transistor model [4, 44-47]: 
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Table A.1. Technology parameters for a mµ8.0  Silicon-Gate Bulk CMOS n-well process 

Parameter Meaning  Used in Level NMOS PMOS Unit 

0µ  Surface mobility of the channel 1,2,3 0.066 0.021 Vm ⋅/2

 

oxC  Capacitance per unit area of the 

gate oxide 

1,2,3 -3102.4665×  2/ mF
 

0TV  Zero-bias gate-source extrapolated 

threshold voltage 

1,2,3 7.0  7.0−  V 

γ  Body-effect coefficient 1,2,3 0.4 0.57 2/1V  

φ  Surface inversion potential 1,2,3 0.7 0.8 V  

λ  Channel length modulation factor 1,2 0.04 0.05 1−V  

θ  Mobility reduction coefficient 3 0.1 0.1 1−V  

satv *** Saturation velocity 3 5107.2 × 5107.2 ×
* sm /  

LD Lateral diffusion 2,3 0.016 0.015 mµ  

WD Delta Width 2,3 0** 0 mµ  

CGBO   2,3 -1210700×  mF /

CGDO   2,3 -1210202 ×  mF /

CGSO   2,3 -1210202 ×  mF /

 

*Based on the assumption NMOS and PMOS have the same saturation velocity [47] 

**Assume to be zero, since unavailable 

***Some of the parameters are fit parameters and their value do not necessarily correspond to the 

corresponding physical parameter. For example, the value of satv is not equal to the saturation 

velocity. 
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