
CARDIFF
U N I V E R S I T Y

P R I F Y S G O L

CaeRDV[§)
BINDING SERVICES

Tel+44 (0)29 20874949
Fax+44 (0)29 20371921

e-mail bindery@cardiff.ac.uk

mailto:bindery@cardiff.ac.uk

Unified Field Multiplier For GF(p) and GF(2") with
Novel Digit Encoding

Thesis by

Lai Sze Au

In Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philosophy

Cardiff University

Cardiff School of Engineering
PO Box 935, Cardiff, CF24 OYF

Wales, UK

2004

(Submitted October 30, 2004)

UMI Number: U584710

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584710
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

DECLARATION

This work has not previously been accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree

(Candidate)

Date

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A

Bibliography is appended.

Signed (Candidate)

Date

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed (Candidate)

C £
Date

Acknowledgement

I would like to take this opportunity, first of all, to say thank you to my supervisor,
Prof. N. Burgess. Without his guidance and support, none of these would have been
possible. He has always been so patient with me and I have truly learnt a lot from
him.

Secondly, I would like to thank ARM Ltd. for sponsoring me. I would also like to
express my appreciation to my parents, my brother and sisters for being so supportive.

Finally, big THANK YOU to my husband! Thank you for everything!

ABSTRACT

In recent years, there has been an increase in demand for unified field multipliers for

Elliptic Curve Cryptography in the electronics industry because they provide

flexibility for customers to choose between Prime (GF(p)) and Binary (GF(2")) Galois

Fields. Also, having the ability to carry out arithmetic over both GF(p) and GF(2") in

the same hardware provides the possibility of performing any cryptographic operation

that requires the use of both fields. The unified field multiplier is relatively future

proof compared with multipliers that only perform arithmetic over a single chosen

field. The security provided by the architecture is also very important. It is known

that the longer the key length, the more susceptible the system is to differential power

attacks due to the increased amount of data leakage. Therefore, it is beneficial to

design hardware that is scalable, so that more data can be processed per cycle.

Another advantage of designing a multiplier that is capable of dealing with long word

length is improvement in performance in terms of delay, because less cycles are

needed. This is very important because typical elliptic curve cryptography involves

key size of 160 bits.

A novel unified field radix-4 multiplier using Montgomery Multiplication for the use

of GF(p) and GF(2”) has been proposed. This design makes use of the unexploited

state in number representation for operation in GF(2") where all carries are

suppressed. The addition is carried out using a modified (4:2) redundant adder to

accommodate the extra 1 * state. The proposed adder and the partial product generator

design are capable of radix-4 operation, which reduces the number of computation

cycles required. Also, the proposed adder is more scalable than existing designs.

Contents

INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Outline 2
CRYPTOGRAPHY 4
2.1 Symmetric key cryptography 7
2.2 DES and Triple DES 9
2.3 Other Symmetrical Block Cipher Algorithm- IDEA & AES 13

2.3.1 IDEA 14
2.3.2 AES 16

2.4 Public Key Cryptography 16
2.4.1 Diffie-Hellman key agreement protocol 17
2.4.2 RSA 22
2.4.3 RSA Problem (RSAP) 25
2.4.4 Security of RSA 26
2.4.5 ElGamal 29

2.5 Comparisons: Symmetric Key Cr>ptography vs. Public key Cryptography 35
2.6 Elliptic Curve Cryptography (ECC) 41

2.6.1 Elliptic Curve Discrete Logarithm Problem (ECDLP) 42
2.6.2 Elliptic Curve Diffie-Hellman (ECDH) 43
2.6.3 Elliptic Curve Digital Signature Algorithm (ECDSA) 44
2.6.4 ECC vs. RSA 46

FINITE FIELD ARITHMETIC IN HARDWARE AND LITERATURE REVIEW 49
3.1 What is Elliptic Curve? 49
3.2 Elliptic Curve Mathematical Background 54

3.2.1 The order of an element 56
3.2.2 Generator 56
3.2.3 Modular Arithmetic 57
3.2.4 Polynomial Basis 58
3.2.5 Optimal Normal Basis 59

3.3 Elliptic Curve Operations 64
3.3.1 Point Addition over real number plane 64
3.3.2 Point Doubling over real number plane 65
3.3.3 Point Addition over GF(p) 67
3.3.4 Point Doubling over GF(p) 69
3.3.5 Point Addition over GF(2") 69
3.3.6 Point Doubling over GF(2^ 72

3.4 ECC and Side Channel Attacks 72
3.4.1 Known ECDLP attacks 72
3.4.2 Side channel attacks 77
3.4.3 Simple Side Channel Analysis 78
3.4.4 Differential Power Analysis (DPA) attack 79
3.4.5 Countermeasure Against Side Channel Attacks 80

3.5 Literature Review 83
UNIFIED FIELD REDUNDANT ADDER 89
4.1 Truly scalable unified field redundant adder 89

4.1.1 Redundant Number Representation and redundant adder 90
4.2 Unified field Redundant Adder 92

4.2.1 Cell A digit coding 95
4.2.2 Cell B digit coding 96
4.2.3 Cell C digit coding 97

4.3 Unified field adders comparison 99
4.3.1 Area and Speed 99
4.3.2 Scalability 104

UNIFIED FIELD MULTIPLIER 108
5.1 Modular Multiplication Algorithm 109
5.2 Unified Field Montgomery Multiplication 116

5.2.1 Montgomery Multiplication in GF(p) 116
5.2.2 Montgomery Multiplication in GF(2n) 117

5.2.3 Unified Field Montgomery Multiplication 118
5.3 Proposed Word-Serial Montgomery Multiplier Architecture 119

5.3.1 Unified radix-4 Partial Product Generator 121
5.3.1.1 Radix-2 integer multiplication 121
5.3.1.2 Radix-4 multiplication 122

5.3.2 Unified Modulo Reduction 127
5.3.3 Carry absorption Unit 130
5.3.4 Redundant to Binary Number Conversion 136

6 COMPARISONS, IMPROVEMENTS AND CONCLUSIONS 143
6.1 Overall unified field multiplier assessments 143

6.1.1 Area and Speed of Partial Product Generator 144
6.1.2 Overall unified field multiplier assessment - Scalability 149
6.1.3 Area and Speed of Modulus Multiplier Digit Selection 155

6.2 Quotient pipelining 156
6.3 M -bit' M-bit multiplication 162
6.4 Radix-2 Multiplier design 170

6.4.1 Qi-selection 171
6.4.2 Carry Test 172
6.4.3 qiM + PS 173
6.4.4 M -bit' M-bit multiplication using radix-2 173

6.5 Conclusion 179
APPENDIX 1 - ALGORITHMS 181
APPENDIX 2 - LOGICAL EFFORT 184
APPENDIX 3 - SYNTHESIS RESULT REPORT 188
APPENDIX 4 - PAPER 1 [127] 191
APPENDIX 5 - PAPER 2 [160] 196
REFERENCES 207

5
7
10
12
15
17
20
65
66
68
71
79
82
82
85
85
86
87
87
88
91
91
93
98

105
110
1 1 1
113
114
117
118
120
121
122
123
124
124
125
125
126
128
129
129
130
131
135
136
140
141
144
145
145
147
148
150
150

Schematic to show encryption and decryption
Schematic to show Symmetric key cryptography
DES Encryption
DES inner function f
Block Diagram of the IDEA algorithm
Schematic to show public key cryptography
DSA with SHA
P+Q=R
2P=R
y2 = x3 + x over GF(i) field F23
x3 + g4x2 + 1 over F24
Double-and-add method
The Montgomery Ladder
Double-and-add resistant against SPA
Pen and paper multiplication
Sava§’ et. al. Processing Unit: wordlength = 3
Sava§’ dual-field adder synthesised by Mentor
Arithmetic unit of GroPshadl’s n-bit unified multiplier
Block diagram of GroPshadl’s bit-serial multiplier architecture
Carry Save Adder in Wolkerstorfer’s design
Conventional Redundant Adder w = 6
Binary Full Adder
Redundant Dual Field adder
Overall gate implementation of new dual field (4:2) adder
The ratio of delay due to transistor and wire to the delay due to
transistors alone
The classified pen-and-paper division method
Knuth Algorithm (m*. i > |_6/2_[)
Barrett’s Algorithm (m = b2n div m)
Montgomery's Algorithm
Montgomery Multiplication in GF(p)
Montgomery multiplication in GF(T)
Bit-wise Montgomery Multiplication (step-by-step)
Proposed Word -Digit Dual-Field Multiplier Architecture
unsigned Radix-2 AxB Multiplication
Radix-4 multiplication
partial product generation in radix-4 with pre-computation of 3xA
Grobschadl Booth encoder circuit
Grobschadl unified radix-4 partial product generator
Field-Embedded Binary Number Encoder
Radix-4 Partial Product Generator
q{ 1] logic
Logic for BS[1]
Simplified logic for <7, [1] combined with BS[1] logic
Modulo multiple generator
Modified architecture with carry absorption
Overall architecture with carry test
Carry Test
circuit for binary conversion
Final overall architecture
Traditional MUX implementation
MUX implementation for Pj[l] as a 4-inputtri-state inverter
MUX implementation for Pi[0] as a 4-input tri-state inverter
Multiplexer input connection for qM
8-bit Multiplier simulation diagram
PPG unit quotient qi propagation
MUX implementation
Wordlength w vs. Delay (F04) for traditional and

154
157
157
158
158
159
160
161
164
165
168
169
171
174
177
178

tri-state inverter multiplexer implementation
Algorithm 1 non-pipelined
Architecture 1 non-pipelined
Algorithm 2 with quotient pipelining for radix-2 multiplication
Proposed architecture with quotient pipelining (for radix-4 multiplication)
Quotient Pipelined multiplier architecture
Daly's modified architecture
Proposed architecture using Daly’s quotient pipelined structure
Radix-4 operation
Timing diagram for radix-4 operation (reuse all modules)
Radix-4 operation (duplicated adder modules)
Radix-4 operation (duplicated adder and PPG modules)
Radix 2 PPG unit
Radix 2 Overall Architecture
Radix 2 operation
Radix 2 (reuse all modules)

TABLES
Table 2.1 Advantages and disadvantages of Symmetric Key Algorithm 35
Table 2.2 Advantages and disadvantages of Public Key Algorithm 35
Table 2.3 Equivalent Strength 37
Table 2.4 Recommended algorithms and minimum key sizes 39
Table 2.5 Recommended minimum symmetric security levels and RSA

key sizes based on protection lifetime 41
Table 2.6 System requirements for elliptic curve cryptosystems and RSA 47
Table 2.7 The storage requirements in bits when making a naive comparison

between an elliptic curve cryptosystem over GF^) where q is 160
bits in length and RSA with a 1024-bit modulus 47

Table 3.1 Number of field multiplications and inversions for affine and projective
point addition and doubling 52

Table 3.2 Timings (in ms) on a 1000 MHz Pentium III over Binary Field 53
Table 3.3 Execution time for projective and affine coordinate

implementations of elliptic curve multiplication 53
Table 4.1 Conventional Redundant Representation 91
Table 4.2 Table of addition for GF(p) 92
Table 4.3 Table of addition of for GF(2") 92
Table 4.4 Cell A addition 94
Table 4.5 Cell B addition 94
Table 4.6 Cell C Addition 94
Table 4.7 Karnaugh Map for Cell A addition 95
Table 4.8 Table to show redundant representation of sums 96
Table 4.9 Karnaugh Map for Cell A addition 96
Table 4.10 Karnaugh Map for Cell B 97
Table 4.11 Karnaugh Map for Cell C 97
Table 4.12 Logical effort of (4:2) unified field adder 100
Table 4.13 Logical effort of path 1 of Sava§ unified field adder 102
Table 4.14 Logical effort of path 2 of Savas unified field adder 103
Table 4.15 The ratio of delay due to transistor and wire to the delay due

to transistors alone 104
Table 4.16 Logical effort of FSEL path in Savas unified field adder 105
Table 4.17 Savas' Adder results 107
Table 5.1 Complexity of the three reduction algorithm in reducing a 2fc-digit

number x modulo a £-digit modulus m 114
Table 5.2 Execution times for the reduction of a 2A-digit number modulo a

A-digit modulus m for the three reduction algorithms compared to
the execution time of a£ x k - digit multiplication (r = 2 16, on a 33
MHz 80386 based PC with WATCOM C/ 386 9.0) 115

Table 5.3 Radix-4 Partial Product Generation 126
Table 5.4 Multiple of M 127
Table 5.5 Selection of Modulo Multiple, q ^M 127
Table 5.6 Binary Conversion 129
Table 5.7 Possible results PP = A*bt 132
Table 5.8 All possible PS = PP+ R for GF(p) 132
Table 5.9 Combinations of PS + q M 133
Table 5.10 Result M*qi for different cases of PS 133
Table 5.11 Results for R 133
Table 5.12 Redundant to binary representation 136
Table 5.13 Redundant to binary conversion with Carry 137
Table 5.14 Karnaugh map for binary bit conversion 137
Table 5.15 Karnaugh map for carry bit generation 138
Table 5.16 Redundant to binary conversion by checking carry from bit/-1 138
Table 5.17 Karnaugh map for binary conversion by checking carry from the bit/-I 1 139
Table 5.18 Karnaugh map for carry bit generation by checking carry from the bit/'-1 139
Table 6.1 4 input MUX logical effort 151
Table 6.2 Logical effort delay for the 4-input multiplexer

(traditional implementation) of different wordlength 152

Table 6.3 Logical effort for the 4-input multiplexer
(4-input tri-state inverter implementation) 153

Table 6.4 Logical effort delay for the 4-input multiplexer
(tri-state inverter implementation) of different wordlength 154

Table 6.5 Modulus Multiplication Digit 155
Table 6.6 Radix 2 multiplication 171
Table 6.7 Radix 2 q - selection 172
Table 6.8 All possible PS 172
Table 6.9 PS and qM combination 172
Table 6.10 Radix-2 Redundant Montgomery Multiplier Delay 175

List of Abbreviations

G ¥(p)/¥P
GF(2") / F2"
DES
DEA

IDEA

PES

IPES

AES

mod
SHA
DSA

DSS
ECDSA

ECDH

ECDLP

©
DPA

A

V

F04
Logical Effort: g
Logical Effort: b
Logical Effort: h
Logical Effort: p
Logical Effort: N
Logical Effort: F
Logical Effort: D
div

q
gcd

PPG
PP
PS
M,
R

Prime Galois Field
Binary Galois Field
Data Encryption Standard
Data Encryption
Algorithm
International Data
Encryption Algorithm
Proposed Encryption
Standard
Improved Proposed
Encryption Standard
Advanced Encryption
Standard
Modular
Secure hash Algorithm
Digital Signature
Algorithm
Digital Signature Standard
Elliptic Curve Digital
Signature Standard
Elliptic Curve Diffie-
Hellman
Elliptic Curve Discrete
Logarithm Problem
XOR
Differential Power
Analysis
AND logic
OR logic
Fan-out of 4
Logical effort
Branching effort
Electrical effort
Parasitic effort
Number of Stages
Path Effort
Delay
Divide (Arithmetic
function)
Estimated q
Greatest Common
Denominator
Partial Product Generator
Partial Product
Partial Sum
iih bit of the modulus M
Remainder

w .. Wordlength
C, .. i,th bit of the carry C
FSEL .. Galois Field Selection
MUX .. Multiplexer

.. Addition mod 216

.. register

.. Discard bit
Pipeline latches
PPG Generation

1 Introduction

1.1 Motivation

This thesis will describe the VLSI implementation of a modular multiplier that is

capable of performing multiplication in both GF(p) and GF(2”) Galois Fields for

elliptic curve cryptography. Elliptic curve cryptography is becoming more popular

compared with traditional cryptographic systems because it provides a similar level of

security but much smaller key lengths are required.

One of the most used operations in cryptographic systems is modular exponentiation,

which involves many long wordlength modular multiplications. For elliptic curve

cryptography, modular multiplication is one of the most computationally demanding

operations involved. For these reasons, elliptic curve cryptography was chosen to be

the target system and hardware implementation for modular multiplication will be

designed.

In recent years, there has been an increase in demand for unified field multipliers for

Elliptic Curve Cryptography in the electronics industry, because they provide

flexibility for the customer to choose between the Prime (GF(p)) and the Binary

(GF(2n)) Field. Also, having the ability to carry out arithmetic over both GF(p) and

GF(2") in the same hardware provides the possibility of performing any cryptographic

operation that requires the use of both fields. The unified field multiplier is relatively

future proof compared with multipliers that only perform arithmetic over a single

chosen field.

The security provided by the architecture is also very important. It is known that the

longer the key length, the more susceptible the system is to differential power attacks,

due te the increase amount of data leakage. Therefore, it is beneficial to design a

hardware that is scalable, so that more data can be processed per cycle. A scalable

system is a system that can expand word length without affecting logic depth. An

additional advantage of designing a multiplier that is capable of dealing with long

wordlengths is improvement in performance in terms of delay, as less iterations are

1

needed. This is very important because typical elliptic curve cryptography involves

key size of 160 bits.

Apart from being scalable and capable of dual field operation, the system must also

be impartial, which means that it must not favour either of the fields. This unified

field multiplier should avoid the need to compromise on speed and area in order to

gain the dual field ability.

1.2 Thesis Outline

In this thesis, the hardware implementation of ECC in two different fields GF(p) and

GF(2") will be explored. Even though GF(p) and GF(2”) are structurally very

different, they are very similar in nature, this can be exploited when designing this

unified multiplier. This unified ECC multiplier for GF(p) and GF(2”) provides a

simple generic solution to the industry which could give flexibility to their customers

to choose between GF(p) and GF(2”) field with minimal penalty. Note that all the

arithmetic operations in systems such as AES are carried out in finite field GF(2"),

therefore the proposed multiplier could be used for this as well.

Unlike the existing designs, the proposed design does not require an external control

signal that will be propagated to all the cell modules, which cause very high fan-out

to the field selection signal that could affect the scalability of the design. Instead, the

proposed design makes use of a unique 1 * implementation to embed field information

into the number encoding itself.

The proposed multiplier will operate in radix-4; by increasing the radix of the system,

the number of iterations will be reduced. However, there is a trade-off between the

area consumption and the improvement in speed. Radix-4 system is considered to

have the best trade-off between speed and area.

Furthermore, the design uses redundant addition to avoid long carry chains. The

multiplier is in digit serial fashion and Montgomery multiplication is used.

2

The thesis is organised as follows:

Chapter 2 will provides the basic background theory on cryptography, particularly on

common systems such as DES and RSA. Elliptic curve cryptography systems are also

introduced.

In Chapter 3, the operational details of elliptic curves functions will be explored. This

will first be explained in basic real number groups, then elliptic curve groups over

GF(p) and GF(2") will be investigated. The second part of Chapter 3 will be dedicated

to explaining side channel attacks, e.g. differential power attacks and timing attacks.

The final section of Chapter 3 will explore what other unified field operators in

particular multipliers have been implemented.

Chapter 4 describes the implementation of the proposed unified field redundant adder

for multiplication in either GF(p) or GF(2"). This section will explain the unique

encoding method that is employed in this design. The scalability of the adder will be

assessed at the end of the chapter using a technique called Logical Effort.

Chapter 5 will present the overall implementation of the dual field multiplier.

Montgomery multiplication will be compared with other modular multiplication

methods such as Barrett modular multiplication, showing that Montgomery is more

appropriate for the design. It will show the implementation of the partial product

generator, modular reduction, carry test unit and the final redundant to binary

conversion unit.

Chapter 6 will assess the results of the multiplier, suggest alternative methods to

improve the operation of the multiplier, such as using a 4-input tri-state inverter to

implement a multiplexer, rather than using a traditional design. This chapter will also

examine radix- 2 multiplier design and investigate the operation of the multiplier for

A/xM multiplication. Finally, there is a conclusion.

3

2 Cryptography

Cryptography has become an integral part of modem day life as it provides secure

communications. It provides a set of techniques to achieve the goal of different

aspects of security, which are: confidentiality; data integrity; authentication and non­

repudiation. Therefore, in order to achieve an adequate level of security for any

communication, the following issues should be addressed:

• The data should only be readable by authorised recipients;

• the data itself should not be altered by any unauthorised person;

• parties involved in the communication and the data origination should be

identified and authenticated;

• finally, no actions taken by any party involved are deniable.

