1,081 research outputs found

    Constructing Parsimonious Analytic Models for Dynamic Systems via Symbolic Regression

    Full text link
    Developing mathematical models of dynamic systems is central to many disciplines of engineering and science. Models facilitate simulations, analysis of the system's behavior, decision making and design of automatic control algorithms. Even inherently model-free control techniques such as reinforcement learning (RL) have been shown to benefit from the use of models, typically learned online. Any model construction method must address the tradeoff between the accuracy of the model and its complexity, which is difficult to strike. In this paper, we propose to employ symbolic regression (SR) to construct parsimonious process models described by analytic equations. We have equipped our method with two different state-of-the-art SR algorithms which automatically search for equations that fit the measured data: Single Node Genetic Programming (SNGP) and Multi-Gene Genetic Programming (MGGP). In addition to the standard problem formulation in the state-space domain, we show how the method can also be applied to input-output models of the NARX (nonlinear autoregressive with exogenous input) type. We present the approach on three simulated examples with up to 14-dimensional state space: an inverted pendulum, a mobile robot, and a bipedal walking robot. A comparison with deep neural networks and local linear regression shows that SR in most cases outperforms these commonly used alternative methods. We demonstrate on a real pendulum system that the analytic model found enables a RL controller to successfully perform the swing-up task, based on a model constructed from only 100 data samples

    Black-Box Data-efficient Policy Search for Robotics

    Get PDF
    The most data-efficient algorithms for reinforcement learning (RL) in robotics are based on uncertain dynamical models: after each episode, they first learn a dynamical model of the robot, then they use an optimization algorithm to find a policy that maximizes the expected return given the model and its uncertainties. It is often believed that this optimization can be tractable only if analytical, gradient-based algorithms are used; however, these algorithms require using specific families of reward functions and policies, which greatly limits the flexibility of the overall approach. In this paper, we introduce a novel model-based RL algorithm, called Black-DROPS (Black-box Data-efficient RObot Policy Search) that: (1) does not impose any constraint on the reward function or the policy (they are treated as black-boxes), (2) is as data-efficient as the state-of-the-art algorithm for data-efficient RL in robotics, and (3) is as fast (or faster) than analytical approaches when several cores are available. The key idea is to replace the gradient-based optimization algorithm with a parallel, black-box algorithm that takes into account the model uncertainties. We demonstrate the performance of our new algorithm on two standard control benchmark problems (in simulation) and a low-cost robotic manipulator (with a real robot).Comment: Accepted at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017; Code at http://github.com/resibots/blackdrops; Video at http://youtu.be/kTEyYiIFGP

    Approximate Dynamic Programming with Gaussian Processes

    Get PDF
    In general, it is difficult to determine an optimal closed-loop policy in nonlinear control problems with continuous-valued state and control domains. Hence, approximations are often inevitable. The standard method of discretizing states and controls suffers from the curse of dimensionality and strongly depends on the chosen temporal sampling rate. In this paper, we introduce Gaussian process dynamic programming (GPDP) and determine an approximate globally optimal closed-loop policy. In GPDP, value functions in the Bellman recursion of the dynamic programming algorithm are modeled using Gaussian processes. GPDP returns an optimal statefeedback for a finite set of states. Based on these outcomes, we learn a possibly discontinuous closed-loop policy on the entire state space by switching between two independently trained Gaussian processes. A binary classifier selects one Gaussian process to predict the optimal control signal. We show that GPDP is able to yield an almost optimal solution to an LQ problem using few sample points. Moreover, we successfully apply GPDP to the underpowered pendulum swing up, a complex nonlinear control problem

    Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control

    Full text link
    Trial-and-error based reinforcement learning (RL) has seen rapid advancements in recent times, especially with the advent of deep neural networks. However, the majority of autonomous RL algorithms require a large number of interactions with the environment. A large number of interactions may be impractical in many real-world applications, such as robotics, and many practical systems have to obey limitations in the form of state space or control constraints. To reduce the number of system interactions while simultaneously handling constraints, we propose a model-based RL framework based on probabilistic Model Predictive Control (MPC). In particular, we propose to learn a probabilistic transition model using Gaussian Processes (GPs) to incorporate model uncertainty into long-term predictions, thereby, reducing the impact of model errors. We then use MPC to find a control sequence that minimises the expected long-term cost. We provide theoretical guarantees for first-order optimality in the GP-based transition models with deterministic approximate inference for long-term planning. We demonstrate that our approach does not only achieve state-of-the-art data efficiency, but also is a principled way for RL in constrained environments.Comment: Accepted at AISTATS 2018

    Benchmarking Deep Reinforcement Learning for Continuous Control

    Get PDF
    Recently, researchers have made significant progress combining the advances in deep learning for learning feature representations with reinforcement learning. Some notable examples include training agents to play Atari games based on raw pixel data and to acquire advanced manipulation skills using raw sensory inputs. However, it has been difficult to quantify progress in the domain of continuous control due to the lack of a commonly adopted benchmark. In this work, we present a benchmark suite of continuous control tasks, including classic tasks like cart-pole swing-up, tasks with very high state and action dimensionality such as 3D humanoid locomotion, tasks with partial observations, and tasks with hierarchical structure. We report novel findings based on the systematic evaluation of a range of implemented reinforcement learning algorithms. Both the benchmark and reference implementations are released at https://github.com/rllab/rllab in order to facilitate experimental reproducibility and to encourage adoption by other researchers.Comment: 14 pages, ICML 201

    A Practical and Conceptual Framework for Learning in Control

    No full text
    We propose a fully Bayesian approach for efficient reinforcement learning (RL) in Markov decision processes with continuous-valued state and action spaces when no expert knowledge is available. Our framework is based on well-established ideas from statistics and machine learning and learns fast since it carefully models, quantifies, and incorporates available knowledge when making decisions. The key ingredient of our framework is a probabilistic model, which is implemented using a Gaussian process (GP), a distribution over functions. In the context of dynamic systems, the GP models the transition function. By considering all plausible transition functions simultaneously, we reduce model bias, a problem that frequently occurs when deterministic models are used. Due to its generality and efficiency, our RL framework can be considered a conceptual and practical approach to learning models and controllers whe

    PILCO: A Model-Based and Data-Efficient Approach to Policy Search

    No full text
    In this paper, we introduce PILCO, a practical, data-efficient model-based policy search method. PILCO reduces model bias, one of the key problems of model-based reinforcement learning, in a principled way. By learning a probabilistic dynamics model and explicitly incorporating model uncertainty into long-term planning, PILCO can cope with very little data and facilitates learning from scratch in only a few trials. Policy evaluation is performed in closed form using state-of-the-art approximate inference. Furthermore, policy gradients are computed analytically for policy improvement. We report unprecedented learning efficiency on challenging and high-dimensional control tasks. Copyright 2011 by the author(s)/owner(s)
    • …
    corecore