92 research outputs found

    Efficient arithmetic for high speed DSP implementation on FPGAs

    Get PDF
    The author was sponsored by EnTegra Ltd, a company who develop hardware and software products and services for the real time implementation of DSP and RF systems. The field programmable gate array (FPGA) is being used increasingly in the field of DSP. This is due to the fact that the parallel computing power of such devices is ideal for today’s truly demanding DSP algorithms. Algorithms such as the QR-RLS update are computationally intensive and must be carried out at extremely high speeds (MHz). This means that the DSP processor is simply not an option. ASICs can be used but the expense of developing custom logic is prohibitive. The increased use of the FPGA in DSP means that there is a significant requirement for efficient arithmetic cores that utilises the resources on such devices. This thesis presents the research and development effort that was carried out to produce fixed point division and square root cores for use in a new Electronic Design Automation (EDA) tool for EnTegra, which is targeted at FPGA implementation of DSP systems. Further to this, a new technique for predicting the accuracy of CORDIC systems computing vector magnitudes and cosines/sines is presented. This work allows the most efficient CORDIC design for a specified level of accuracy to be found quickly and easily without the need to run lengthy simulations, as was the case before. The CORDIC algorithm is a technique using mainly shifts and additions to compute many arithmetic functions and is thus ideal for FPGA implementation

    Unified field multiplier for GF(p) and GF(2 n) with novel digit encoding

    Get PDF
    In recent years, there has been an increase in demand for unified field multipliers for Elliptic Curve Cryptography in the electronics industry because they provide flexibility for customers to choose between Prime (GF(p)) and Binary (GF(2")) Galois Fields. Also, having the ability to carry out arithmetic over both GF(p) and GF(2") in the same hardware provides the possibility of performing any cryptographic operation that requires the use of both fields. The unified field multiplier is relatively future proof compared with multipliers that only perform arithmetic over a single chosen field. The security provided by the architecture is also very important. It is known that the longer the key length, the more susceptible the system is to differential power attacks due to the increased amount of data leakage. Therefore, it is beneficial to design hardware that is scalable, so that more data can be processed per cycle. Another advantage of designing a multiplier that is capable of dealing with long word length is improvement in performance in terms of delay, because less cycles are needed. This is very important because typical elliptic curve cryptography involves key size of 160 bits. A novel unified field radix-4 multiplier using Montgomery Multiplication for the use of G(p) and GF(2") has been proposed. This design makes use of the unexploited state in number representation for operation in GF(2") where all carries are suppressed. The addition is carried out using a modified (4:2) redundant adder to accommodate the extra 1 * state. The proposed adder and the partial product generator design are capable of radix-4 operation, which reduces the number of computation cycles required. Also, the proposed adder is more scalable than existing designs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Unified field multiplier for GF(p) and GF(2 n) with novel digit encoding

    Get PDF
    In recent years, there has been an increase in demand for unified field multipliers for Elliptic Curve Cryptography in the electronics industry because they provide flexibility for customers to choose between Prime (GF(p)) and Binary (GF(2')) Galois Fields. Also, having the ability to carry out arithmetic over both GF(p) and GF(2') in the same hardware provides the possibility of performing any cryptographic operation that requires the use of both fields. The unified field multiplier is relatively future proof compared with multipliers that only perform arithmetic over a single chosen field. The security provided by the architecture is also very important. It is known that the longer the key length, the more susceptible the system is to differential power attacks due to the increased amount of data leakage. Therefore, it is beneficial to design hardware that is scalable, so that more data can be processed per cycle. Another advantage of designing a multiplier that is capable of dealing with long word length is improvement in performance in terms of delay, because less cycles are needed. This is very important because typical elliptic curve cryptography involves key size of 160 bits. A novel unified field radix-4 multiplier using Montgomery Multiplication for the use of G(p) and GF(2') has been proposed. This design makes use of the unexploited state in number representation for operation in GF(2') where all carries are suppressed. The addition is carried out using a modified (4:2) redundant adder to accommodate the extra 1 * state. The proposed adder and the partial product generator design are capable of radix-4 operation, which reduces the number of computation cycles required. Also, the proposed adder is more scalable than existing designs

    Space Transportation System and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of acronyms now in everyday use in the Shuttle world are listed. It is a combination of lists that were prepared at the Kennedy and Johnson Space Centers and by the Air Force

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The total of 60 regular papers presented in these volumes was carefully reviewed and selected from 155 submissions. The papers are organized in topical sections as follows: Part I: Program verification; SAT and SMT; Timed and Dynamical Systems; Verifying Concurrent Systems; Probabilistic Systems; Model Checking and Reachability; and Timed and Probabilistic Systems. Part II: Bisimulation; Verification and Efficiency; Logic and Proof; Tools and Case Studies; Games and Automata; and SV-COMP 2020

    An FPGA implementation of an investigative many-core processor, Fynbos : in support of a Fortran autoparallelising software pipeline

    Get PDF
    Includes bibliographical references.In light of the power, memory, ILP, and utilisation walls facing the computing industry, this work examines the hypothetical many-core approach to finding greater compute performance and efficiency. In order to achieve greater efficiency in an environment in which Moore’s law continues but TDP has been capped, a means of deriving performance from dark and dim silicon is needed. The many-core hypothesis is one approach to exploiting these available transistors efficiently. As understood in this work, it involves trading in hardware control complexity for hundreds to thousands of parallel simple processing elements, and operating at a clock speed sufficiently low as to allow the efficiency gains of near threshold voltage operation. Performance is there- fore dependant on exploiting a new degree of fine-grained parallelism such as is currently only found in GPGPUs, but in a manner that is not as restrictive in application domain range. While removing the complex control hardware of traditional CPUs provides space for more arithmetic hardware, a basic level of control is still required. For a number of reasons this work chooses to replace this control largely with static scheduling. This pushes the burden of control primarily to the software and specifically the compiler, rather not to the programmer or to an application specific means of control simplification. An existing legacy tool chain capable of autoparallelising sequential Fortran code to the degree of parallelism necessary for many-core exists. This work implements a many-core architecture to match it. Prototyping the design on an FPGA, it is possible to examine the real world performance of the compiler-architecture system to a greater degree than simulation only would allow. Comparing theoretical peak performance and real performance in a case study application, the system is found to be more efficient than any other reviewed, but to also significantly under perform relative to current competing architectures. This failing is apportioned to taking the need for simple hardware too far, and an inability to implement static scheduling mitigating tactics due to lack of support for such in the compiler

    Space transportation system and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of some of the acronyms and abbreviations now in everyday use in the shuttle world is presented. It is a combination of lists that were prepared at Marshall Space Flight Center and Kennedy and Johnson Space Centers, places where intensive shuttle activities are being carried out. This list is intended as a guide or reference and should not be considered to have the status and sanction of a dictionary

    The 1991 3rd NASA Symposium on VLSI Design

    Get PDF
    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2

    Space Transportation System and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of acronyms in everyday use concerning shuttle activities is presented. A glossary of terms pertaining to the Space Transportation System is included

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    • …
    corecore