This is achieved by encrypting the original data, or the plaintext, with a mathematical

function, in order to convert it to the ciphertext. The recipient will then decrypt the

ciphertext with a mathematical function to obtain the plaintext. It is assumed that the

transmission medium is unsecured and eavesdropper could interrupt, intercept,

modify or fabricate the data. Figure 2.1 shows the basic concept of encryption and

decryption. The plaintext m is encrypted by function E with key e. The ciphertext C is

then transmitted to the recipient. The recipient decrypts C using function D with key

d and the decrypted text can be retrieved. The keys should possess the following

properties: Dj = Ee' \ therefore, DJJEe{m)) = m. The two keys d and e could be the

same.

4

Eavesdropper

Encrypted
message c

unsecured
channel

Ecryption
E J m) = c

Decryption
Dd(c) = m

Decrypted
TextmPlaintext m

Sender Recipient

Figure 2.1 Schematic to show encryption and decryption

The security of a cryptosystem depends upon the strength of the algorithm, and the

length of the keys used for encryption and decryption. A cryptosystem should be

secure enough to be able to avoid most attacks except “brute-force”, which is a

known-plaintext attack. The key length must be sufficiently great so that brute-force

attack becomes computationally infeasible. However, it has been discovered that the

longer the key is required by a system, the higher chance of the system being

successfully attacked by differential power attacks [1]. Differential power attacks will

be discussed in Section 3.4.4.

One-way function and trapdoor-one-way-function form the backbone of modem

(public key) cryptography. One-way function is relatively easy to carry out in one

direction, but computationally infeasible or impossible to carry out the reverse

operation Trapdoor-one-way-function is a one-way function such that, given the

extra trapdoor information, the computation of the reverse function becomes

computationally feasible or else it will be difficult or even impossible to reverse.

The main aim of cryptography is to keep the communication secure, which

fundamentally means keeping the plaintext secret by keeping the decryption key

secret. Cryptanalysis is the science of recovering the plaintext of the message without

the knowledge of the key. Each attempt at Cryptanalysis is called an “attack”. One

should assume that the cryptanalyst has complete details of the cryptographic

5

algorithm and implementation. There are six commonly known attacks on encryption

schemes rather than attacks on the implementation.

1. A ciphertext-only attack is one where the cryptanalyst only has knowledge of

the ciphertext and tries to deduce the plaintext or the decryption key by

observing the ciphertext.

2. A known-plaintext attack is one where the cryptanalyst obtains a quantity of

plaintext and its corresponding ciphertext.

3. A chosen-plaintext attack is one where the cryptanalyst chooses the plaintext

and is then able to obtain the corresponding ciphertext, by using this

information the cryptanalyst can deduce the remaining plaintext of the

ciphertext which was previously unseen.

4. An adaptive chosen-plaintext attack is fundamentally a chosen-plaintext

attack, however, the choice of plaintext may depend on the ciphertext from the

previous requests.

5. A chosen-ciphertext attack is one where the cryptanalyst chooses the

ciphertext and is then able to obtain the corresponding plaintext. However, in

order to carry out such operation the attacker needs to be able to gain access to

the decryption equipment but not the decryption key. The cryptanalyst could

now recover the corresponding plaintext of the different ciphertext from the

information deduced before without access to such equipment.

6 . An adaptive chosen-ciphertext attack is fundamentally a chosen-ciphertext

attack, however, the choice of ciphertext may depend on the plaintext from the

previous requests.

There are two different types of cryptography, Symmetric (Private Key) and

Asymmetric (Public Key) cryptography.

6

2.1 Symmetric key cryptography

Symmetric key cryptography is a cryptographic system where the encryption key (e)

is generated from the decryption key (d) or vice versa, as shown in the following

equation:

d = e~l (2 .1)

In most cases, the most practical choice of the key pair for symmetric key

cryptography is when the encryption key (e) equals to the decryption key (d).

Therefore, in order to keep the data secure, the key used must be kept secret. As a

result, symmetric key cryptography is also called private key cryptography. However,

there lies a so-called “key distribution problem”, where an efficient protocol needs to

be established for key agreement and key exchange in a secure manner (such

protocols will not be discussed in this thesis). Figure 2.2 shows the schematic

diagram of symmetric key cryptography.

Eavesdropper
A

key source |-
(e) i

Encryption
_ _ key_a__

Ecryption
EJm) = c

IK

Plaintext m

secured
channel

Encrypted
m essage c

unsecured
channel

Decryption
DJc) = m

V
Decrypted

Text m

Sender Recipient

Figure 2.2 Schematic to show Symmetric key cryptography

7

There are two different types of symmetric key cryptography, and they are block

cipher and stream cipher. Block ciphers can be either symmetric key or public key;

only symmetric key block ciphers are addressed in this section.

Block ciphers operate on plaintext and ciphertext in a group of bits, usually 64 bits

but it could be longer. The blocklength of the plaintext blocks and the ciphertext

blocks are the same. The most important classes of block ciphers are substitution

ciphers and transposition ciphers. These ciphers substitute symbols or a group of

symbols by other symbols or other group of symbols or the symbols in a block is

permuted by a transposition function.

The encryption transformation Ee of a simple substitution cipher where e e K can be

shown as follows:

E,(m) = (e(m,)e(m2)..e(m,)) = (c,c2 ..£,)= c , (2.2)

over A, defined to be an alphabet of q symbols, and M, the set of all strings of length t

over A In addition, K is the set of all permutations on the set A m = (mini2 .. .mt) e M

For decryption, inverse permutation is carried out such that d = e'1. The decryption

transformation is:

Dd{c) = 0 d(cx)d(c2)...d{ct)) = (mxm2 ...mt) = m . (2 .3)

For an encryption scheme with block length /, the encryption function e which is a

transposition function, where K is defined as the set of all permutation on the set {1,

2 .../} can be shown as follows:

Et (m) = = (c,c2 ...c,) = c . (2.4)

For decryption, inverse permutation is carried out such that d = e’1. The decryption

function is:

8

(2.5)

Stream ciphers operate on streams of plaintext and ciphertext. They convert plaintext

to ciphertext one bit at a time. Therefore, they can be considered as a very simple

block cipher with block length equal to one. The encryption transformation Ee could

be defined as follows, which makes use of a simple substitution cipher with block

length equals to one:

(2 .6)

The keystream is defined as a sequence of symbols • - -e\ e K, where K is the key

space for a set of encryption transformations. The keystream can be generated at

random by an algorithm called keystream generator. The decryption transformation

can be described as follows, where d, denotes the inverse of e{.

mi = Ddl (c,). (2.7)

In general, block ciphers are more suitable for software implementations and stream

ciphers are faster and require less complex implementation in hardware. Stream

ciphers are more appropriate for situations where buffering is limited and error

transmissions are high because they have little or no error propagation.

2.2 DES and Triple DES

The most popular symmetric key cryptographic algorithm is Data Encryption

Standard (DES). DES is symmetric block cipher that uses 56-bit encryption key and

has 64-bit block size. This is essentially an improvement of the algorithm “Lucifer”

developed by IBM in the early 1970s [2]. In July 1977, the National Institute of

Standards and Technology (NIST) adopted and issued DES as Federal Information

Processing Standard Publication 46 (FIBS PUB 46) [3]. It provided standards and

guidelines for this algorithm to be used by US Federal agencies. However, the

standard could also be implemented and used by those outside the Federal

9

government, such as for commercial use. The American National Standards Institute

(ANSI) approved DES as a voluntary standard in 1981 (ANSI X3.92) [4], calling it

the Data Encryption Algorithm (DEA). Figure 2.3 shows the encryption process of

DES.

INPUT

6 4 b its

INITIAL PERMUTATION

^ 3 2 b its3 2 b its ^
PERMUTED

INPUT

Ri = L0©f(R0l Kn)

R2=Li©^(R1, K2)

16

PR EO UTP UT

INVERSE INITIAL PERMUTATION

OUTPUT

R 15“ L 1 4 © ̂ (R 14, K15)

R i 6 = L i 5© f (R i 5 , K i e)

denotes XOR

Figure 2.3 DES Encryption

DES is a Feistel network, which means that a block of length n is divided into two

halves: L and R. An iterated block cipher is defined where the outputs of the 7th round

is determined from the output of the previous round and are defined as follows:

10

L, =

R, = L,.t ©/(^.i,^,)

(2.8)

(2.9)

where K, is the sub-key for f *1 iteration and / i s an arbitrary function. Feistel function

is invertible and so the same algorithm can be used for both encryption and

decryption.

For DES encryption, the 64 bits input block will first undergo the initial permutation

IP. The permutated input block becomes the input of a 16-stage complex key

computation process. The output of the 16-stage computation plus a final stage of

block interchange produce the preoutput block, which will then undergo the inverse

of the initial permutation to provide the final encrypted output. The cipher function /

operates on two blocks, the 32 bits R„ and the 48 bits Kn chosen from the 64-bit key

and produces a block of 32 bits. This 32 bits block becomes the block R input for the

next iteration. Figure 2.4 depicts the DES cipher function / and the function is

described as follows:

f (R l_l,K l) = P(S(E(Rl_l © * ,))) , (2.10)

The implementation of DES is relatively easy particularly on special purpose chip due

to its repetitive nature.

11

32

expansion (E

48 i
(+)

48

48

8 x 6 bits

substitution

8 x 4 bits

P) permutation

A[Ri.1.K i) = P(S(E(RM®K,)

Figure 2.4 DES inner function/

However, due to improvement in computational power, “single” 56-bit key DES has

become less secure and so “single” DES has been phased out and is being replaced by

Triple DES algorithm (TDEA) [5], which has an effective key length of 156 bits,

even though the overall key length is 192 bits. This is because although the input key

of DES is 64 bits, only 56 bits are actually used by the DES algorithm. The other 8

bits, which are not used by the algorithm, may be used for error detection and the

least significant bit in each byte is a parity bit and is ignored. The procedure for

encryption is the same as regular DES, but it is repeated three times and so TDEA is

three times slower than single DES. The input block is first encrypted using DES

algorithm with the first key (KEY1), the output will then become the input of the

second stage where the block will be decrypted using the second key (KEY2).

Finally, the output of the second stage will become the input of the third and last

stage. The input block is encrypted using the third key (KEY3). The final result will

then be used in the computation of the ciphertext. None of the intermediate results is

revealed outside the cryptographic boundary.

DES is a hardware friendly algorithm due to its regular structure, which makes

exploitation of parallelism by pipelining easy. DES and Triple-DES commercial

12

implementations are generally available in smart card IC design, such as mifare pro

X P8RF6008 by Philips [6]. This particular design makes use of a Triple-DES co­

processor to speed up the calculation time. According to the specifications, by using a

co-processor, about three orders of magnitude of speed improvement could be

achieved compared to software solutions and the total time for a triple-DES

calculation to less than 35ps at 13.56MHz. Another example of Triple-DES IC smart

card design is KS88C92008/4/2/1 by Samsung Electronics [7]. In this

implementation, a specific Triple-DES module is included in the smart card design.

The fastest DES execution time performed by this module is 77.9 ps at 4.52 MHz.

Even though DES was developed for implementation on hardware, many software

implementations have been developed. However, DES implementation in software

tends to be less efficient, an example of software implementation of DES can be

found in [8]. In this report, the author shows the results of DES algorithm

implementation using C code on the C6000 Digital Signal Processing platform and

compiled on the Texas Instruments’ Optimizing C Compiler where no assembly code

is used. In this report, DES is implemented at data rates as high as 52.4 Mbits per

second for DES and 22.3 Mbits per second for triple-DES on the C6201 McEVM

(200 MHz). Using the C6211 DSK (150 MHz), data rates were measured as high as

38.8 Mbits per second for DES and 17.8 Mbits per second for triple-DES. The author

found that using C code for DES implementation provides flexibility, and is a quick

and inexpensive way to add encryption functionality to a design. Other DES software

implementation examples can be found in [161] and [163].

2.3 Other Symmetrical Block Cipher Algorithm - IDEA & AES

In this section more symmetrical block cipher algorithm are introduced and they are

IDEA and AES.

13

2.3.1 IDEA

International Data Encryption Algorithm (IDEA) is a symmetrical block cipher

algorithm with a 64-bit block length and a 128-bit input key. It was first proposed in

1990 by Xuejia Lai and James Massey and was called Proposed Encryption Standard

(PES) [9]. It was then strengthened and renamed, from Improved Proposed

Encryption Standard (IPES) to IDEA in 1992 [10]. Figure 2.5 shows the clock

diagram of the IDEA algorithm. As in DES, IDEA is of the Feistel structure, it

consists of eight iterations plus an output transformation only. The 64-bit input block

is divided into four 16-bit sub-blocks and are denoted as X\, Xj, X3, X4. In the course

of each iteration, the following events will take place:

1. Multiply plain text block X\ by the first sub-key Ki

2. Add plain text block X 2 with the second sub-key K2

3. Add plain text block X 3 with the third sub-key K3

4. Multiply plain text block X4 by the fourth sub-key K4

5. XOR the results of step 1 and step 3

6 . XOR the results of step 2 and step 4

7. Multiply the result of step 5 by the fifth sub-key K5

8 . Add the results of step 6 and step 7

9. Multiply the result of step 8 by the sixth sub-key K6

10. Add the results of step 7 and step 9

11. XOR the results of step 1 and step 9

14

12. XOR the results of step 3 and step 9

13. XOR the results of step 2 and step 10

14. XOR the results of step 4 and step 10

16 K

MA - box

K ,(9)

16
*

Yi

round 1

K4(9)

16

ro u n d 2 ,.., 8
(2<r<8)

o u tp u t
tra n sfo rm a tio n

V4
plaintext (X,, X2, X 3, X4)
subkeys K j (r> for round r

ciphertext (Yi, Y2t Y3i Y4)
© bitwise XOR of 16-bits

sub-blocks
® addition mod 216
multiplication mod 216 + 1 (with 0 interpreted as 216)

Figure 2.5 Block Diagram of the IDEA algorithm

15

2.3.2 AES

In September 1997, NIST initiated the development of a new Encryption Standard -

Advanced Encryption Standard (AES), they requested candidates develop a new

algorithm strong enough to replace DES and Triple DES. On 26th November, 2001,

NIST published a new federal standard known as FIPS PUB 197 [11], the chosen

algorithm was called Rijndael [12].

The AES algorithm is a symmetric block cipher that is capable of using cryptographic

keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. AES

processes data in a group of eight (a byte), i.e., a sequence of eight bits is treated as

one entity. Therefore, all the arithmetic operations required are carried out in finite
O Q

field GF(2). More details on arithmetic operations in GF(2) are described in chapter

3.

2.4 Public Key Cryptography

As mentioned in section 2.1, secret key cryptography has a weakness of “key

distribution problem” or “key management problem”. This is caused by the fact that

the same key is used for both encryption and decryption and therefore the key must

be kept secret. Public key cryptography or asymmetric key cryptography overcomes

this problem by using different encryption (e) and decryption (d) key pair so that

confidentiality, data integrity, authentication and non-repudiation can be achieved.

Figure 2.6 shows the schematic diagram of public key cryptography operations.

16

Eavesdropper
A A

._ .. ' unsecured" i-Encryption i
key e |

Z t =
channel

Ecryption
EJm) = c

A

Plaintext m

h

V
Encrypted
m essage c

unsecured
channel

key source
M>

Decryption
DJc) = m

Y
Decrypted

Text m

Sender Recipient

Figure 2.6 Schematic to show public key cryptography

2.4.1 Diffle-Hellman key agreement protocol

In 1976, Diffie and Heilman proposed a new cryptography system that makes use of

public key with a key agreement protocol [13], which provided the ground for future

development of public key cryptography. The key agreement protocol provides a

means for two users to agree on a secret key over an insecure channel without prior

arrangement. The security of the protocol depends on the discrete logarithm problem

over a finite field GF(p) where p is a prime number. It has been proven that under

certain assumptions breaking the Diffie-Hellman protocol is equivalent to computing

discrete logarithms [14]. The Diffie-Hellman key agreement protocol involves a

prime parameter p and a generator g, which is an integer smaller than p. Let:

n = g k modp fo ri <&</?-1 (2.11)

Therefore, k is:

k = logg nm odp for 1 < n <p-\ (2.12)

17

User A and user B can share a secret key by first of all generating a random private

value a and b respectively, where both value a and b are from the set of integers {1,

...,p - \ }. They then generate their respective public keys:

g amodp and g bmodp (2.13)

When the two users wish to communicate privately, they exchange their public keys.

A computes:

g ab= (gb)a mod p (2.14)

User B computes:

g 1™ = (ga)b mod/? (2.15)

Since gab = gba, therefore they now have a shared key. It is assumed that the secret

component gab is computationally infeasible to be worked out providing the random

prime number p is large enough. In the same paper, Diffie and Heilman also

suggested the idea of using digital signatures to ensure the authenticity of the data.

Much research has been done to improve the authenticity of the data, Diffee et al

proposed an authentication and authenticated key exchange protocol called station-to-

station (STS) in 1992 [15].

Public key cryptography works on the assumption that it is computationally infeasible

to work out decryption key d given the encryption key e. Encryption Ee is being

viewed here as a trapdoor one-way function with the decryption key d being the

trapdoor information necessary to compute the inverse function, hence allow

decryption. Given that it is not necessary for the encryption key e to be kept secret,

therefore it can be made public and hence it is called the public key. However, the

corresponding decryption key must be kept secret and hence it is called the private

key. The public key allows any entity to send encrypted messages to the same

18

recipient using the same public key, only the intended recipient can decrypt the

message using their private key.

It is particularly important for public key cryptography to ensure the authenticity of

the public keys to avoid protocol failure where the origin of the public keys are not

known. Without appropriate measures, an adversary could impersonate the intended

recipient B and issue false public key to sender A. The adversary will then be able to

intercept and decrypt the message with the private key before sending the message to

B, which is now encrypted with B’s public key. One solution to such problem is by

making use of Digital Signature Algorithm (DSA). The concept of digital signature

algorithm is as follows:

Sender A “signs” the message set M = {my, m2 , ...} by using a signature

transformation function Sa, which will be kept secret by the sender. The signature

transformation function transforms the message set to give signature set S = {sy, $2 ,

S3 , ...}. This transformation can be interpreted as follow:

Sender A transmits the signature pair (m; s) where s is the signature for message m.

The recipient can verify the signature by obtaining the verification function Va from

A. Recipient B computes the following to verify the signature:

The recipient accepts the signature when the signature pair (m; s) matches; otherwise,

the signature is rejected.

In general, DSA enables digital signatures to be generated and verified. It is a pair of

large numbers, which form the key pair, that are computed according to the specified

algorithm, within parameters to verify the authenticity of the signature and hence the

integrity of the data.

s = SA(m) (2.16)

u = VA(m;s) (2.17)

19

In practice, a hash function, sometimes called one-way hash function, is used in the

signature generation process to obtain a condensed version of data called a message

digest. Figure 2.7 shows digital signature generation and verification with a Secure

Hash Algorithm. The Secure Hash Standard that is specified by NIST is known as

FIPS PUB 180-1 [16] and the Secure Hash Algorithm is called SHA-1.

Signature Generation Signature Verification

Message Received
Message

Private
Key

Secure Hash
Algorithm

Secure Hash
Algorithm

i
Message

Digest
1

l
Message

Digest
1

1 Digital Public
Signature Key

1 Digital

DSA Signature DSA
Verification
Operation

Signature

Operation

Signature Verified
or

Signature not Verified

Figure 2.7 DSA with SHA

The hash function is a process that produces a condensed version of data of arbitrary

length (signed or pre-signed message), called the hash value. In the case of FIPS 180-

1 standard, the input message must be less than 264 bits in length, the output of the

Secure Hash algorithm is called the message digest, and is 160 bits long. Hash

function has the following properties:

1. It is relatively easy to compute for any given input.

2. It is one-way.

3. It is collision-free - this means that the Hash function is computationally

infeasible to find any two messages x and y such that H(x) = H(y).

20

For the digital signature generation process, the message digest becomes one of the

two inputs to the digital signature operation, which generates the digital signature as

the output. The digital signature and the signed message are sent to the verifier.

For digital signature verification process, the message digest is one of the three inputs

to the digital signature verification operation, which verifies whether the signature

matches or not. The Hash function used must be the same as the one used for

signature generation.

Note that for digital signature operation with signature hash algorithm, only the hash

value is signed. Compared with processes where the message is signed directly,

signing just the message digest saves time and space. With the direct signing method,

the message needs to be split into blocks of appropriate size and each block is signed

individually.

Various other signature schemes exist, such as, the ElGamal signature scheme [17]

and the Digital Signature Standard (DSS) FIPS 186 published by NIST in 1991 [18],

which is a variant of ElGamal scheme. Another well-known digital signature scheme

is RSA signature scheme, which was first introduced in 1977 [19] [20]. In July 2002,

Alfred Menezes published Evaluation of Security Level of Cryptography: RSA

Signature Schemes (PKCS#1 vl.5, ANSI X9.31, ISO 9796), which gave a good

overview of the security of RSA signature schemes [21]. Digital Signature Standard

(DSS) published by NIST on 27 January 2000 [22] described three algorithms for

digital signature generation and verification. They are the following:

1. Digital Signature Algorithm (DSA)

2. RSA digital signature algorithm

3. Elliptic Curve Digital Signature Algorithm (ECDSA)

21

2.4.2 RSA

RSA cryptosystem was invented by R. Rivest, A. Shamir, and L. Adleman in 1978

[20], and is one of the most widely used public key cryptosystems. As mentioned

previously, RSA not only encrypts and decrypts messages; it can also be used for

digital signatures. Its strength is based on integer factorization problem, where a large

number is to be factorized.

Prior to encryption, the RSA public key and the corresponding private key have to be

generated before the entity A could encrypt the message with entity B’s public key.

The procedure for RSA key generation is as follows:

1. Generate two large random and distinct prime numbers p and q, for

maximum security,/? and q should be of equal length.

2. Compute the product:

3. Select a random integer encryption exponent e, 1 < e < 0 , such that

gcd(e, 0) = 1, i.e. they are relatively prime.

4. Use the extended Euclidean algorithm (see Appendix 1) to compute the

unique integer decryption exponent d, I < d < 0 , such that ed= 1 mod 0 ,

hence, d and n are also relatively prime.

n= pq

and

(2.18)

0 = (p - \) (q - \) (2.19)

d = e~l mod ((p-!)(#-!)) (2.20)

5. R’s public key is («, e); B’s private key is d.

6 . p and q could now be discarded and should never be revealed.

22

A can now encrypt a message for B, and B can decrypt using the private key. The

RSA encryption and decryption procedures are as follows:

1. Encryption:

a. Obtain B 's authentic public key (n, e).

b. Represent the message as an integer m in the interval [0; n - 1].

c. Compute c = me mod n

d. Send the ciphertext c to B.

2. Decryption:

A decrypts plaintext m from c by carrying out the following:

m = cd mod n.

The assumption is that the RSA function is a trapdoor one-way function and the

private key is the trapdoor. In order to compute c — me mod n efficiently, a “Repeated

square-and-multiply algorithm for exponentiation in Zn” could be used (see Appendix

1). This kind of modular exponentiation is performed each time a part of the message

is encrypted/decrypted. Both e and n are very large integers and so this operation is

very computationally intensive, however, the Chinese Remainder Theorem (CRT)

(see Appendix 1) can be used as a method for computing the modular exponentiation.

By using CRT, the large modulo exponentiation can be split into two smaller

exponentiations, namely over p and over q, which are already known. Fermat’s Little

Theorem (see Appendix 1) can be used to further reduce the size of the problem.

Even with these improvements, RSA cryptography is slower than the commonly used

symmetric-key encryption algorithms such as DES (typically, in software, DES is 100

times faster than RSA and in hardware can be between 1,000 to 10,000 times faster

depending on the implementation). In practice, RSA encryption is most commonly

23

used for the transport of symmetric-key encryption algorithm keys and for the

encryption of small data items.

RSA Laboratories’ recommended standards can be found in [23]. RSA Laboratories

recommended in 1999 that the current industry standards for the RSA algorithm, such

as the ANSI X9.31 [24] banking standard for RSA signatures, require a minimum of

1024 bits for an additional level of security.

When entity B wants to send a signed message M to entity A, first B computes his

signature for message M with his private decryption key (Db):

S = Db(M) (2.21)

B then encrypts the signed message using A ’s public key:

C = Ea(S) (2.22)

A can decrypt the encrypted signed message with his private decryption key (Da):

S = Da(C) (2.23)

S = Da(Ea(S)) (2.24)

A can recover the message using B’s public encryption key Eb'

M = Eb(S) (2.25)

M = Eb(Db(M)) (2.26)

Hence, RSA signature scheme recovers the message from the signature, the sender

does not need to send the encrypted message separately with the signature.

24

2.4.3 RSA Problem (RSAP)

The RSA Problem is defined as follows, given a positive integer n = pq, where p and

q are two distinct odd primes; a positive integer e such that gcd(e; (p-l)(#-l)) = 1;

Find the plaintext integer m such that me = c (mod ri). Therefore, one has to find the

e* roots modulo a composite integer n. There is exactly one m e(0, 1, ..., n-\) for

each integer ce(0, 1 ,..., n-\). Rivest and Kaliski [25] provides a good insight into the

RSA Problem.

RSA assumption is that the security of RSA depends on large integer factorisation

problem: RSA Problem becomes difficult to solve when the modulus n is sufficiently

large and both p and q are two large random and distinct prime numbers, therefore

both the plaintext m and ciphertext c is a random number between 0 to n-\. It is

important for plaintext m to be random and be over a wide range of [0, n-1],

otherwise an adversary can compute m by trying all possible values form.

Factoring is believed to be a mathematically difficult problem, i.e. NP complete, it

has not yet been mathematically proven and an efficient factoring algorithm remains

to be discovered, however, this is widely believed to be unlikely.

It has been said that the RSA problem is closely related to factoring, Boneh and

Venkatesan show the RSA problem may not be equivalent to integer factorisation

when the public exponent is small [26], an example is given where public exponent e

= 3. Another RSA problem consideration is that, it is not necessarily true that a large

number is more difficult to factor than a small number. However, it is known that a

number with large prime factors is more difficult to factor than a number with small

prime factors; hence, large modulus should be used for an RSA cryptosystem. There

are other rules in choosing the modulus in order to preserve security of RSA, as

mentioned before, the two primes, p and q, which form the modulus should be of

roughly equal length. In addition, one should be aware that if the two primes are too

close together, it increases the ease of determining the values by the adversary, since:

Ifp^q, let mean ofp and q = m = [(p+tf)/2]; then p can be determined as:

25

p = m ± J (m 2 - n) ; (2.27)

Where n =pq.

However, the probability of this happening in reality is low. Another concern over

increasing key size is that the overall RSA algorithm operations will also take longer.

For example, doubling the length of the modulus will on average increase the time

required for encryption and signature verification, (which made use of the public key)

by a factor of four, and increase the time taken by the decryption and signature

operation, (which make use of the private key) by a factor of eight. The reason why

public key operations are affected less than private key operations is that the public

exponent can remain fixed while the modulus is increased, whereas the length of the

private exponent increases proportionally. One should choose a modulus (key) length

with the following considerations:

1. The value of the protected data and the length of time it needs to be protected;

2. How powerful are the threats.

2.4.4 Security of RSA

In the previous section, the security of RSA cryptosystems relating to RSA problem

and factoring was discussed. In this section, more security issues and attacks on RSA

cryptography will be reviewed. Boneh provides a good general insight into security of

RSA encryption [27].

1.- Attack relating to RSA factoring problem / Chosen Cipher Attack

As mentioned previously, public key cryptography is susceptible to chosen

cipher attacks, RSA is also prone to this type of attack. Some

characteristics of RSA can be exploited to perform chosen cipher attack,

26

such as multiplicative property of RSA. This is described in [28]. More

chosen cipher attack on RSA are described in [29] and [30].

An effective method to defeat such an attack is known as Optimal

Asymmetric Encryption Padding (OAEP) [31]. The objective of OAEP is

to mask the plaintext message M with the hash G of a random number r

and this string of masked data is concatenated with the XOR of hash H of

the mask data (MBG(r)) with random string r as shown follows:

[M © G(r)]||[r © H (M © G(r))] (2.28)

|| denotes concatenation. Different variations of OAEP can be found in

[32] and [33].

2. Small Encryption Exponent e

The advantage of using small encryption exponent e, such as e = 3 is that

faster public key encryption and faster public key signature verification

can be gained. However, it has been shown by Hastad [34] that having

small encryption key could be insecure when the same plaintext is sent to

many different recipients. Each recipient has their own public moduli,

since these moduli are most likely pair-wise relatively prime, therefore an

attacker could quite easily compute the plain text using Gauss’s algorithm.

In such cases, small encryption exponent should be avoided.

3. Forward Search Attack

As mentioned previously, the range of message must be large and

. unpredictable, otherwise an adversary can decrypt a ciphertext by

encrypting all possible plaintext. One method to avoid this attack is to

append pseudorandom bit-string to the pre-encrypted plaintext message.

4. Small Decryption Exponent d

27

To speed up RSA signature generation or decryption time, one may

choose to use small decryption exponent d, however, Boneh and Durfee

[35] shows that when the private key used in the RSA public key

cryptosystem is less than A025, the system is insecure. Wiener [36] also

proposed an attack on RSA when small decryption exponent d is used. To

avoid this attack, the decryption exponent d should be roughly the same

size as n.

5. Multiplicative Properties

Let m\ and m2 be two plaintext messages and let c\ and C2 be their

respective RSA encryption:

(mlm2y = m*m2 = cxc2 (modn) (2.29)

This means that the plaintext m = mi m2 mod n and the corresponding

ciphertext is c = C1C2 mod n. Due to this property of RSA, adaptive chosen

cipher attack can be performed, and the adversary can retrieve the

plaintext. This can be avoided by applying pre-defined structure

constraints on the plaintext. All ciphertext decrypted to a message which

does not possess the same pre-defined structure will be rejected as

fraudulent.

6. Common Modulus Attack

RSA system where the users within an organization would share the

public modulus is susceptible to this type of attack. For example, the

administration would choose the public modulus n, two users would then

have their encryption and decryption key generated ((ei, n), di)) and ((e2 ,

n), d2)) from the same modulus. The eavesdropper can recover the

plaintext by doing the following:

28

C, = M el mod 77 (2.30)

C2 = M e2 mod n (2.31)

(el)a + (e2)b = 1 i f g c d ^ , e2) = 1 (2.32)

M = C° + C2 mod 77 (2.33)

To avoid this attack each entity should choose its own RSA modulus n.

Since any knowledge of encryption and decryption key pair allow for the

factorisation of the modulus n.

7. Cycling Attack

Given c = me mod n, there exists a k such that ce mod n = c , so

c**' modrt = m . ce* mod/7 is then computed until c is obtained and the

previous power is the message. However, this attack is considered non­

threatening to the security of RSA since factoring n is assumed to be

intractable.

8. Message Concealing

A message is unconcealed when it encrypts back to itself, i.e. me=m{mod

n), however, this cannot be avoided since there will always be some

messages which are unconcealed, such as, when m = 0, m = 1 and m = n-l.

Even though this might be the case, it does in actuality pose a threat since

the proportion of the unconcealed message is small as p and q are

randomly chosen prime numbers, and e is also chose at random.

2.4.5 ElGamal

The ElGamal system [17] is a public-key cryptosystem, which unlike RSA algorithm

is based on the discrete logarithm problem, where the security of RSA is based on

integer factorisation. It is commonly used for both encryption and signature. The

ElGamal encryption algorithm is similar in nature to the Diffie-Hellman key

29

agreement protocol, the system contains a prime integer p and an integer called

generator g, whose power modulo p generates a large number of elements. Each

entity creates a public key and a corresponding private key. Entity A creates the key

pair and sends public key information to entity B. B will then encrypt the message

with A’s public key. A decrypts the message with his/her own private key. All entities

can choose to use the same prime p and generator g. If common parameters are

chosen, they do not need to be published as part of a public key. The advantage of

having a common parameter is that the computation can be sped up by using

precomputations. The disadvantage is that a larger moduli p may be needed in case of

security being compromised.

The ElGamal system is based on discrete logarithm problems like the Diffie-Hellman

system. For any cryptographic system that is based on discrete logarithm problems,

the chosen large prime p must be chosen such that (p-1) has at least one large prime

factor, otherwise the security of the system will be compromised. Discrete logarithm

problems apply to mathematical structures called groups, where a group consists of a

set G which could be finite or infinite, together with a binary operation called group

multiplication. This group multiplication is defined as:

* G x G -> G (2.34)

This means that the product of a*b is e G for any two elements a and b e G. A

group consists of the following properties:

1. Associatively: The operation * is associative, i.e. a*(b*c) = (a*b)*c for

any a, b, c, e G.

2. Identity element: For each element a e G, there is an identity element

where a*e = e*a = a.

3. Inverse element: For each element a e G, there is an inverse element,

such that a*b = b*a = e which is the identity element where b e G.

30

The group G is said to be closed for all a, be G, a* be G, also the group G is said to

be Abelian (or commutative) if a*b = b*a for all a, be G.

For g e G and a number n, gn means that g is multiplied itself n times, e.g. g3 = g*g*g

and the discrete logarithm problem is defined as follows:

Let g e G and h e G, find the value x such that:

g x =h (2.35)

The basic ElGamal Encryption scheme is defined as follows:

1. Key generation for ElGamal public key encryption:

a. Generate a large random prime number p and a generator g of the

multiplicative group of the integer modulo p.

b. Select a random integer a, where a is 1 < a < p-2 , then compute ga

mod p.

c. Public key: (p, g, ga); Private key: a.

2. ElGamal public encryption:

a. Obtain recipient’s authentic public key (p, g, ga).

b. Represent the message as an integer m in the range {0, 1 1 } .

c. Select a random integer k, where kis 1 <k<p-2 ,

d. Compute the /and S:

7 - g k mod/? (2.36)

31

S = m -(ga)k mod p (2.37)

e. Ciphertext c = {y, S)

3. ElGamal decryption:

a. Compute the following:

y p~x~a mod p (2.38)

Where a is the private key of the recipient and f ' 1'0 = Y~° = gak.

b. Recover the message m by computing the following:

i.Y a) ' 8 m°d P (2.39)

Note that the ElGamal Encryption scheme requires two modular exponentiations, and

the ciphertext is double the size of the message. ElGamal algorithm is slower

compared with the RSA algorithm, particularly for signing. The randomness required

by this encryption scheme reduces the effectiveness of a chosen-cipher attack. As

mentioned before, the security of the ElGamal system is based on discrete logarithm

problem in Z j , however, it has not yet been proven that this is equivalent to a discrete

logarithm problem in , on the other hand, the ElGamal system is equivalent to the

Diffie-Hellman problem. In order to ensure the security of the system, the

randomness of random integer k must be ensured, it is very important that a different

random integer k is used for encrypting the different messages. Apart from the

multiplicative group Zp*, the ElGamal system is also suitable for the following

groups:

1. The multiplicative group F2m of the finite field F2m of characteristic two.

2. The multiplicative group Fq* of the finite field where q = p m and p is a

prime.

32

3. The group of units , where n is a composite integer.

4. The class of group of an imaginary quadratic number field.

5. The group of points on an elliptic curve over a finite field.

6. The jacobian of a hyperelliptic curve defined over a finite field.

The ElGamal Digital Signature scheme is as follows:

The key generation process is the same as ElGamal encryption as shown before:

• Public key: (p, g, ga)

• Private key: a.

1. Signature generation:

a. Choose random secret integer k, where k is 1 < k < (p-2) and gcd (k, p-

1) = 1.

b. Compute the followings:

r = g k modp (2.40)

Solve for s in the signing equation:

m = ar + ks mod(p -1)

/. s = k~l (m - ar) mod(/? -1) (2.42)

(2.41)

c. The digital signature is (r, s) and the signed message is (m, (r, 5))

33

2. Signature verification:

a. Verify that 1 < r< p -1; if not, reject.

b. Accept the signature if and only if

(ga)rrs modp = g m modp (2.43)

As mentioned before, DSS is NIST’s modification of ElGamal Signature Scheme,

however, DSS is only useful for signing, and it is not good for encryption. The

differences between DSS and ElGamal Signature scheme is as follows:

• Use + instead of - in signature verification

• Introduce prime q which is a 160-bit prime factor of (p-\) and hence signature

(r, s) has been changed to the following:

r = (gk modp)modq (2.44)

s = k~l(h(m) + ar) mod q (2.45)

• p is a 512-bit (revised up to 1024-bit) prime such that q divides (p-1)

• q is 160-bit prime factor of (p-\)

• h is a 160 bit one-way hash function

• 512-bit Public key

• 160-bit private key a

34

2.5 Comparisons: Symmetric Key Cryptography vs. Public key

Cryptography

Table 2.1 - Advantages and disadvantages of Symmetric Key Algorithm

Advantages • High rates o f data throughput, especially for hardware
implementation and less processor-intense

• Relatively short key needed

• Can be used as primitives to construct other cryptographic
mechanism, e.g., hash functions and digital signature
scheme

• Can be transformed into strong product ciphers

• Long history

Disadvantages • Key distribution problem - key must be kept secret,
particularly in large communication network

• Key management problem in large network - need
unconditionally trusted TTP

• Keys have to be changed as frequently as each session in a
two party communication

• Symmetric key signature scheme requires large key for
verification or need trusted TTP

Table 2.2 - Advantages and disadvantages of Public Key Algorithm
Advantages • Only need to keep private key secret, however, the

authenticity o f the public key must be ensured through
other means

-
• For key management, only a functionally trusted third

party (TTP) is needed (Offline manner), instead o f a
unconditionally trusted TTP that is required by TTP (Real­
time)

• Depending on the type o f communication, the key pair can
be reused many times

35

• Relatively efficient digital signature scheme

• Suitable in a large network communication, considerably
smaller keys required than in case o f symmetric key system

Disadvantages • Throughputs rates for most encryption methods are
several magnitudes slower than that o f common symmetric
key system

• Need large key size compare with symmetric key (by a
factor o f 1 0 or more) to minimise the chance o f short-cut
attacks (e.g. factoring); the most effective attack on
symmetric key schemes is exhaustive key search.

• The security o f public key systems are based on a
presumed “hard” problem o f number theory, however, it
has not been proven to be secure

• Relatively short history, discovered in mid 1970s

Table 2.1 and Table 2.2 show the advantages and disadvantages of symmetric key

and public key system respectively. In summary, both symmetric key scheme and

public key system have different complementary advantages. In order to make use of

the strength of both systems, a so called hybrid encryption can be used. Since

symmetric key encryption is more efficient and public key cryptography has the

benefit of having reusable public and private key pairs, the best way to make use of

both schemes is to use a symmetric key scheme for encryption of the message and a

public key system for key establishment and management. Furthermore, a public key

can also be used for signing digital signature and encrypting session key. Because of

the low throughput rates of public key encryption compared with symmetric key

encryption, public key encryption is only suitable for encrypting small data, whereas

symmetric key encryption systems can be used for encrypting larger sized data. By

employing the two schemes as mentioned earlier, the cryptographic system can

achieve encryption efficiency provided by symmetric key encryption and attain the

non-repudiation and authentication objectives with the public key system digital

signature and secure key exchange provided by public key management. One

example of a cryptographic system that makes use of such arrangement is called

36

PGP2 (Pretty Good Privacy 2) [37]. This was created by P. Zimmermans in 1991, this

design makes use of both RSA and IDEAL.

When comparing symmetric key with public key systems, apart from their

functionality, another important concern is their key sizes and equivalent security

level. Traditionally, the strength of security of an algorithm given the key size is

described as the amount of time it takes to exhaust all possible keys for a symmetric

algorithm. NIST recommendation for the key size used for RSA system should be

1024 bit or higher for long-term security [38].

Table 2.3 can be found in [38], it provides the equivalent strength of different

algorithms with the recommended key size, such as 1024-bit RSA should have

equivalent security to 80-bit symmetric key. The final column of the table shows the

equivalent security strength of elliptic curve cryptography. Elliptic curve

cryptography was first proposed by Victor Miller and Neal Koblitz independently in

the mid 1980s. Elliptic curve cryptography is an approach to public key system

making use of the mathematics of elliptic curves. When defining an elliptic curve

system, a curve and a base point are required. Elliptic curve cryptography will be

discussed later on in this chapter.

Table 2,3 - Equivalent Strength

Bits of
Security

Symmetric
key

Algorithm

Hash
Algorithm

Discrete
Logs (DSA,
DH, MQV)

RSA Elliptic
Curves

80 SHA-1 L = 1024
N= 160

£ = 1024 II O
N o

112 TDES L = 2048
N= 224

£ = 2048 / = 224

128 AES-128 SHA-256 L = 3072
N= 256

£ = 3072 / = 256

192 AES-192 SHA-384 L = 7680
N= 384

£=7680 f - 384

256 AES-256 SHA-512 L = 15360
N= 512

£= 15360 / = 512

The following explains each column of Table 2.3 [38]:

37

• Column 1 indicates the number of bits of security provided by the

algorithms and key sizes in a particular row.

• Column 2 provides the symmetric key algorithms that provide the

indicated level of security, where TDES is approved in FIPS46-3 [5] and

specified in ANSI X9.52 [39], and AES is specified in FIPS197 [11].

Note: it is assumed in the table that TDES is using three distinct keys.

• Column 3 provides the equivalent hash algorithms that are specified in

FIPS180-2 [40] for the given level of security.

• Column 4 indicates the size of the parameters associated with the

standards that use discrete logs (DSA as defined in FIPS 186-3 [22] for

digital signatures, and Diffie-Hellman (DH) and MQV key agreement as

defined in ANSI X9.42 [41] and SP 800-56 [42]), where L is the size of

the modulus p, and N is the size of q. The value of L is considered to be

the key size.

• Column 5 defines the value for k (the size of the modulus n) for the RSA

algorithm specified in ANSIX9.31 [24] and PKCS1 [43] and adopted in

FIPS 186-3 [22] for digital signatures, and specified in ANSIX9.44 [44]

and adopted in SP 800-56 [42] for key establishment. The value of k is

commonly considered to be the key size.

• Column 6 defines the value of / (the order of the base point G of the

selected elliptic curve) for the elliptic curve algorithms specified for

digital signatures in ANSIX9.62 [45] and adopted in FIPS 186-3 [22], and

for key establishment as specified in ANSIX9.63 [46] and adopted in SP

800-56 [39] The value o f/is commonly considered to be the key size.

As discussed earlier, due to different strengths of different schemes, a combination of

different algorithms can be used to achieve optimized cryptographic results. Table 2.4

[38] provides recommendations that could be used to select the appropriate set of

38

algorithms with their appropriate key sizes. [38] suggests a minimum of 80 bits

symmetric algorithm equivalent are adequate for most applications until year 2015,

for longer term security, minimum of 112 bits is recommended.

Table 2.4 - Recommended algorithms and minimum key sizes

Years Symmetr
-ic key

algorithm
s

(Encrypti
on &
Mac)

Hash
Algorithm

HMAC DSA RSA Elliptic
Cueves

Present
-2015

TDES

AES-128

AES-192

AES-256

SHA-1

SHA-256

SHA-384

SHA-512

SHA-1 (>80 bit key)

SHA-256 (>128 bit
key)

SHA-384 (>192 bit
key)

Min:

L = 1024

N = 160

Min:

it =1024

Min:

/ = 160

2016
and
beyond

TDES

AES-128

AES-192

AES-256

SHA-256

SHA-384

SHA-512

SHA-256 (>128 bit
key)

SHA-384 (>192 bit
key)

SHA-512 (>256 bit

Min:

L = 2048

A =224

Min:

it = 2048

Min:

/ = 224

The followings explain each column of Table 2.4 [38]:

• Column 1 indicates the years during which the algorithms specified in

subsequent columns are appropriate for use.

• Column 2 identifies appropriate symmetric key algorithms and key sizes: the

Triple DES algorithm (TDES) is specified in FIPS46-3 [5], the AES algorithm

is specified in FIPS 197 [11], and the computation of Message Authentication

Codes (MACs) using block ciphers is specified in SP800-38b [47].

• Column 3 specifies the hash sizes to be used for most hash applications (e.g.,

digital signatures). Hash algorithms are specified in FIPS 180-2 [40].

39

• Column 4 specifies the hash algorithm and minimum key size to be used for

keyed-hash (HMAC) computations. HMAC is specified in FIPS 198 [48].

• Column 5 indicates the minimum size of the parameters associated with DSA

as defined in FIPS 186-3 [22].

• Column 6 defines the minimum size of the modulus for the RSA algorithm

specified in ANSIX9.31 [24] and PKCS1 [43] and adopted in FIPS 186-3 [22]

for digital signatures, and specified in ANSIX9.44 [44] and adopted in SP

800-56 [40] for key establishment.

• Column 7 defines the minimum size of the base point for the elliptic curve

algorithms specified for digital signatures in ANSIX9.62 [45] and adopted in

FIPS 186-3 [22], and for key establishment as specified in ANSIX9.63 [46]

and adopted in SP 800-56 [49].

Even though it has been suggested that 1024-bit RSA should be sufficient to last for

another 10 years for general data (see Table 2.4) [38], there has been concern that this

may not be the case. More and more research is being carried out aiming at improving

the technical aspect of integer factorization problems such as the well-known method

Number Field Sieve. This research could threaten the strength of security of 1024-bit

RSA, such as [49] suggested implementation techniques of Number Field Sieve to

reduce the amount of memory required to break very large RSA keys. Shamir and

Tromer presented a paper on a custom-built hardware device for performing the

sieving step of the Number Field Sieve algorithm in 2003 called TWIRL [50]. The

paper gave a hypothetical estimation that all the sieving required for factoring 1024-

bit integers can be completed within 1 year by a device that costs $10M to

manufacture plus a one-time cost of S20M for all the pre-device cost such as design,

simulation, mask creation etc. Based on analysis of all this recent research, RSA

Security0 produced a technical note [51] which provides the following

recommendation for key sizes:

40

Table 2.5 - Recommended minimum symmetric security levels and RSA key

sizes based on protection lifetime

Protect Life of Data Present - 2010 Present - 2030 Present - 2031 and
Beyond

Minimum
symmetric security
level

80 bits 112 bits 128 bits

Minimum RSA key
size

1024 bits 2048 bits 3072 bits

[51] recommended that 112-bit security is possibly higher than needed for present

time, but it should be convenient for implementation since triple-DES is readily

available and 2048-bit RSA key size is also convenient as it is already recommended

for use in root keys. As an interim measure, a minimum 1536-bit RSA signature is

reasonable, as recommended by New European Schemes for Signatures, Integrity and

Encryption (NESSIE) [52], however, due to the complexity of the upgrading process,

RSA Security0 [51] advised that 2048 bits is a better goal.

Increasing the key length provides increase in security against Brute-force attack,

however, It reduces the performance of the system because the number of cycles of

computation involved also increases (providing the same size hardware is used). In

the next section, elliptic curve cryptography will be introduced. This type of

cryptographic system requires a smaller key but the security is not compromised. This

will be discussed in further details in the next section.

2.6 Elliptic Curve Cryptography (ECC)

In the previous section, two main families of public key algorithms were introduced;

integer factorisation schemes, e.g. RSA and discrete logarithm schemes, e.g. Diffie-

Hellman. There exists another form of cryptographic scheme and it is called Elliptic

Curve Cryptography (ECC). In this section, ECC encryption and other applications

will be explained, however the details of elliptic curve algebraic theory and finite

field arithmetic will be explained in Chapter 3.

41

Elliptic Curve Cryptography was first proposed by Miller [53] and Koblitz [54] in

1985. They independently proposed the idea of using a group of points on an elliptic

curve to perform necessary cryptographic operations. Like other public key systems,

ECC relies on difficult mathematical problems. Some common ECC cryptographic

schemes are analogous to other public key schemes are:

• Elliptic Curve Discrete Logarithm Problem (ECDLP)

• Elliptic Curve Diffie-Hellman (ECDH)

• Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic curve schemes that analogue to RSA can also be implemented; however, it

provides no realistic benefits compare with an RSA system because of the complex

calculation involved in elliptic curve arithmetic.

2.6.1 Elliptic Curve Discrete Logarithm Problem (ECDLP)

As mentioned previously, the security of cryptographic systems rely on hard

mathematical problems that are computationally infeasible to solve. The foundation

of ECC lies upon elliptic curve discrete logarithm problem (ECDLP). ECDLP is

based on the intractability of scalar multiplication products (more details on scalar

multiplication can be found in Chapter 3).

ECDLP can be defined as follows:

Given an elliptic curve group E(&), where k is a finite field, points Q and P are

points in the group, find the discrete logarithm k of Q to the base P, such that

P = Q. k should be large enough so that it is computational infeasible to

exhaustively search for the discrete logarithm. [53] [54].

42

2.6.2 Elliptic Curve Diffie-Hellman (ECDH)

Elliptic Curve Diffie-Hellman (ECDH) [55] is analogue of Diffie-Hellman key

exchange algorithm; therefore, ECDH is for key exchange prior to the use of a private

key cryptosystem. In order to establish a common key before the encryption process,

both entity A and B follow the following steps:

1. Fix a finite field Fq, an elliptic curve E defined over it and a base point B e E.

2. Choose a random integer aeFq for entity A and aeFq for entity B as secret

key.

3. Calculate public key :

a. Entity^:

aBeE (2.46)

b. Entity B :

bBeE (2.47)

4. The common key is:

P = abB e E (2.48)

To perform elliptic curve algorithm analogous to that of ElGamal scheme, entity A

and B perform step 1-3 as shown above. If entity A wants to send a message P to

entity B, A needs to perform the following steps:

1. Choose a random integer k.

2. Compute and send (kB, P+k(bB)) to B.

To decrypt the message, B has to multiply the first point of the point pair by his secret

key b: b(kB), then subtract this from the second point of the point pair:

43

P = (P+k(bB))-b(kB) (2.49)

2.6.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

Elliptic Curve Digital Signature Algorithm is equivalent to the digital signature

schemes and is approved by NIST under FIPS 186-2 [22]. ECDSA is described in

ANSI X9.62 [45]. The process of ECDSA, where entity A is to send a digitally signed

message M to entity B and entity B is to verify the message is from entity A, can be

described by the following steps:

• Entity yf:

o Setting up the elliptic curve

■ Choose a finite field Fq

■ Choose an elliptic curve E over the field

■ Set a base point G with order n

■ Private key: d

■ Public key: Q

o Signature Generation

■ Choose a random number k where k is 1 < k < n-\

■ Compute:

44

• kG = (xu yi) (2.50)

• r= xim odn (2.51)

• i f r = 0 , re-choose random number k

■ Compute k' 1 mod n

■ Compute e = SHA-1 (M)

■ Compute s = k~l (e + dr) mod n; i f s = 0, re-choose random

number k

■ Signature for message M is (r, s)

• Entity B :

o Signature Verification

■ Verify r, 5 are integers in the interval [1, n-1]

■ Compute e = SHA-1 (M)

■ Compute w = s '1 mod n

■ Compute:

• ul = ew mod n (2.52)

• u2 = rw mod n (2.53)

■ Compute X= u\G + ujQ, where X = (x\, y\)

45

• i f X = 0 , reject signature

■ Else, compute v = x\ mod n

■ If v = r, accept signature

2.6.4 ECC vs. RSA

Table 2.3 shows that 160-bit ECC is equivalent to 1024-bit RSA in terms of security,

which is equivalent to 80-bit symmetric key. Therefore, ECC could provide similar

level of security compared with RSA but require smaller key size, hence, smaller

register size and also faster processing speed. Secondly, in order to match the

security of 112-bit symmetric key, ECC only needs to increase its key length to 224-

bit, which is an increase of about 1.3 times, whereas RSA system needs to double its

key length to match the level of security. Another benefit of having shorter key

length is that it enhances the resistance to differential power analysis [1], this will be

explained further in Chapter 3. Structurally, ECC is very different to RSA, this can

be shown by Table 2.6 taken from [1] [56]. Table 2.6 shows that setting up system

parameters for ECC is more complex compared to RSA, however, for public and

private key generation, ECC is relatively easy to generate. An ECC private key is a

random number k, whereas RSA private key is d = e'x mod ((p-l)(#-l)). ECC public

key is kG, which is a simple calculation, whereas RSA public key pair is (n, e),

where e is just a random integer, n =pq, where pq are two large prime numbers.

46

Table 2.6 - System requirements for elliptic curve cryptosystems and RSA

ECDSA and ECES RSA
System parameters • The field F

• Two field
elements that
represent the
curve

• The generator G
on the curve

• The order of G

• None

Public key • Point P = kG on
the elliptic curve

• Modulus n
• Exponent e

Private key • An integer k
where 0 < k< q

• Exponent d

Or

• Corresponding CRT
information

Table 2.7 shows a very basic comparison in terms of storage requirements in bits of

1024-bit RSA (with public exponent 216+1) and with ECC over GF(q) where q is

160-bit in length and the field is either of characteristic 2 or of odd characteristic

[56]. In this comparison, ECC has a lower storage requirement compare with RSA

based on the system parameters and keys needed.

Table 2.7 - The storage requirements in bits when making a naive comparison

between an elliptic curve cryptosystem over GFfa) where a is 160 bits in length

and RSA with a 1024-bit modulus

ECDSA and ECES over
GF(q)

RSA 1024-bit n and e =
2 16+ 1

System parameters (4 x 160)+1 =641 0
Public key 160+1= 161 1024 + 17 + 1041
Private key 160 (801 with system

parameters)
2048 (or 2560 with CRT
information)

Another very important advantage of ECC is that there is not yet a known sub­

exponential algorithm for ECDLP; this implies ECDLP should be more secure than

47

conventional discrete logarithm cryptosystems. Current algorithms that are used for

solving conventional discrete logarithm systems cannot be applied to solving ECDLP,

since these algorithms are of sub-exponential time.

The disadvantage of ECC is that care needs to be taken when setting up ECC system

parameters, which includes selecting the appropriate curves. There are curves that are

known to be susceptible to attacks and compromise on the security of the system,

such as supersingular elliptic curves [57] and Koblitz curves [58]. Another

disadvantage of ECC is that it is relatively new compared with RSA, and therefore it

is less well established and studied.

In conclusion, because ECC requires small key size for a similar level of security

compared with other public key systems, ECC is particularly useful in

computationally and power constrained environments, e.g. wireless computation and

smart cards. ECC is also very useful for areas that require heavy workload, such as

secure server networks. It also saves bandwidth for communications overhead.

48

3 Finite Field Arithmetic in Hardware and Literature

Review

The first part of this chapter will be dedicated to exploring the operations of elliptic

curve and finite field arithmetic involved, understanding the nature of elliptic curve is

essential to the design of the unified field multiplier for GF(p) and GF(2”) (Note that

GF(p) and GF(2") can also be expressed as Fp and Fin respectively). The second part

of this chapter will explore attacks that need to be considered, which would severely

undermine the security of the cryptographic system. Cryptanalysis is an important

part of the study of cryptography. By understanding more about how a cryptosystem

could be attacked, techniques against attacks can be employed or certain well-known

weakness, such as weak curve, can be avoided. Finally, previously designed unified

field multipliers will be reviewed.

The study of elliptic curve mathematics has been going on for many years, it was only

in 1985 that the use of elliptic curve on cryptography was first proposed.

There are two different forms of elliptic curve:

1. Montgomery Form:

3.1 What is Elliptic Curve?

e m . b y 2 = x 3 + a x 2 + x (3.1)

2. Weierstrass Form:

y 2 + axxy + a3y = x 3 + a2x 2 + a4x + a6 (3.2)

49

Weierstrass Form is the most standard form of elliptic curves. The definition

presented above is so called the “long Weierstrass form”, which is valid for any field.

However, only finite fields are used in cryptography, therefore simpler equations are

generated and an example of a short Weierstrass form curve can be represented as

follows:

E : y 2 =x3+ax + b (3.3)

Value x and y in shown equation 3.3 are variables and value a and b are constant

values from the chosen field. Montgomery [59] introduced this non-standard form in

1987. Okeya et. al. [60] provided evidence that elliptic curve cryptosystem based on

Montgomery Form are immune to timing attacks [61] [62], which is a form of side

channel attacks based on timing information retrieved by the attacker. This will be

investigated later on in section 3.4.5. It is possible to transfer Weierstrass form to

Montgomery form, providing the following criteria are met [60]:

1. The equation x3+ax+b = 0 has at least one root in finite field where p is

a prime andp > 5.

2. The number 3o? + a is quadratic residue in Fp» where a is a root of the

equation x3+ax+b = 0 in Fp.

Reference [63] provides more proof on why not every elliptic curve over a prime field

can be transformed into Montgomery form over the same prime field. The reason for

that is because Montgomery-form elliptic curves with co-factor 4 over Fp’ are more

numerous than Weierstrass-form elliptic curves with co-factor 1 over Fp (Weierstrass-

form elliptic curve defined over the field Fp with co-factor 1, is security equivalent to

a Montgomery-form elliptic curve with co-factor 4 defined over the field Fp> which is

larger than Fp by two bits). Please refer to [63] for details.

Any Montgomery Form elliptic curve can be transformed into Weierstrass Form.

More details on these transformations can be found in [60]. Okeya [64] compares

Montgomery form with Weierstrass form, and shows that the scalar multiplication on

50

a Montgomery form elliptic curve is faster than that on a Weierstrass form elliptic

curve if the size is smaller than 391 bits.

The self-evaluation reports published by Hitachi Ltd [63] provide more insight into

the comparisons on application of Montgomery form and Weierstrass form. This

report showed that even though Montgomery form elliptic curves are restricted

curves, they have enough generality to be used for cryptosystems securely. It

concluded that the security of cryptosystems using Montgomery-form elliptic curves

is equivalent to the security of cryptosystem using Weierstrass-form elliptic curve

providing a suitable size of definition field is chosen.

The points of the curve could be represented in two forms [65]:

1. Affine Coordinates

2. Projective Coordinates

The Weierstrass equation in the projective plane is represented as follow:

Y1Z + aiXYZ + alYZ2 = X 1 +a2 X 2Z+ atX Z 2 - t - a ^ (3.4)

This is a homogeneous equation of degree 3. The definition of a homogeneous

polynomial is that every term in the polynomial has the same total degree, which is 3

in this case. It is possible to convert the point representation between affine and

projective coordinates.

Given a point P(x, y) e E (Fq) in affine coordinates, its projective coordinates

equivalent is P \X , Y, Z) e E {Fq), where x = X ,y = Y and Z = 1, therefore:

P{x,y y=P'(X,Y, Z) (3.5)

51

(3.6)

(3.7)

The computation of the curve operation for different coordination systems is

different. For a non-supersingular curve over K = F2m, the number of field operations

required to perform point addition and point multiplication in affine and projective

coordinates is shown in Table 3.1 [66]. ESUM denotes elliptic curve field addition

and EDBL denotes elliptic curve field doubling.

Table 3.1 - Number of field multiplications and inversions for affine and

projective point addition and doubling

Operation Affine Projective

ESUM EDBL ESUM EDBL

Field Multiplication 2 3 13 7

Field inversion 1 1 0 0

Projective coordinates does not involve field inversion calculation, however more

field multiplication is required. Therefore in the case where inversion is much slower

than multiplication, calculations in projective coordinates should be more efficient

than that in affine coordinates.

It is widely accepted that the inversion calculation is generally less efficient than

other necessary ECC operations, such as multiplication. Reference [67] shows

timings in ps required by software implementation of different binary field operations

carried out in field GF 2 163, GF 2233 and GF 2283 on a 1000 MHz Pentium III, as shown

in Table 3.2. Notice the ratio of inversion to multiplication shows that inversion

operation is generally 9 - 1 0 times slower than multiplication. In such a cases, the

number of inversions involved should be minimised, i.e. projective coordinates

should be used instead of affine coordinates.

52

Table 3.2 - Timings (in us) on a 1000 MHz Pentium III over Binary Field

G F 2m g f 2

Addition 0.032 0.039 0.041
Modular Reduction 0.081 0.094 0.145
Multiplication (induing reduction)

• Shift-and add 6.11 9.66 13.25
• LR (left-to-right) comb with 1.06 1.92 2.40
• Karatsuba 1.49 2.69 3.13

Squaring 0.19 0.24 0.31
Inversion 10.0 17.4 24.5
Inversion/ Multiplication ratio 9.5 9.1 10.2

The disadvantage of using projective coordinates is that they require greater

temporary storage, extra registers are needed to store the points and store intermediate

results when doing the addition. Therefore, in the case where memory resources are

extremely constrained, affine coordinates may be a more appropriate choice. Leung

[68] provides the processing time required to process point multiplication in affine

and projective coordinates using the same hardware and microcode with different

number of bits n. The results are shown in Table 3.3, and demonstrate that

multiplication using affine coordinates is 10 - 23% slower than using projective

coordinates.

Table 3.3 - Execution time for projective and affine coordinate implementations

of elliptic curve multiplication

n No of cycles

(affine)

No of cycles

(projective)

Hardware

times

Affine (ms)

Hardware

times

Projective

(ms)

Ratio

PA

113 148581 134484 4.8 4.3 0.9
144 324717 249879 10.8 8.3 0.77

173 402926 310043 14.4 11.1 0.77

53

Affine and projective coordinates are the two traditional representations, however

new sets of coordinates have been explored, such as Jacobian and Chudnovsky

Jacobian coordinates [89], which have been researched a great deal in recent years.

Reference [70] proposed a system for the use of mixed coordinates, so that the

optimal set of combination could be used for calculating elliptic curve exponentiation.

3.2 Elliptic Curve Mathematical Background

Elliptic curve cryptography makes use of elliptic curve operations over finite fields.

The idea of group operations was briefly explained in section 2.4.5. The addition

rules for points in an abelian group are as follows [6 6]:

For all P, Q e E

1. O + P = P a n d P+O = P

2 . - 0 = 0

3. I f Q = -P, then/> + Q= O

4. If P = (jti, y\) * O, then -P = (jci, -y\ -a \X \ - <2 3) (Note that P and -P are the

only points on E with x-coordinates equal to xj)

5. l f P * 0 9 Q * O and Q ^ -P, then let R be the third point of intersection of

either the line PQ if P * Q (see Figure 3.1), or the tangent line to the curve at

P ifP = Q (see Figure 3.2), with the curve, where the tangent line to the curve

fix, y) = 0 at P(a, b) is the line — (P)(x - a) + — (P)(x - b) = 0. Then P + Q
dx dy

= -R.

The definition of point at infinity 0 is as follows [6 6]:

54

An elliptic curve E (or an algebraic curve of genus 1) is the set of all solution in

projective plane P (K) of a smooth Weierstrass equation. There is exactly one pomt

in E with Z-coordinate equal to 0, namely (0:1:0), which is called point at infinity 0.

The Weierstrass equation is said to be small or non-singular if for all projective points

P = (X: Y: Z) e P 2 (K) satisfy the following:

F (X ,Y Z) = Y2Z + axXYZ + a,YZ2 - X 3 - a 2X 2Z - a4 X Z 2 - a6 Z 3 = 0 (3.8)

i „ . - . - , . dF dF d F . _at lieast one of the three partial denvatives — ,— , or— is non-zero at P. The
dX dY dZ

Weierstrass equation is said to be singular when it possesses a singular point P where

all three partial derivatives vanish.

A group G it said to be finite if it contains a finite set of elements, and the number of

elements in the group is denoted as #<7. A finite field or Galois field covers a finite set

of points. The order of the elliptic curve E over a finite field q is denoted as #E(q).

The two most common finite fields that are used in elliptic curve cryptography are:

1. GF(p) - prime field

2. GF(2") - binary extension field

GF(p) is a finite field with p elements where p is a prime number. Given an elliptic

curve E(a, *)(GF(p)), for /? * 2, 3, and let a, b e GF(p) the inequality 4a3+21b2 * 0, the

curve can be defined as the set of points (x, y) e GF(p) x GF(p), together with the

point at infinity 0 , that satisfy the equation (3.3).

In the case where p = 2, 3, then the curve is said to be supersingular if and only if the

y-invariant of E, j(E) = 0. A curve is said to be supersingular if p divides t where

#E(Fq) = q + 1 - t, otherwise they are called non-supersingular. An example of

supersingular curve is y 2 + y = x 3 + a4x + a6, they are very efficient in terms of

55

computation, supersingular curves are not secure enough for cryptography, as

motioned in section 2.6.4[57].

GF (2") is a finite field with 2n elements and is represented in either polynomial or

normal basis number. Given n > 1, then the non-supersingular elliptic curve can be

defined as the set of solutions (x, y) e GF(2") x GF(2”), along with the point at

infinity O, to the following equation:

GF (2”) is particularly efficient for hardware implementation due to its binary nature.

[71] provides a very good overview on the characteristic of different finite fields.

3.2.1 The order of an element

The order of an element is the smallest exponent that yields the identity element,

where j < p:

3.2.2 Generator

There exists an element in all fields, when raised to a power, it gives rise to another

element in the field, such that for prime number fields:

y 2 +xy = x 3 + ax2 + b (3.9)

aj = lmod p (3.10)

a = g J mod p (3.11)

56

For every j between 0 and p -1, a different element in the field can be obtained.

However, not every element in a field is a generator. A generator has the maximum

possible order of p -1 elements.

3.2.3 Modular Arithmetic

Modular arithmetic is a very important operation in elliptic curve cryptography, since

GF(p) and GF(2") means a number modular either a prime number p or a polynomial

of degree n with binary coefficients respectively. The expression a = b(modn)

means that a and b are both in the same "congruence class" modulo n, i.e., both leave

the same remainder on division by n:

a mod n = r (3.12)

bmodn = r (3.13)

Also, the difference between a and b is a multiple k of n, such that:

(ia - b) = k n (3.14)

The multiplicative inverse a 1 of a modulo n is the solution x of the congruence

ax = l(modrt) (3.15)

where x is in the range of 1 to n-1 .

57

3.2.4 Polynomial Basis

A polynomial is a sum of terms consisting of different powers of a variable as shown

below:

an-\x" 1 + ’' ’ + aix 2 + + a0x° (3.16)

Where a„s are the coefficients and x is the variable. For polynomial over Galios field

GF2,n, the elements of the polynomial of of degree less than m and with coefficient in

F2, therefore the coefficients at e {0,1}. It is generally believed that polynomial basis

is more suitable for software implementation [72] [73] [74]. The following section

describes arithmetic operations in F 2 1.

1. Addition

2. Subtraction

In F 2m, addition and subtraction are equivalent, because each element is its

own additive inverse, therefore:

(3.17)

In terms of hardware implementation, addition in F™ means bitwise-XOR

c, = a; ® b: .

(a * . , + (am_v ..axa0) = (0...00) (3.18)

3. Multiplication

(3.19)

58

rm-\Xm X + ... + r1x + r0 is the remainder of the multiplication divided by the

irreducible polynomial fix) over Fi, where

f (x) = x m + + ...+ f 2 x 2 + f i x + / 0 . It cannot be factorised into two

polynomials over F2 .

4. Exponentiation

0am_v ..axa0)e (3.20)

This is equivalent to multiplying the polynomial by itself e times, where e is

an integer exponent.

5. Multiplicative Inverse

Given an element generator ge F™, where a = g‘, the multiplicative inverse

a -1 is:

a~l =g-' mod(2," - l) (3.21)

3.2.5 Optimal Normal Basis

Optimal normal basis (ONB) [75] [76] is the alternative representation for elements in

finite field GY2™. It is widely believed that optimal normal basis is more suitable for

hardware implementation, because the squaring of an element is equivalent to a cyclic

shift of the binary representation [77] [78] [79], because the sequence of operations

for each coefficient can be parallelised easily in hardware, whereas the parallelism is

difficult to implement in software.

59

Let p e G F/

P = anxn +... + axx + ac (3.22)

where n<m.

The normal basis of the field GF2™ is represented as follows:

{Ppm\...tp p\ p p,P) (3.23)

For GF2m, finite field of characteristic 2, each element A in the field can be

represented as:

A = J ^ A P 2' (3.24)
1=0

where at e F2 and p e GF2OT.

As in the case of polynomial basis, addition is computed as bitwise-XOR and

subtraction is equivalent to addition. The computation of multiplication in ONB is

more complex and is described as follows:

^ = (3.25)
/=0

m - \

B = Y b , p V (3.26)
y=0

60

The multiplication C = A*B:

m - 1 m - l

C = A B = Y j Y . a.h,P 2' P V (3.27)
i*0 7=0

m-l
C = £ c t /?2* (3-28)

*=0

The sum of the basis terms:

m - l

PTP V = E ^ 2 (3-29)
£=0

The A,,# coefficient is called the lambda matrix and A,^e{0,l}, substituting the

lambda matrix into the multiplication equation:

m -l m -l

Q = I 5 > M * (3-3°)
/=0 j =0

where 0 < k < n-\

m -l

iP 2'Pv) - T ‘ (3-31)
*=0

m— i

P T P 1"' = E ^ / 9 2' (3.32)
*=0

61

2o
Equate to the equation above, the c* is as follows:

(3.33)
»=0 7=0

iw-1 gi-1

(3.34)
/=0 7 -0

There are two classifications of ONB and it is determined by the value of m:

1. Type I ONB

The ONB must meet the following two criteria:

i. m+ 1 must be prime.

ii. 2 must be primitive in Zm+i, where Z„+\ is a ring of integer

modulo m+1. This means that when 2 is raised to any power in

the range {0 , ..., m -l} modulo (m+1), the result must be an

unique integer in the range of {0 , . . m}.

2. Type II ONB

There are two versions of Type II ONB, the ONB must meet the following

two criteria:

i. 2m+l must be prime.

ii.(a) 2 is primitive in Zm+\, this means that every 2*modulo 2m+l, is

in the range 1 to 2m (0 < k < 2m-\). Therefore 2 is the

generator for all the possible locations in the 2m+l field.

62

or

ii.(b) 2m+1 = 3 mod 4 and 2 generates the quadratic residues in

Z2m+i, this means that even if (2 *mod 2m+l) does not generate

every element in the range 1 to 2 m, 4 l k mod 2 /w + l could be

taken so that half of the points in the field form by rule iia can

be generated.

This section has introduced different parameters involved in setting up an elliptic

curve, it has also described their advantages and disadvantages. Since the

combinations of these parameters affect the design of the architecture, one must select

these parameters very carefully at the beginning of the design. For the purpose of this

dual field multiplier, generality is the key to the design to provide flexibility to users.

Hence the more common Weierstrass Form elliptic curve is more appropriate than

Montgomery Form, which is shown to be immune to timing attacks but is much more

complex. As for the representation for the points on the curve, simplicity and

commonality is of consideration, therefore the chosen representation is affine

coordinates. Also, by affine coordinates, the amount of temporary storage and extra

registers needed are minimised. For the design of dual field multiplier, the basis

chosen for GF(2") field must correspond to that of GF(p) for straightforward

implementation. Therefore, polynomial basis is the most suitable for the purpose of

this design.

The next section will introduce some of the most basic elliptic curve operations in

GF(p) and GF(2").

63

3.3 Elliptic Curve Operations

In this section, the general elliptic curve operations will be introduced; they include

point addition and point multiplication. Examples will be first given in elliptic curve

over real number plane, over prime fields and finally in primary binary field. The

examples given in this chapter are taken from [80].

For real number plane, the simpler form of the equation is the same as equation 3.3

and shown again as follows:

y 2 = x 3 +ax + b

where a and b are real numbers.

3.3.1 Point Addition over real number plane

The point P on the curve is represented as P = (x, y) and its reflection in the x-axis

forms its negative -P = (-x, y). In order to add point P with Q, a straight line is drawn

through the two points. The point where this straight line intersects the curve gives

the reflection in the x-axis of the result, as demonstrated in Figure 3.1. However, the

addition of P + (-P), the line does not intersect with a third point and it is a vertical

line, which provides the point of infinity O. P + (-P) = O because P and -P are

reflection of each other in the x-axis as mentioned previously. The properties of the

point at infinity were described in section 3.2.

64

P (-235 , - 1.36)

Q (-0.1,0.836)
-22 (3 .89 , 5 .62)

R (3.89, -5.62)

P+ Q = R = (3.89, -5.62).

y2 = x3 - 7x

Figure 3.1 P+Q=R

Given the point P = (xp, yp) and Q = (xg, yq) and they are not negative of each other,

then P + Q = R could be obtained by first of all finding the slope of the intersecting

line as follows:

s = yp yq (3.35)

The coordination of R = (xr, yr):

x = s 2 - x p - x q (3.36)

y r = - y p +s(xp - x r) (3.37)

3.3.2 Point Doubling over real number plane

Point doubling on an elliptic curve group is defined as follows:

65

(3.38)

The approach to perform point doubling, which is essentially adding the point to

itself, is to draw a tangent on the point P, instead of drawing a line through two points

P and Q. If the ^-coordinate of P is not 0, i.e. it is not on the x-axis, then the tangent

will intersect the curve at one other point and that point is the reflection in the x-axis

of the result. This is demonstrated in Figure 3.2. In the case where the y-coordinate of

P is 0, the tangent is a vertical line and it does not intersect the elliptic curve at other

point, i.e. 2 P = O.

y2 =x3 - 3* + 5

Figure 3.2 2P=R

Given the point P = (xp, yp), yp * 0 and a which is a parameter chosen when the

elliptic curve is first set up. To calculate 2P = R, the tangent needs to be found first.

The tangent of the point P is given by:

3x1 +a
s = (3.39)

66

The coordination of R = (xr, yr):

x r = s 2 - 2 x p
(3.40)

y r = - y P+s(xp - x r) (3.41)

3.3.3 Point Addition over GF(p)

Elliptic curve over GF(p) is defined as follows:

Let F(p) be a finite field with p > 3, the elliptic curve E over the field GF(p) can be

described by the short Weierstrass equation as shown in equation 3.3 :

y 2 - x 3 +ax + b

where a, b e GF(p). If x3 + ax + b contains no repeating factors or, equivalently, if the

inequlity (4a3 + 21b2) mod p * 0, then the elliptic curve can be used to form a group.

The elliptic curve group over GF(p) includes all points (x*y) which satisfy the elliptic

curve equation (Equation 3.3) modulo p, where x and y e GF(p), together with the

point at infinity O. There are finite number of points on such an elliptic curve.

The following shows an example of elliptic curve over GF(p) field F 2 3 . With a - 1

and b - 0, Equation 3.3 becomes yr - x + x and the following 23 points satisfy the

curve and are represented in Figure 3.3. Note that there is symmetry about y = 11.5.

Over the field of F 2 3 , the negative components in the y-values are taken modulo 23,

resulting in a positive number with {0 , . . . , 2 2 }.

67

(0,0) (1,5) (1,18) (9,5) (9,18) (11,10) (11,13) (13,5)

(13,18) (15,3) (15,20) (16,8) (16,15) (17,10) (17,13) (18,10)

(18,13) (19,1) (19,22) (20,4) (20,19) (21,6) (21,7)

y
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 x

Elliptic curve equation:.?2 = x3 +x over

Figure 3.3 y2 = x3 + x over GF(p) field F23

The algebraic rules for the arithmetic are adapted for calculations of elliptic curves

over GF(p) Given the points P = (xp, yp), -P = (xp, -yp mod p) and Q - (xq, yq) and

point P * Q, then P + Q = R is calculated as follows:

y P- y q As = — -m od p (3.42)

The coordination of R = (xr, yr)\

x = s2 —x - xq modp

y r = - y p +s(xp - x r)modp

3.3.4 Point Doubling over GF(p)

Given the point P = (xp, yp) and is yp * 0, to calculate 2P = R:

3x2+a
s = — ----- mod p

2y P

xr = s 2 - 2x mod p

y, = - y p +s(xp - x r)modp

3.3.5 Point Addition over GF(2")

Elliptic curve over GF(2") is can be defined as follow:

y 2 + xy = x3 + ax2 + b

where a, b e GF(2") and b *■ 0.

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

69

The elliptic curve group over GF(2") includes all points (x,y) which satisfy the elliptic

curve equation (Equation 3.48), where x and y e GF(2”) , together with the point at

infinity O. There are finitely many points on such an elliptic curve.

An example of elliptic curve over GF(2") field F 4 is shown as follows and it is

defined by using polynomial representation with the irreducible polynomial

f (x) = x 4 +x +1.

Given the element g = (0010) is the generators for the field, the powers of g are:

fir0 = (0001) g1 = (0010) ^ = (0100) g3=(1000) qt4 = (0011) g5 = (0110)

g6 = (1100) g7 = (1011) g8 = (0101) g9 = (1010) g10 = (0111) g11 = (1110)

g12 = (1111) g13 = (1101) g14 = (1001) g15 = (0001)

Consider the elliptic curve:

y + x y = x + g x +1 (3.49)

Note that a in equation 3.48 has been substituted with g4 and b with g° = 1. The

fifteen points that satisfy the equations are shown as follows, these points can be

depicted in a graph as shown in Figure 3.4.

(1-g13) (g3, g13) (9s, 9") (96,g u) te9,013) (s1V) (sr12,g12)
(1.9s) (g\ 96) (9s, 93) (96, 9 s) (sr9.910) (91°. 9) (9 ^ 0) (0, 1)

70

1 g g 3 g3 g4 g5 g<5g7 g8 g9 g10 g11 g u g13 g14 0 X

y^+ xy =jc3 + g*x2 + 1 over 4

Figure 3.4 jc3 + g4x2 + 1 over Fj4

The algebraic rules for the arithmetic are adapted for calculations o f elliptic curves

over F2m Given the points P = (xp, yp), -P = (xp, xp +yp) and Q = (xq, yq) and point P *

-Q, then P + Q = R is calculated as follows:

y P- y qs ~ — ------
X P ' X ,

(3.50)

x r= s +s + xp +xq +a (3.51)

y r =s(xp +xr) + xr +y. (3.52)

The properties of the point of infinity that is shown in the real number plane case also

applies to GF(2”). such that, P + (-P) = O and P + o = P.

71

3.3.6 Point Doubling over GF (2W)

Given the point P = {xp, yp) and is yp * 0, to calculate 2P = R:

s = xp +'

x = s +s + a

y r = x .+ (s + \)* x r

If yp = 0, then 2P = O.

(3.53)

(3.54)

(3.55)

3.4 ECC and Side Channel Attacks

In the first part of this section, some known attacks for solving the elliptic curve

discrete logarithm problem (ECDLP) and the techniques to avoid these attacks will be

explained. In the second part of this section, side channel attacks will be introduced.

Instead of attacking the algorithm itself, side channel attacks are attacks against the

cryptographic devices and their implementations.

3.4.1 Known ECDLP attacks

Some known weaknesses in elliptic curve cryptography algorithms will be explained

in this section. The purpose of these attacks is to solve the elliptic curve discrete

logarithm problem (ECDLP), which was described in section 2.6.1. Some of the

points have been mentioned briefly previously in this chapter, more explanations will

be given in this chapter. [81] and [82] provides a good overview on this topic.

72

1. Naive exhaustive search

This method requires the attacker to compute successive multiples of P: P, 2P,

3P, 4P... until the public key is obtained. This attack is impractical for high

order cryptosystem.

2. Pohlig-Hellman algorithm [83]

This attack exploits the factorization of the order of the point P, n. This

algorithm reduces the complexity of recovering the discrete logarithm k of Q

to the base P to the problem of recovering k modulo each of the prime factors

of n, where k can then be recovered by using the Chinese Remainder

Theorem. In order to construct the most difficult case of the ECDLP, the order

of the elliptic curve chosen must be divisible by a large prime n, e.g., n> 2160

bits. Preferably, this order should be a prime number or almost a prime, which

means that a large prime number times a small integer.

3. Baby-step giant-step algorithm

This attack is a time-memory trade-off of exhaustive search. Instead of the

worst case of up to n steps required by traditional exhaustive search, only Vrz

steps in the worst case but requires memory for Vm points, where m denotes

the memory size.

4. Pollard’s Rho algorithm [84]

This algorithm is generally regarded as the best general-purpose algorithm

known for solving ECDLP [82]. This is essentially a randomized version of

baby-step giant stop algorithm. The running time of this algorithm is very

similar to that of baby-step giant-step algorithm, however, it requires less

memory space. Teske [85] provided an improved version, which has an

expected running time of yjm ! 2 and negligible storage requirements. This

73

algorithm is most effective for factoring integers with small factors, therefore,

this can be avoided by using a high order number.

5. Parallelized Pollard’s Pho algorithm [86]

Van Oorschot and Wiener described the method to parallelise the Pollard’s

Rho algorithm. When the algorithm is run in parallel using r processors, it

6. Multiple logarithms [87]

Silverman and Stapleton suggested that successive logarithms become easier

to solve once the first instance of the ECDLP has been worked out. The

method to avoid this occurring is to ensure that the elliptic curve parameters

are chosen so that the first instance is infeasible to solve.

7. Supersingular Elliptic curves [66] [88] [89]

Supersingular curve is an elliptic curve E over Fq where the trace t of E is

divisible by the characteristic p of Fq. It is known that supersingular curves

are of some extension field Fqk where k < 6 and a subexponential-time

algorithm exists for the ECDLP in singular curves.

In general, under mild assumptions, the ECDLP in an elliptic curve E defined

over a finite field Fq can be reduced to the ordinary DLP in the multiplicative

group of some extension field Fq for some k > 1, where the number field

sieve algorithm applies. This is known as the Weil and Tate pairing attacks. In

order to ensure the reduction algorithm does not apply to a particular curve,

the order n of the point P should not divide qk - 1 for all small k for which the

DLP in Fq is tractable.

results in an r-fold speed up of roughly steps.

74

8. Weil Descent [90] [91] [92]

Weil descent is efficient for reducing the ECDLP in an elliptic curve E over a

characteristic two finite field F™ to the discrete logarithm problem in the

jacobian Jc(Fi) of an algebraic curve C defined over a subfield F-fi of F™

[91].

Let k - Fq denote some finite field of characteristic two, and let n > 2 denote

an integer, where n is quite small and q is large such that qn > 2160 in practice.

Let K denote the field extension Fqn, with &-basis {y/o, y/\, y/n-i}- Given an

elliptic curve E over K:

Y 2+XY = X 3+fi (3.56)

where f i e K. Assume that E(Fq‘") contains a subgroup of prime order p with p

* q \

fi = b0y/ 0 + bxy/x +... + bn_xy/n_x (3.57)

X = x0i/ / 0 + xxy/x +... + xn_xy/n_x (3.58)

^ = ^ 0 + ^ 1 + - + ^ - 1 ^ - 1 (3.59)

By substituting Equation 3.57, 3.58 and 3.59 into Equation 3.56 and equating

coefficients of y/i, an abelian variety A define over k of dimension n is

obtained. The abelian variety A is called the Weil restriction and the process

shown above, where the abelian variety A could be achieved, is called Weil

decent.

Gaudry Hess and Smart [92] gave an explicit algorithm for the case where the

algebraic curve C is a hyperelliptic curve of genus g defined over F i. The

variation of attack is known as GHS attack.

75

In order to prevent these attacks, the use of elliptic curves over finite fields

F2m where m is composite should be avoided.

9. Prime field anomalous curves

[93] [94] [95] showed ECDLP can be solved efficiently for prime field

anomalous curves where the number of point of an elliptic curve E over FP,

#E(FP) is equal to p. Therefore, the number of points on an elliptic curve must

not equal to the cardinality of the underlying field

10. Hyperelliptic curves

Hyperelliptic curves are a family of algebraic curves of arbitrary genus that

includes elliptic curves, therefore an elliptic curve is effectively a hyperelliptic

curve of genus 1. The definition of hyper elliptic curve is as follows:

Let Fq be a finite field. A hyperelliptic curve C of genus g over Fq (g > 1) is a

non-singular curve given by an equation of the form:

y 2 +h(x)y = f (x) (3.60)

where h(x) e Fq[x] is a polynomial of degree < g and^x) e Fq[x\ is a monic

polynomial of degree 2g+l.

Adleman, DeMarrais and Huang [96] presented a subexponential-time

algorithm for DLP in the jacobian of a large genus hyperelliptic curve over a

finite field of prime characteristic. Enge [97] provided a subexponential

algorithm for solving the discrete logarithm problem in Jacobians of high-

genus hyperelliptic curves over any finite fields. Therefore high-genus

hyperelliptic curves should be avoided.

11. Non-applicability of index-calculus methods

76

No general subexponential-time algorithm has been discovered yet. [53] and

[98] provided arguments for why the index-calculus algorithms may be

applicable to the ECDLP.

In summary, the general methods to avoid these attacks are to avoid using certain

known curves and also the size of the modulus should abide to the recommended

minimal size (see Table 2.3).

3.4.2 Side channel attacks

Side channel attacks were first proposed by Kocher [99] in 1996. Unlike the attacks

that were mentioned previously, which are based on information on the plaintext or

the ciphertext, side channel attacks are based on measurable side channel information

that can be retrieved, such as computation time and power consumption. By making

use of these side channel information, the attacker can deduce the inner-working

algorithm of the system and so some secret information needed, such as the secret

key. There are two different classes of side channel attacks depending on side channel

information retrieved and they are:

• Simple side channel attacks, where only a single measurement is needed

• Differential side channel attacks, where several measurements handled

together with statistical tools to correlate the secret information with the

collected data

In this section, some of the common side channel attacks will be described, also the

techniques required to defend against these attacks will also be introduced.

77

3.4.3 Simple Side Channel Analysis

Two of the most common simple side channel analyses are:

1. Timing attack

Timing attack was first introduced by Kocher [99] . Timing attacks are based

on measuring the time taken for the system to perform certain cryptographic

operation.

2. Simple Power Analysis

Simple power analysis (SPA) was discussed in [100]. SPA is based on

analysing the power consumption of the device during operation. Since the

integrated circuits are made up of many transistors, the charging and

discharging activity of each transistor while switching can be detected. The

method to measure the power consumption of a device is to simply connect a

small resistor, e.g. 50 ohm, in series with the power or the ground input, the

power consumption can be calculated simply by computing I (current) = V

(voltage)/ R (resistance).

In the case of elliptic curve cryptography, one of the most common techniques for

computation of a scalar multiplication is the double-and-add method, which is

described in Figure 3.5. It is very common that input P is public and the scalar k is

secret, therefore k is of interest to the attacker.

78

Algorithm: double-and-add

Input: P, *=(1, ki.2, ..., ko) 2

Output: kP

Q := 0
For i from n-\ down to 0 do
Q '= 2 Q
if kt = 1 then

Q:=Q + P
return Q

Figure 3.5 Double-and-add method

Based on this common algorithm, the attacker can attempt to determine important

information by performing simple timing analysis or simple power analysis on the

system at the if-branch (see line 4 of Figure 3.5). Since that point doubling happens in

every iteration, but point addition is only executed wheny'th bit of k is equal to 1, the

attacker may be able to distinguish the two operations based on the information

collected. [101] provided suggestions on parallel scalar multiplication on general

elliptic curves over Fp hedged against non-differential power attacks, by using the

Montgomery Ladder algorithm (See Section 3.4.5 for more details).

3.4.4 Differential Power Analysis (DPA) attack

One of the most common differential power attacks is differential power analysis

[100]. Similar to SPA, DP A requires the knowledge of power consumption of system

to obtain desired knowledge of the cryptosystem, however, unlike SPA where only a

single measurement is involved, DPA consists not only of study of various visual data

sample, but also statistical analysis and error correction statistical methods. DPA is

such a powerful attack that it can automatically locate correlated regions in a device’s

power consumption, the attack can be automated and little or no information on the

implementation of the system is required.

The attacker observes m encryption operations and captures some powers traces

79

where each trace should contain k samples each and record the corresponding

ciphertext. The attacker will then be able to use the information on power

consumption from the power traces obtained and statistical methods to determine the

secret information. For example, DPA attacks on DES round one can be carried out as

follows [162]: recall the S-Box that exists within the DES function as shown in

Figure 2.4, each of these box is analysed one at a time by DPA. Differential power

consumption curves (PCCs) of the subject are then collected. The PCCs are then

grouped together in to calculate a differential curve. The attack will have to perform

the partial traces calculation for each of the 26 6-bit partial subkey combinations. The

correct subkey can be known by looking for the curve that is formed by the correct

subkey. Coron [102] presented a general overview of resistance against DPA for

ECC, summarised as follows:

3.4.5 Countermeasure Against Side Channel Attacks

1 General Countermeasures

In terms of hardware implementation, smart card is particularly prone to side

channel analysis attacks, so tamper-resistant smart card should be used.

Kommerling and Kuhn [103] provided a good overview on smart card

technology against side-channel attacks.

Secondly, system parameters and inputs should be validated first since there are

some attacks that attack the system by feeding predefined special [104] or

erroneous input to the algorithm [105], or to provoke faults in the process [106].

2 Countermeasures against Simple Analysis Attacks

The main approach to defend simple analysis attacks is to achieve uniform

execution pattern. This can be realized by the following methods:

80

o Using an algorithm where the order of operations is fixed, so that the

operations become indistinguishable because of their regular

occurrences. [102] [104] [107]

o Reconstruct the common double-and-add algorithm so that the same

field arithmetic operations are used to disguise the differences of the

two operations. [108] [109] [110]

o Used random values to split or mask the secret data. [102]

As mentioned at the beginning of this chapter, Montgomery Form is secure

against timing attacks [60]. Since the time required to perform the conventional

scalar multiplication algorithm based on the Weierstrass-form depends on the bit

patterns of the secret value (and on the ratio between the number of zeros and

ones), systems based on Weierstrass-form are insecure against timing attacks.

However, this is not the case for systems based on Montgomery Form. It has

exactly seven multiplications and four square-multiplications on Fp per bit.

Reference [61] also suggested the use of the randomised projective coordinate

representation increases the difficulty to measuring the timing of the algorithm.

This approach has a limitation to specially chosen curves, in this case, curves

with Montgomery form of group order divisible by 4.

Another method to defend simple analysis attacks is to use Montgomery ladder

[61] [101]. The Montgomery Ladder was initially designed to accelerate the scalar

multiplication on a restricted class of curves over Fp. Reference [111] provides a

good overview on Montgomery Ladder.

Figure 3.6 shows the Montgomery Ladder algorithm. Let A: be a positive integer

and (k„.u its binary representation. Initially we have the pair (P, 2P) and

at the beginning of each iteration, the pair (Pi, P2) = (mP, (m+\)P), where m = (kn.

i , ..., kn.u). The final result is (kP, (k+\)P).

81

Algorithm: The Montgomery Ladder

Input: P, int k > 1
Output: kP

Pi:= P and Pi\= 2P
For i from n-1 down to 0 do
if hi = 1 then

P\ = P\+ Pi and Pr= 2P2

else
P i'- P\+ Pi and P\ = IPi

return Pi

Figure 3.6 The Montgomery Ladder

Coron [102] presented a revised double-and-add algorithm so that the operation in the

algorithm, such as the branching operation, can not be identified; this is shown in

Figure 3.7. This technique works based on insertion of dummy instructions.

Algorithm: Double-and-add resistant against SPA

Input: P, int k >1
Outout: kP

Qo:=P
For i from n-1 down to 0 do
Qo'.- 2 Qo
Qi-= Qo+P
Qo’= Qi
Return Qo

Figure 3.7 Double-and-add resistant against SPA

3 Countermeasures against Differential Analysis Attacks

The main approach to defend simple analysis attacks is to diminish the correlation

between any assessment results. This can be achieved by randomizing the values

82

of the base point P and any intermediate points involved in a calculation. This can

be realized by the following methods:

o Reference [112] and [113] proposed the use of randomized algorithms,

which could obscure the correlation of the intermediate results.

o Reference [114] introduced the idea of disguising the elliptic curve or

the field by replacing it with random, isomorphic versions

o Reference [102] also contributed toward defence DPA. Coron

introduced three countermeasures:

■ Randomisation of the private component

■ Blinding the point P by adding a secret random point R

■ Randomisation of the representation projective coordinates by

introducing a random scaling factor.

Walter [1] suggested that the longer the key length the greater the side channel

leakage, even with the increase in mathematical strength in the cryptosystem.

Therefore with longer key, it could actually mean lower security, because of the

greater number of arithmetic operation needed leading to greater leakage. The fact

that ECC can provide similar level of security compared with RSA with a much

shorter key length (see Table 2.3), ECC is better option in terms of resistance to side

channel attacks.

3.5 Literature Review

There have been many different hardware designs for different arithmetic processes

for the fields GF(p) and GF(2”). For example, Guajardo et. al. described a hardware

implementation of a modulo multiplier for GF(p) based on Residue Number System

83

(RNS) [115]. Gutub et. al. [116] presented a scalable VLSI architecture for GF(p)

Montgomery modular inverse computation. Scalability implied the flexibility of

having an arbitrary operand size, such that the same design of hardware can be reused

to expand the size of the operand, but at the same time the logic depth of the structure

is unchanged. This is important for cryptographic hardware, since the mathematical

difficulty of the cryptosystem lies in the length of the key and the requirements of key

length varies. Also, Wu [117] presented a bit-parallel Montgomery multiplier design

for GF(2) for modulo multiplication and squaring that use m gates.

The use of Montgomery multiplication [118] is very popular because of the simple

modulo reduction operation used. Montgomery multiplication makes use of the least

significant digit of an accumulating product to determine the multiple of M to

subtract. Another example of a scalable modular multiplier based on Montgomery

multiplication is presented by Tenca and Koc [119]. Walter [120] provided an

overview on techniques for the hardware implementation of Modular Multiplication,

more details on the implementation of Montgomery multiplication will be presented

in Chapter 4.

Sava§ et. al proposed the first hardware implementation of a unified field multiplier

which can operate on both GF(p) and GF(2”) [121], [122]. This design makes use of a

LSB-first word-serial Montgomery multiplication and the operands are required to be

transformed into the Montgomery domain.

Word-serial architecture is similar to “pen and paper” method such that to compute A

x B where A = {au aM, •. .fli, tfo} and B = {bh 6M, ...bu bo}:

84

Algorithm: pen and paper
multiplication

Input: A, B
Outout: C = A*B

C:= 0
For n for from i down to 0 do
Q :=A * bn
C, := C, *2"'+ C,.,
Return C

Figure 3.8 Pen and paper multiplication

Bit-parallel means that instead of having A multiplied by each bit of B (b,) to give

individual values of Ab, one cycle at a time, all the Abt values are generated at once

and then summed up. The disadvantage of bit-serial is that the process is very slow

however it is very simple and easy to implement; the disadvantage of bit-parallel is it

is area consuming.

The processing unit of Sava§’ design is shown in Figure 3.9.

TC.ars <»

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

FSEL

Shift &
Alignment

Layer

B , 7= multiplicand B
bit / h iteration

P ,J = muodulus P tA b i t / h
iteration

a, = multiplier a f**1 bit
c = carry
FSE L = field selection
(T C 0*, TSfi*) = partial sum

T expressed in
redundant carry
save form

■ ■ = pipeline latches

TC20-1> T S 20-1> T C 1°'1) T S ^ 1) T C / 1) T S / 1>

Figure 3.9 Sava§’ et. al. Processing Unit: wordlength = 3

85

The selection of the field is done by setting the FSEL input. When FSEL = 1, the

system performs operation over G¥(p) and when FSEL = 0, the system runs in the

GF(2”) mode. Figure 3.10 shows the dual-field adder circuit synthesised for this

implementation. Note that in this dual field circuit, the critical path from any data

input (a, b or c) to either output traverses four logic levels, assuming XOR gates have

a logic depth of 2.

FSEL

Figure 3.10 Sava§’ dual-field adder synthesised by Mentor

Johann GroPshadl [123] proposed a bit-serial unified multiplier architecture for finite

field GF(p) and GF(2") in 2001 based on an MSB-first iterative algorithm for modulo

multiplication. Figure 3.11 shows the arithmetic unit that is used for the

implementation of the modular multiplier. The first («+l)-bit carry-save adder

performs the addition of the partial products. The output Sum Rs and Carry Rc are

used to estimate the multiple of the modulus to be subtracted in the next step with

another («+l)-bit carry-save adder.

Figure 3.12 is a block diagram of Gropshadl’s bit-serial multiplier architecture. In

order to perform carry-free addition for GF(2"), all the carry bits of the adder (Rc) are

set to 0, which in turn set further control signals. Modulo reduction occurs within the

multiplication process by concurrent subtraction of a multiple of the modulus.

86

RC

RcR S
/(-bit

hard w ire
d left
sh ift

RcR sk € {0 ,1}

Rc

(n + 1)-b it S u m an d C arry L atch

(n + 1)-b it S u m an d C arry L atch

(n + 1)-b it C a r r y -S a v e A d d e r

(n + 1)-b it C arry S a v e A d d er

R s R c

Figure 3.11 Arithmetic unit of Gropshadl’s n-bit unified multiplier

Output (wbit)
Input (wbit>

Rs Rcxsub

(m-l)-bit Arithmetic Unit
dear n-bit Bus

Pipelined
CLA(wbit)

n-bit I/O Register

n-bit Multiplicand Register

n-bit Multiplier Register

(m-l)-bit Modul/IPRegister

Figure 3.12 Block diagram of Gropshadl’s bit-serial multiplier architecture

Wolkerstorfer has also proposed a dual-field arithmetic unit for GF(p) and GF(2”)

[124]. Figure 3.13 shows the carry-save adder used in his design. Dual-field

architecture designs also exist for field inversion ([125] and [126]).

87

FA FAFA FAFA

GF(p)

C.'n-1

Figure 3.13 Carry Save Adder in Wolkerstorfer’s design

All these proposals require broadcasting a control signal to all the full adder cells to

force the output carries low from all the full adders in the multiplier. This is costly

and slow, especially when switching between fields, as can occur often in a server

operating on many different data streams. This thesis describes a new multiplier

which operates in both GF(p) and GF(2"), and makes use of a novel dual field adder

based on a (4:2) carry-save adder cell, modified so that it is capable of adding

specially-encoded operand digits [127], which will be described in chapter 4.

88

4 Unified Field Redundant Adder

Chapter 3 demonstrated that all the previous dual-field designs required the field

information signal to be broadcasted throughout the adder structure, which is costly

and slow due to high signal fan-out. In this chapter, the implementation of the

proposed unified field redundant adder, which is required for the overall

implementation of the unified field multiplier, will be described.

The design of this unified field adder can perform addition in both prime and binary

field without compromising the performance and area requirement compared with

conventional adders and previous designs. The main difference between the proposed

design and the previous designs is that, in the proposed design, the field information

is embedded within the encoding itself, such that field information signal is not

broadcasted throughout the module. The proposed design is impartial such that

addition in either field can be carried out equally easily. Furthermore, this design is

scalable, where the wordlength can be scaled up or down by reusing, replicating or

truncating the adder modules, without affecting the logic depth of the hardware

structure.

4.1 Truly scalable unified field redundant adder

Many of the existing unified multiplier designs require an external field selector

signal to choose between the two fields - GF(p) and GF(2"). This external signal is

fed into the adder gates to force the carries low in GF(2"), however, this also means

that this one signal has very high fan-out especially for large multiplication which is

often the case in cryptography. This can be demonstrated by the processing unit of the

multiplier proposed by Savas [121], which is shown in Figure 3.9, where one can see

that for a processing unit of word length = 3 bits, the field select signal has to drive 6

gates. Therefore for an n-bit processor, the field select signal will have to drive 2-n

bits. This method is inefficient because the field select signal will need to have a very

high drive strength which could also affect the scalability of the overall multiplier

since buffers will need to be added.

89

The proposed method to avoid this problem is to incorporate the field information

into the representation of the number itself.

4.1.1 Redundant Number Representation and redundant adder

The Redundant Binary Adder, illustrated in Figure 4.1, is a binary adder capable of

adding two numbers with the digit set e {0, 1, 2} (or equivalently e {-1, 0, 1})

such that carry bits do not propagate over the whole length of the sum [128]. Note

that carry signals transform from {0,2} to {0,1} as they are carried forward to the

next bit. Each block in the first two rows of Figure 4.1 can be implemented as a full

adder as shown in Figure 4.2. The last row of blocks simply merges pairs of inputs to

provide the output digits.

In the Redundant Binary Adder, digits are implemented using two binary signals. If

neither signal is ‘High’ the value ‘O’ is represented; if both signals are ‘High’ the

value ‘2’ is represented; otherwise, if either one of the signals is ‘High’ the value ‘1’

is represented as shown in Table 4.1. A variety of other coding schemes are possible,

but similar to the example just given, only 3 signal combinations are needed to

represent 3 values, i.e. there will always be a redundant set of combination. The

advantage of redundant adder is that it can avoid long carry chain and has a constant

delay, which is independent of the adder width. Additionally, the area cost is directly

proportional to the word length n. (4:2) redundant adders have been used before in

binary multiplier designs as an alternative to carry-save adders because they have

more regular multiplier tree layouts, requiring less interconnect than other reduction

tree topologies [129], [130]. The new adder will make use of these same layout

advantages to be applied to Galois Field multiplication under either GF(p) or GF(2").

The schematic diagram of the conventional (4:2) redundant adder is shown in Figure

4.1. In conventional redundant adder design, the states ‘O’, ‘1’ and ‘2’ are represented

by two wires as shown in Figure 4.1, therefore, in conventional (4:2) redundant adder

design, the state ‘ 1 ’ is represented by both ’01’ and ‘10’.

90

Table 4.1 Conventional Redundant Representation

wires Number

representation

00 0

01 1

10 1

11 2

{0..2} {0 . 2} {0. 2} {0..2} {0 ..2} {0..2}

{0 ,2}

{0 ,1} {0 ..: {0,1} {0..2;
Sum
[0-3]

{0,2}

{0,1} 0,1} {0,1 {0,1} {0,1 {0,1} {0,1}

Sum
[0-2]

{0-2}

Sum
[0-4]

Sum
[0-4]

Sum
[0..3]

Sum
[0 ..2]

Sum
[0-3]

Figure 4.1 Conventional Redundant Adder w = 6

f >

Figure 4.2 Binary Full Adder

4.2 Unified field Redundant Adder

A dual-field Galois Field adder can be constructed by introducing a fourth digit value,

denoted 1*, that indicates the digit ‘1’ over GF(2"). Hence, addition over GF(p) is

implementable using the digits {0,1,2}, while addition over GF(2”) is implementable

using the digit set{0,l*}. The characteristic of addition over GF(p) is depicted in

Table 4.2. Addition over GF(2n) can be characterised by the expressions: 1* + 1* = 0,

and 0 + k = k+ 0 = k and is shown in Table 4.3. The digit sets for addition in the two

fields can be defined as follows:

• for GF(p), 3 values are needed: {0,1, 2}

• for GF(2”), only 2 values are needed: {0,1 *}

Therefore, 5 values are apparently required in total. However, only 4 values are

actually needed because the zero elements in both fields are defined identically, such

that 0 + 0 = 0 in both cases (see Table 4.2 and Table 4.3).

Table 4.2 Table of addition for GF(p)

0 1 2

,-0 -----/
1

2

\ 1N ' 2 3

2 2 3 4

Table 4.3 Table of addition of for GF(2")

92

By incorporating the 1* digit into the Redundant Binary Adder (Figure 4.1), a dual

Galois Field adder can be formed with little adjustment, as shown in Figure 4.3. This

enables us to take advantage of previously unexploited “don’t care” states in the (4:2)

adder cell. The four symbols {0,1,2,1*} require two wires for their full representation,

similar to the redundant binary adder of Figure 4.1. The unified field adder will be

structurally very similar to the Redundant Binary Adder (Figure 4.1), however, the

cells are not now full adders, and so optimum logic circuits for the dual field adder

need to be derived.

[0 , 1 , 2 , 1*] [0 , 1 , 2 , 1*] [0 , 1 , 2 , 1*] [0 , 1 , 2 , 1*]

Cell A :

Cell B :

Cell C:

S U M A
[0..4, 1*]

[0 , 1 , 2 , 1*]

2 „

/ \

' 2

S U M A
[0..4, 1*]

[0, 1, 2, 1*]
*
\

'2
/

S U M B S U M B
m

t • [0..3 1*]] [0 ^ [0 . 3 , 1*]

[0. 1, 1*]

\

1
1
l

S U M C
[0 . .2 , 1*]

[0 , 1 , 2 , 1*]

Figure 4.3 Redundant Dual Field adder

The new (4:2) adder comprises three separate stages, implemented using three

different cells: the first stage (cell A) receives two 2-bit operands, x(l:0) and y(l :0)

with the digit set, d e {0,1,2,1*}, and adds them to form a 2-bit sum digit, SA e

{0,1,2,1*}, and a carry bit, Ca e {0,2}. The addition is summarised in Table 4.4,

showing that there is much flexibility available for the cell’s implementation. Don’t

care state is formed when a value in GF(p) is to be added to a digit in GF(2"), since

this is prohibited. Note that, the output digit ‘2’, can be represented by either SA = 2

and Ca = 0 or Sa = 0 and CA = 2.

93

Table 4.4 Cell A addition

0 1 2 1*
0 0 1 2 1*
1 1 2 3 X
2 2 3 4 X
1* 1* X X 0

The second stage (cell B) receives the 2-bit sum digit, Sa, and the shifted carry bit,

CA, from the previous bit of cell A, and adds them to form the 2-bit sum digit, Sb e

{0,1,1*}, and a carry bit, Cb e {0,2}. The addition is summarised in Table 4.5,

showing that there is less flexibility available in this cell’s implementation than in cell

A, as there is only one don’t care state.

Table 4.5 Cell B addition

0 1
0 0 1
1 1 2
2 2 3
1* 1* X

Finally, the third stage (cell C) receives the 2-bit sum digit, Sb> and the shifted carry

bit, Cb, from previous bit of cell B and adds them to form the 2-bit sum digit, Sc e

{0,1,2,1*}. This digit set matches the digit set of the (4:2) adder’s inputs, so that the

addition is complete [128]. The third stage of the addition is summarised in Table 4.6,

showing that there is more flexibility available in this cell’s implementation, due to

the increased number of don’t care states.

Table 4.6 Cell C Addition

0 1
0 0 1
1 1 2
X X X
1* 1* X

94

4.2.1 Cell A digit coding

The digit coding for cell A was chosen as follows: 5^(0) should be a 2-input XOR

function, to match the delay of a basic (4:2) adder, the other two logic functions are

required to be as simple as possible. Having experimented with all possible coding

combinations, the most efficient coding scheme was found to be (0,1) = 1*, and (1,1)

= 1. (0,0) was chosen to be 0, leaving (1,0) = 2. Filling out Table 4.4 with these digit

representations gives the Karnaugh map shown in Table 4.7, where ‘-’ reflects that

the decision about how to represent the output ‘2’ is yet to be made, and ‘X’ denotes

“don’t care”.

Table 4.7 Karnaugh Map for Cell A addition

0-> 00 1*->01 1->11 2 -> 10
0 -> 00 0, (0,0) 0, (0,1) 0,(1,1) -, (-,0)
1*->01 0, (0,1) 0, (0,0) X, (X,0) X, (X,l)
1->11 0,(1,1) X, (X,0) -, (-,0) 1,0 ,1)
2 -> 10 -, (-,0) X, (X,l) 1 ,0 ,1) 1,0 ,0)

The (-,0)’ entries must become either ‘1, (0,0)’ or ‘0, (1,0)’ to represent an output

value of 2 (see Table 4.8). If they are set to ‘0, (1,0)’, then 5^(1) = jc(1) v y(l), using

the don’t care states. Finally, by setting all the remaining don’t care states for Ca low,

Ca = x(l) a y(l) a {■’Jc(O) v ~y(0)} is obtained, which is implemented as a 2-input

NAND driving a 3-input AND, matching the CMOS VLSI delay of the XOR. Note

that -1 denotes inversion, v denotes ‘OR’ function and a denotes ‘AND’ function. The

final map for cell A is presented in Table 4.9.

Table 4.8 Redundant representation of sums

Total SUM CARRY

0 0 0

1 1 0

2 2 0

2 0 1

3 1 1

4 2 1

Table 4.9 Karnaugh Map for Cell A addition

0->00 1*->01 1->11 2->10
0->00 0, (0,0) 0, (0,1) 0,0,1) 0,0,0)
1*->01 0, (0,1) 0, (0,0) 0, (1,0) 0,0,1)
1->11 o. (1.1) 0, (1,0) 0,0,0) 1,0,1)
2 -»10 0,(1,0) 0,(1,1) 1,0,1) 1,0,0)

4.2.2 Cell B digit coding

Using the same coding for cell B as was used in cell A gives S b(0) = 5 ^ (0) © Ca , as

required. However, the logic for S ^ l) is not simple enough with this encoding.

Swapping the output representations for 1 and 1* - that is replacing (0,1) by (1,1) and

vice versa, did not impact the Sb(0) logic, but allowed the 5^(1) logic to be SB(l) =

“^ (l) a & (0) . Finally, C B = Sa (1) a (~^Sa (0) v Ca). The Karnaugh map for cell B is

presented in Table 4.10.

96

Table 4.10 Karnaugh Map for Cell B

0 1

0 —> 00 0, (0,0) 0, (0,1)

1*-»01 0, (1,1) 0, (1,0)

1 -> 11 0, (0,1) 1, (0,0)

2 -> 10 1, (0,0) 1, (0,1)

4.2.3 Cell C digit coding

Finally, the output coding must match the input coding of cell A (i.e. 1* -> (0,1) and

1 -» (1,1)), and the input coding matches the output coding of cell B. By using the

don’t cares, the logic equations are Sc{ 1) = ^ S b{ 1) a S^O) v C b , and Sc{0) = S b{0) ®

Cb- The final Karnaugh map of Cell C is presented in Table 4.11.

Table 4.11 Karnaugh Map for Cell C

0 1

0 -» 0 0 (0,0) (1,1)

1-»01 (1,1) (1,0)

1* 11 (0,1) (1,0)

X ->10 (0,0) (1,1)

Figure 4.4 shows the final CMOS gate implementation of the adder, where some

further logic optimisation has been made (i) to cover the lack of AND and OR gates

in CMOS, and (ii) to take advantage of CMOS complex gates. Note there is no FSEL

input needed in this adder design.

97

y[1:0]x[1:0]

Cell A

<C,

Cell B

Sb[0]

<0,
Cell C

Sc[0]SJ1]

Figure 4.4 Overall gate implementation of new dual field (4:2) adder

For bit 0 of the adder, since the two carry inputs Ca and Q, are 0, Sc[0] can be

simplified to x[0] © >>[0] and Sc[1] is simplified to *S'<ar[l] + Sa[0] . This ensures the data

necessary for computing Montgomery modular multiple is ready as soon as possible.

This also provides the opportunity to simplify the circuit design for the Montgomery

modular multiple generation unit as will be seen later in section 5.3.

98

4.3 Unified field adders comparison

4.3.1 Area and Speed

The complete adder of Figure 4.4 was simulated using NC-Verilog and synthesised

using Synopsis, which showed that the critical path (through the three XOR gates)

was 1.50 ns using 0.18pm VLSI technology. By comparison, the four-input carry-

save adders presented by Sava§ in [121] are implemented as pairs of full adders with

extra gates on the carry outputs to force carries to ‘0’ (see Figure 3.10). Ignoring

pipeline stages, Sava§’ adder cells have a total CMOS logic gate count of 14

(counting XOR gates as two gates) as follows:

• 2 x 2 XOR (equivalent to 8 CMOS logic gates)

• 2 x 1 NOR

• 2 x 1 NOT

• 2 x 1 AOI CMOS complex gate

The proposed adder has a critical path length of only three XOR gates, with a CMOS

logic gate count of only 13, made up as follows:

• 3 XOR/XNOR

• 2 NOR

• 1NAND

• 1 NOT

• 2 OAI CMOS complex gates

• 1 AOI CMOS complex gate

Logical Effort (see Appendix 2 for description of theory) can be used to assess the

speed of the adder [131]. The reason why logical effort is used is because the results

99

are close to reality and also it is technology independent. The delay is often

represented in terms of F04, which denotes “fanout of 4 inverters”. This means the

delay through an inverter that has to provide the output drive current sufficient to

drive 4 other inverters of comparable sizes. Take the critical path of the (4:2) adder,

which is the 3 XOR gates. These gates are connected to:

• XOR A: XOR, NOR, OR of OAI + wire

• XOR B: XOR, OR of OAI + wire

• XOR C: register

Assume the logical effort of an XOR is 4 as suggested in [131]. Also assume the

logical effort of wire is 2/3 per fan-out. The input to XOR A is connected to an XOR

and an AOI, such that the logical effort of the input is 4 (XOR) + 2 (AOI) + 2x2/3 for

the wire, therefore the total logical effort of the input is 22/3. Table 4.12 shows the

logical effort of the proposed adder.

Table 4.12 Logical effort of (4:2) unified field adder

Logical

effort#

Branching

effort b

Electrical

effort h

Parasitic

effort p

Path effort

gb(h)

Input 1 (22/3)/4 1 22/12

XOR A 4 (4 + 5/3 +

6/3 +

3x2/3)/4

1 4 29/3

XOR B 4 (4 + 6/3 +

2x2/3)/4

1 4 22/3

XOR C 4 Assume 1

for register

1 4 4

The total path effort of the critical path for w word length is:

100

F = GBH= 22/12 x 29/3 x 22/3 x 4

= 519.9

The number of stages N needed including buffers can be calculated as follows:

N = Rnd (log4 F)

Rnd (log4 519.9) = Rnd (In 519.9/ In 4) = Rnd (4.51)

Rnd 4.51 =5

But XOR gates in CMOS have 2 stages. Therefore N is 6, not 5.

The stage load/drive a is calculated as follows:

a = f 1,n= 519.9 1/6

= 2.84

The delay along the critical path D is defined as D = (N x a + P)/5 in F04 unit.

D = (6x2.84 + 12)/5 = 5.80 F04

There are two paths through the unified field adder used by Sava§ et.al: the first goes

from inputs a or b to output S and the second goes from inputs a or b to output Cout.

The logical effort of the path through two XOR gates to output S is shown in Table

4.13. The input is connected to an XOR and the AND of the AOI = 4 + 2 + 4/3 =

22/3. Table 4.13 shows the logical effort of Sava§’ adder.

101

Table 4.13 Logical effort of path 1 of Savas unified field adder

Logical

effort £

Branching effort

b

Electrical

effort h

Parasitic

effort p

Path

effort

gb(h)

Input 1 (22/3)/4 1 22/12

XOR A 4 (4 + 2 + 4/3)/4 1 4 22/3

XOR B 4 1 1 4 4

Path Effort of the critical path F — GBH (critical path) = 22/12 x 22/3 x 4 = 53.8

The number of stages N needed including buffers can be calculated as follows:

N = Rnd (log4 F)

= Rnd (og4 53.8) = Rnd (In 53.8/ In 4) = Rnd (2.87)

Rnd 2.87 = 3

As before, each XOR gate consists of two CMOS stages. Therefore, N = 4. The stage

load/drive a and the delay D is calculated as follows:

a = f vn = 53.8 1/4 = 2.71

D = (N x a+ P)/5 = (4 x 2.71 + 8)/5 = 3.77 F04

The second path goes through the first XOR gate, and then through the AOI and the

NOR gates. The logical effort of this path is shown in Table 4.14.

102

Table 4.14 Logical effort of path 2 of Savas unified field adder

Logical

effort £

Branching effort

b

Electrical

effort h

Parasitic

effort p

Path

effort

gb(h)

Input 1 (22/3)/4 1 22/12

XOR A 4 (4 + 2 + 4/3)/2 1 4 44/3

AOI 2 (5/3 + 2/3) / (5/3) 1 4 14/5

NOR 5/3 1 1 2 5/3

Path Effort of the critical path F = GBH (critical path) = 22/12 x 44/3 x 14/5 x 5/3 =

125.5

The number of stages N needed including buffers can be calculated as follows:

N = rnd (log4 F)

= log4 125.5 = In 125.5/ In 4 = 3.49

Rnd 3.49 = 3

But, XOR gates consist of two CMOS stages. Therefore, N= 4. The stage load/drive

a and the delay D is calculated as follows:

a = f i,n= 125.5 1/4 = 3.35

D = (N x a+ P)/5 = (4 x 3.35 + 10)/5 = 4.68 F04

In terms of delay, the proposed design is 24% slower than Savas’, however, the

proposed design is capable of radix-4 operation, which will be beneficial to the

implementation of the unified field multiplier. Also, the adder has one major

advantage compared with Sava§’s design and that is scalability.

103

4.3.2 Scalability

When compared with Sava§ et a V s design [121], shown in Figure 3.9, the unified

multiplier presented here has the advantage that the Galois Field selection line does

not cause extra delays due to potentially large fanouts. In Figure 3.9, the FSEL line

has to drive 2w NOT gates and a long wire in the dual field adders, where w is the

word-length of the adder.

The delay o f the FSEL line driving 2w inverters can be estimated by using Logical

Effort [131] as being roughly log42w F04 delays. However, this does not include load

due to wire. Previously, b = 2/3 per fan-out was assigned to track delay. However,

this is too small for this calculation because the figure o f 2/3 assumed gates are

placed next to each other. Here, gates are placed one adder apart so that b should

increase to 5 x 2/3 = 10/3 because there are 5 gates in an adder. Therefore the delay

o f the buffer is estimated by log4{2xl+10/3}w = log4(16/3)w. Hence, the ratio o f

delay due to transistor and wire to the delay due to transistors alone can be

summerised as log4(16/3)w: log42w. Table 4.15 and Figure 4.5 show the relationship

between delay due to transistor and wire to the delay due to transistors for different

wordlength. The pipeline delay comprises this buffer delay and the adder delay,

assuming that the partial product is generated in a prior pipeline stage.

Table 4.15 The ratio of delay due to transistor and wire to the delay due to
transistors alone

wordlength log4(16/3)w log42w Ratio

log4(16/3)w: log42w
4 2.2075 1.5 1.4717 1
16 3.2075 2.5 1.2828 1
32 3.7075 3 1.2358 1
64 4.2075 3.5 1.2021 1
256 5.2075 4.5 1.1572 1

104

6

5

4

3

2

1

100 200
wordlength

300

LN (16/3)w
LN 2w

Figure 4.5 The ratio of delay due to transistor and wire to the delay due to
transistors alone

In Figure 3.10, there are two critical paths through the adder: one starts with inputs a

and b and traverses an XOR gate, a (2,2) AND-OR-invert (AOI) gate, and a NOR

gate; the other starts with the FSEL line and comprises the FSEL buffer, an inverter,

and the same NOR gate as the other path. The FSEL delay dominates the pipeline

stage when the buffer delay becomes larger than the difference between these paths.

From Logical Effort, the delay of the adder (path 2) was found to be 4.68 F04. Now

the delay of the inverter and NOR gate must be calculated.

Table 4.16 Logical effort of FSEL path in Savas unified field adder

Logical

effort#

Branching effort

b

Electrical

effort h

Parasitic

effort/?

Path

effort

gb(h)

Input 1 1 1 1

NOT 1 (5/3 + 2/3) / 5/3 1 1 7/5

NOR 5/3 1 1 2 5/3

105

Path Effort of the critical path F — GBH (critical path) = 7/5 x 5/3 = 2.33

The number of stages N needed including buffers can be calculated as follows:

N = Rnd (log4 F)

= Rnd (log4 2.33) = Rnd (In 2.33/ In 4) = Rnd (0.61)

Rnd 0.61 = 1

:.N= 1

Logical Effort says only one stage is needed. However, Savas’s design has two

stages, therefore N= 2. The stage load/drive a and the delay D is calculated as

follows:

a =2.33 UN = 2.33 1/2 = 1.53

D = (N x a + P)/5 = (2x 1.53 + 3)/5 = 1.21 F04

Therefore when log4(16/3)w > 4.68 - 1.21, or w = 23, the FSEL buffer delay starts to

dominate the critical path and affects the maximum clock rate achievable. Moreover,

if only one bit is processed per pipeline stage, then this design could be vulnerable to

Power Analysis cryptographic attacks as the word-length is small [1]. However,

increasing the number of bits per stage increases the fan-out on the FSEL line, further

degrading performance. Also, Sava§’ adder is slower than the proposed unified adder

when w > 109.

Table 4.17 (obtained from [121]) is a table to show the synthesis results of Sava§’

adder using 1.2 pm CMOS technology. The delays include the time needed to form

the partial product bjA, the multiple of the modulus qiM, and the necessary buffers.

Ho et.al [132] proposed the idea that 1 F04 = line-width (pm) x 360ps, for this

instance, 1 F04 = 1.2 x 360ps = 0.43ns. By using this equation the equivalent delay

of Sava§ adder in F04 can be found as shown in Table 4.17.

106

Table 4,17 Savas* Adder results

Wordlength Delay (ns) Delay (F04) {bjA + buf} +

FSEL buf delay

Buffering F04

16 6.87 15.9 15.9-4.68 =

11.22

11.22-5-1.5 =

4.72

32 9.22 21.4 21.4-4.68 =

16.72

16.72-5-1.5 =

10.22

64 12.55 29.2 29.2-4.68 =

24.52

24.52-5-1.5 =

18.02

The delay should increase logarithmically with wordlength, but the extra delay going

from w = 32 to w = 64 causes extra increase in buffering delay

The last column calculates the delay due to buffering and forming bjA or q,M by

subtracting the delay of the adder. Assuming bjA (or qtM) takes approximately 1 .3 -

1.5 F04 to be formed (using a 2-input NAND gate), and allowing 4 - 5 F04 for

register set-up and clk-to-q delays, the table shows that buffering dominates the delay

for w > 16, see last column of Table 4.17. For example, at w — 16, 11.22 - 5 - 1.5 =

4.72 F04 are needed for buffering, which is very close to the delay as calculated for

the adder (4.68 F04). This matches with the logical effort estimation.

The word length in the proposed design can be increased per pipeline stage as much

as needed, without causing extra delay - so that this design is truly scalable.

Moreover, this design could process more than one digit per pipeline stage without

any extra delay due to field selection, although there would be additional delay due to

the extra adders in each pipeline stage. However, the Multiplicand A and the Modulus

M need to be converted into the novel redundant number coding, this can be done in

parallel with the Multiplier B being fed to the row of partial product generators, thus

avoiding any delay due solely to field selection.

The next chapter shows how a complete dual-field multiplier can be designed based

on the dual-field adder introduced here.

107

5 Unified Field Multiplier

In this chapter, the design of the proposed unified field multiplier will be described.

The definition of unified field architecture is one architecture that is able to perform

operations in both prime field GF(/?) and binary extension field GF(2") using the same

data path. The proposed multiplier has the following properties:

• Scalable - the hardware structure can be scaled up or down by reusing,

replicating or truncating, without affecting clock period

• Fast - the performance of the multiplier should not be compromised by being

dual-field instead of dedicated to single field

• Impartial - the multiplier must not favour one prime number or an irreducible

polynomial over others for flexibility of applications

Unified field multipliers have the advantages of low manufacturing cost, they also

provide compatibility and flexibility by being interoperable. Even though GF(p) and

GF(2") have very different properties, their representations and structures are very

similar. They can both be represented as bit strings and their arithmetic structures are

the same except that GF(p) performs modulo a prime p and GF(2”) performs modulo

an irreducible polynomial M(x). This provides the opportunity to implement

arithmetic unit that is interoperable between either fields.

Chapter 4 described the unified field redundant adder that is employed in the

proposed unified field multiplier. The technique of embedding field information into

the encoding of the data was introduced in section 4.2. The same encoding will be

used throughout the implementation of the multiplier.

In the first part of this chapter, different common modular reduction techniques are

discussed, which includes the chosen Montgomery modular multiplication. The

second section shows the implementation of the proposed multiplier design and the

108

final section of this chapter discusses the strengths of the proposed design compared

with the previously proposed architectures.

5.1 Modular Multiplication Algorithm

Modular multiplication is required for many cryptosystems such as RSA and ECC

because it allows encrypted data, which are very large in size, to be securely stored in

public domain but could only be decrypted by the users who hold the authorised key.

Modular multiplication means that, for A, B and M< /7-bit:

R = A B m o d M (5.1)

Modular multiplication is computed using the multiply-and-reduce method, which

can be expressed by the following equations:

Multiply: X = A x B (5.2)

Reduce :R = X mod M (5.3)

The multiplication part is relatively simple to compute, except that the numbers

involved tend to be very big and the size of partial product result X becomes 2/7-bit,

this should be reduced by the modular reduction operation to n-bit. Modular

reduction is the remainder R of a division such that:

(5.4)

R = X - qM (5.5)

109

The modulus M and the partial product resu lt^ of base b are defined as follows:

M = 'YJmibl , 0 < w w_1< 6 a n d 0<mt <b, for / = 0, 1........n-2
i=0

(5.6)

/ - i

X = , 0 < xM < b and 0 < x, < b , for / = 0, 1........ /-2
i=0

(5.7)

The “pencil-and-paper” division approach for modular reduction requires n

subtractions and shifts, one long multiplication and one final subtraction. Knuth [133]

formalized the “pencil-and-paper” method to give the so-called classical algorithm.

The pseudo code of the classical method is shown in Figure 5.1:

{Pre-condition: 0 <AxB < Mxrn}
R:=AxB
For i := n-\ down to 0
Do

Begin
q := R div (M x r');
R := R - q x M x rl;
{ Invariant: 0 < R < Mxrl8c R = (AxB) mod M }

End ;
{Post-Condition : R = {AxB) mod M)

Figure 5.1 The classified pen-and-paper division method

Since the quotient q is not required in modular reduction, working out the exact

quotient is extremely time consuming, and so different methods have been introduced

to speed up the process, such as by estimating the quotient. Knuth provided methods

to estimate the quotient based on the fact that the condition XIM < b (b is the base of

the number) is equivalent to Lx/bJ < M. Since R = X - qM and q is an integer such

that 0 < R < M therefore an approximation of q, denoted by q , can be obtained by

110

dividing the most significant digits of X, xi.\ and X1-2 , where / is the wordlength of X,

by the most significant digit of M, m*. \. If the result is b or larger, then replace it by b-

1 such that:

q = min(xM fr + X/ - 2

m k - \
, b - l) (5.8)

The pseudo code of the Knuth algorithm is given in [134] and is shown in Figure 5.2.

if(A > Mb1'") then
X=X-M b'-";

for (/ = / - l ; / > n -\; /--) do {
if (Xi = = mn. i) then

q = b-1;
else

q = (xtb + xm) div m„.i;
while (q(mn.\b + mn.2) > Xfb2 + x\.\b + xt.2) do

q = q-1
X = X -q M b ‘-n;
if (X < 0) then

X = X + M b i'n;
}

Figure 5.2 Knuth Algorithm (m„-i ^ Lb/2_|)

Dhem [135] suggested that this method is more advantageous in the case where a fast

and large divider is readily available; otherwise a hardware divider is slower and

more expensive than a hardware multiplier.

Another example of a method that improves the speed of modular multiplication by

estimating the quotient q is called Brickell method [136]. This method makes use of

delayed carry, adders, which is a modified version of carry-save adders. This method

determines the multiple of modulus M to be subtracted from the partial multiplication

as a result of assessing the top digits of the partial multiplication results. This is

similar to SRT division.

I l l

In general, the three most common methods to compute modular multiplications are:

• Interleaved modular multiplication - compute a multiplication followed by a

reduction. This approach makes use of the usual modular multiplication order,

which multiplies from the most significant bit to the least significant bit. This

method has the benefit of keeping the register requirement of the partial sum

to «-bits and thereby saving register space.

• Barrett modular multiplication [137] [138] - The pseudo code of Barrett’s

algorithm is shown in Figure 5.3 [134]. Barrett suggested pre-computing the

inverse of each modulus M at the beginning of computation:

Where n is the wordlength of the operands. Instead of division by M,

multiplication of W which has n + 1 digits, is performed because division is

less efficient. Typically, division is 10 times or more slower than

multiplication on a microprocessor.

R = X - (X - W) • M (5.10)

This method approximates the quotient by using a scaled estimate of the

modulus’ reciprocal such that:

9 = -W) (5-ID

This means multiplying the most significant («+l) digits of X by W, which is

the inverse of M. The n most significant digits of the approximation of the

quotient is then multiplied by M. The estimated remainder is attained by

subtracting the n+1 least significant digits of qM from the corresponding part

of the partial product X. This can be summarised as follows:

112

R = (Xmod6"*' - (qM)modb"*')modb"*1 (5.12)

Bosselaers [134] explained that, in the calculation of the product

X
q = (--j—- • W) , the calculation of the t-2 least significant digits can be

b

avoided because the carry from position t to position t+1 can be accurately

estimated by calculating the digits at position t-l and t. This means that the

estimation of the remainder is similar to that of the quotient, such that only a

partial multiplication is needed. Dhem [135] provided an improved Barrett’s

algorithm by introducing a new parameter a that would refine the estimation

on the quotient. Another example of implementation that makes use of the

Barrett’s algorithm can be found in [139].

q = ((x div bn~l)n) div b
x = x mod b"*1 - (qm) mod h”*1;
if (x < 0) then

x = x + b"*1;
while (jc > m) do
x = x - m

Figure 5.3 Barrett's Algorithm (// = b2n div m)

• Montgomery modular multiplication [118] - The main purpose of this

algorithm is to find an appropriate multiple of the modulus to be added to

partial product AxB so that the lowest k bits will become 0. If the lowest k bits

are 0, instead of the need for modular division, k bit right shift is performed.

Unlike usual multiplication practice, Montgomery modular multiplication

chooses digits from least to most significant bit, and shifts down during each

iteration. The modulo multiple q is computed from the lowest digits of the

modulus M and partial sum (PS) where PS = A x bt + R and R is the result

from the previous iteration. The advantage of this design is that there is no

need to wait for any carry propagation. The Montgomery’s algorithm is

113

described in Figure 5.4. Let R be the remainder, r be the radix, M is the

modulus involved and gcd(M, R) = 1. The quotient q is chosen such that

R+qM is a multiple of r. Many implementation of the Montgomery modular

multiplication can be found, such as reference [156] and reference [164], it

will be described in more detail later on in this chapter.

(Pre-condition: 0 <A < r"}
R:= 0;
For / := 0 to n — 1 do
Begin

9i ■= (~(Ro + a0b,)m~')m o d r;
R :=(R + A x bt + q x M)div r ;
(Invariant: 0 < R < M+B}

End;
(Post-condition: R = (AxBxr"n) mod M}

Figure 5.4 Montgomery's Algorithm

These three common modular reduction algorithms - the classical method, the

Barrett’s method and the Montgomery reduction - were compared and the following

results were found [134]:

Table 5.1 Complexity of the three reduction algorithm in reducing a 2A-digit

num ber x modulo a A-digit modulus m

Algorithm Modulo Multiplication Ordinary

MultiplicationClassical Barrett Montgomery
Multiplications n(k+2.5) n(n+4) n(n+1) nl
Divisions N 0 0 0
Precalculation Normalization bZn div m -/wo*1 div b None
Argument

Transformation

None None /w-residue None

Postcalculation Unnormalization None Reduction None
Restrictions None x < blk x < mbk None

114

Table 5.2 Execution times for the reduction of a 2A-digit number modulo a k-

digit modulus m for the three reduction algorithms compared to the execution

time of a k x k - digit multiplication 0 = 2 16. on a 33 MHz 80386 based PC with

WATCOM C/386 9.0)

K Length of

m in bits

Times in mseconds

Classical Barrett Montgomery Multiplication

8 128 0.278 0.312 0.205 0.182

16 256 0.870 0.871 0.668 0.632

32 512 3.05 2.84 2.43 2.36

48 768 6.56 5.96 5.33 5.19

64 1024 11.39 10.23 9.33 9.12

The most time consuming operations within the three algorithms are the

multiplications and divisions, therefore comparing the number of multiplications and

divisions needed should provide a fairly accurate indication of the comparisons

between the three algorithms. Note that Table 5.1 shows only the number of

multiplications and divisions for the reduction operation. If only the reduction

operation is considered, assuming that the arguments are twice the length of the

modulus, Table 5.2 shows that Montgomery’s algorithm is faster than the other two

algorithms. Note that Montgomery’s algorithm is only applicable when the modulus

m is gcd (m, r) = 1. For the purpose of this thesis, m is assumed to be an odd number.

Table 5.2 shows the execution time taken to perform the reduction operation on a 2k-

digit number modulo a Ar-digit modulus M where the radix r is 216 using the three

different algorithms. This is performed on a 33 MHz based PC with 32-bit compiler

WATCOM C/386 9.0. The timing shown in Table 5.2 confirms the assumptions used

in Table 5.1. However, due to the pre- and post-calculations and the m-residue

transformation required by Montgomery’s algorithm, the benefits of the high

reduction speed of Montgomery’s algorithm is maximised in the case where the

numbers involved in the modular reduction are very big, such as in the case of

modular exponentiation for cryptography.

115

In general, Montgomery multiplication is the chosen method for modular

multiplication because the division operation required for modulo reductions is

replaced by shift operations, which is particularly beneficial for implementation. It

has been shown that Montgomery’s algorithm is efficient especially when the

multiplication calculation is intensive, which is often the case in cryptography. Other

advantages of Montgomery multiplication are [140]:

• Scalable

• Highly parallel

• Suitable for pipelining

• Use only addition instead of subtraction

Section 5.2.1 describes the implementation of Montgomery multiplication in GF(p)

and section 5.2.2 shows the implementation of Montgomery multiplication in GF(2”).

In section 5.2.3, the means to implement a unified field multiplier will be explained.

It shows that even though the two fields are different in nature, dual field arithmetic

hardware can be easily implemented because they are structurally very similar.

5.2 Unified Field Montgomery Multiplication

5.2.1 Montgomery Multiplication in GF(p)

There have been many proposed designs on Montgomery Multiplication in GF(p),

such as [141], [142] and [143].

The elements of GF(p) are made up of integers {0, 1,2, ..., p- \) and radix r = 2*.

They are represented as:

A = (® n- \ ’ ^ n -2 v » ^ i 5 ^ 0) 2 *

B — (bn_\»bn-i v > ^ i 9 ^ 0) 2 *

116

R = (/•„_,, r„_2,...,rt,r0)lt

Addition and Multiplication operations in GF(p) are performed as regular integer

addition or multiplication, therefore carry propagation are involved. The addition or

multiplication result will then be reduced by the modulus so that the final result will

be smaller than the modulus.

The Montgomery Multiplication algorithm in GF(p) is shown in Figure 5.5.

Input: A, B, M(A < M , B > 0)
Output: R = AB 2~n mod p

R:= 0
for i = 0 to n-1

qt := (so + a 0 6 ,)(-m “l)m odr
S := (S + A x bt■ + qt x M)divr

i f(S> M) then S = S - M

Figure 5.5 Montgomery Multiplication in GF(p)

5.2.2 Montgomery Multiplication in GF(2W)

For GF(2n), elements are represented in polynomials of degree < n-1 and the

coefficient e GF(2) if polynomial basis is used:

A^x') = Ctn_\X i&n-2^

B{x) = bn_xx n' \ b n_2x n~2,...,bAx,bQ

The irreducible polynomial of degree m is represented as follows:

M{x) = x n +mn_lx n~\m n_2x n~2,...,mlx,m0

117

Unlike addition in GF(p) which involves carry propagation, no carry propagation is

required for addition in GF(2"), so the degree of the resulting polynomial will not

exceed degree n, this means that the final reduction step required in GF(p)

multiplication is not necessary here. Therefore bit-wise modulo-2 addition is used

instead of normal addition with carry, thus XOR gates are utilised.

The Montgomery Multiplication algorithm in GF(2") is shown in Figure 5.6.

Input: A(x), B(x), M(x)
Output: R(x)

R(x) := 0
for i — 0 to n- 1

q, (x) := (s0 (x) + a0(x)bt (x)){-m~x (x)) modx k

S(x) := (S(x) + A(x) x bj (x) + qt (x) x M(x))divxk

Figure 5.6 Montgomery multiplication in GF(2n)

Some examples of previously proposed Montgomery multiplier can be found in

[144], [145].

5.2.3 Unified Field Montgomery Multiplication

As presented in section 4.2 and 4.3, it can be seen that the elements of the two fields

can be presented using almost the same data structures. For example for GF(1) with

modulus = 7, the elements can be represented as:

GF(7)= {000, 001,010,011, 100, 101, 110}

For GF{2) with irreducible polynomial =x +x+\, the elements can be represented as:

GF(23) = {000,001,010,011,100,101, 110,111}

118

Also, the structures of the algorithm for basic arithmetic operations in both fields are

very similar. The main difference is that arithmetic operations in GF(p) are carried

out like regular arithmetic operations, where carry propagation is involved. Whereas

for GF{2”) operations, bit-wise modulo-2 operation is performed. This provides the

possibility of implementing unified multiplier architectures. Some previously

proposed unified field multipliers could be found in [121], [123], [124] and [122].

The remaining sections in this chapter will describe the proposed unified field

multiplier. This design is in word-serial nature to show the proposed method to

implement dual field multiplier without the need to have a field-select signal. This

solution has a very high fan-out because it is fed into multiple gates, as in previously

published designs.

Section 5.3 will describe the overall structure design of the multiplier,

implementation details of individual module involved will be shown in subsequent

sections.

5.3 Proposed Word-Serial Montgomery Multiplier

Architecture

Figure 5.8 shows the proposed word-digit dual-field multiplier architecture, which

corresponds to the step-by-step codes shown in Figure 5.7. It involves two partial

product generations, two partial product summations and one modulo multiple

determination process.

119

Input: A , B e GF(p) and n = [log2 M 1
Output: R g GF(p)

R := 0
for / = 0 to «-l

PP : = ^ ,
PS :=R + PP
R :=PS+ qM
R:=R/2

if R > m, then R:= R-m
return R

Figure 5.7 Bit-wise Montgomery Multiplication (step-by-step)

Because of the novel coding system used, binary numbers are encoded into redundant

numbers. Details on the coding systems are explained earlier in section 5.2, where the

description of implementation of proposed redundant adder can also be found.

Section 5.3.1 shows the implementation of the partial product generator and the

binary to redundant encoder. The implementation of the circuit for modular reduction

is found in section 5.3.2.

The overall structure of this multiplier is shown in Figure 5.8. It shows that the

multiplier comprises six different modules: (1) Binary to Redundant number encoder;

(2) Partial Product Generator; (3) (4:2) adders for partial products summation; (4)

Modulus Multiplier Digit Selection; (5) Modulus Multiple Generator; (6) (4:2) adders

for modulo reduction. However, only four different modules are required because the

two (4:2) adders required are the same, as are the partial product and modulus

multiple generators. The (4:2) adder has already been introduced, so the following

sections shall present the design of binary to redundant number encoder and also the

design of the partial product generator. The modular reduction will be presented in

the last section of the Chapter.

120

GF(p)?
1 -> GF(p)

0-> GF(2An)
i Encode
| Binary to
| Redun-
| dant

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

Partial
Produc

Generator < -

Partial
Produc

Partial
Produc

■G&TWraTBr*
Partial
Produc

Generator'

p p .

4:2 Adder 4:2 Adder 4:2 Adder 4:2 Adder

BS[1]

Modulo Multiple

q xM

PS,

4:2 Adder 4:2 Adder 4:2 Adder

Figure 5.8 Proposed Word -Digit Dual-Field Multiplier Architecture

5.3.1 Unified radix-4 Partial Product Generator

5.3.1.1 Radix-2 integer multiplication

The multiplication of unsigned radix-2 AxB = P multiplication is discussed in this

section. A, B and C denote the multiplier, the multiplicand and the product, they are

represented as follows:

Multiplier^: 4 _ ,2 "‘ + 4 . 2 2 ' ’ 2 + ... + 4 2 1 +4,2°

MultiplicandB: 5 ,.,2‘~' + 5,_2 21’ 2 +... + 5,2 ' + 502°

121

Product (AxB) = P: P{l 2i~2 + />_,221' 3 + i>_2 22" 4 +... + Px2l + P0 2°

Figure 5.9 shows the multiplication of an i-bit number by a 4-bit number. The product

is formed by summing all partial products, each partial product is produced by BrA-21.

Since Bt is in {0,1}, each partial product term can only be equal 0 or A-21. This

operation can be represented by the logical AND. Therefore, the binary multiplication

is equivalent to the summation of partial products, which is either 0 or shifted version

of A. Avizienis gives an example of a radix-2 multiplier implementation [128].

An A3 a 2 Ao

b 3 b 2 Bo

Partial
Product

1

Partial
Product

2

Partial
Product

3

... P3

P m

Pa

P2

Po

Po

Partial
Product

4 P m • ■ ■

Final
Product

Mi
♦3

M i

♦2 ■ S B

Pa

Pa

P2

P2

Po

Ms M4 Mj Mo

BoA2°

B1A21

BaA2

BaA23

Figure S.9 unsigned Radix-2 AxB Multiplication

5.3.1.2 Radix-4 multiplication

By increasing the radix of the multiplier to 2k, the number of iteration for partial

product calculation is reduced because this is equivalent to operating k bits of the

radix- 2 multiplier per iteration.

122

The implementation of high radix multiplier is becoming more common: for example,

designs such as [146], [147], [148] and [149] all describe high-radix modular

multiplication implementations. Walter [150] discussed the trade off between time

and space when implementation high-radix design. It is said that by having a

moderate increase in radix value, it can provide a faster alternative to that of the

radix- 2 designs.

Figure 5.10 shows the multiplication of an /'-bit number by a 4-bit number in radix-4.

In radix-2 multiplication, the partial products are either 0 or shifted version of A. In

radix-4 multiplication, one needs to consider the multiples: OxA, 1 xA, 2xA and 3xA.

Figure 5.11 depicts the partial product generation in radix-4 to compute the multiples:

OxA, IxA, 2xA and 3xA. Note that in the diagram the multiple 3xA is assumed to be

pre-computed.

An Aj-2 A 3 a 2 A, Ao

b 3 b 2 B, Bo

Partial
Product

1

Partial
Product

2

P m P i-2

P m Pi-2 P3

P2

Po

Po (B^yu0

(B3B2)A41

Final
Product

Mi
+3

Mi
+2

Ms M4 m3 m2 Mi M0

Figure 5.10 Radix-4 multiplication

123

multiplier

3 A

2A

'M

MUX

To th e a d d e r

Figure 5.11 partial product generation in radix-4 with pre-computation of 3jl4

Gropschadl [151] described a unified radix-4 partial product generator. For GF(p),

the generation of partial products is performed according to the modified Booth

recoding technique [152] (see Figure 5.12). For GF(2"), the partial products are

generated in the same way as this is done by a digit-serial polynomial-multiplier with

a digit size of d - 2. Therefore, two bits of the multiplier are processed in either case,

generating one partial product. The unified partial product generator is shown in

Figure 5.13.

shl = shift left
trp = transport
inv = invert

Figure 5.12 Gro(3schadl Booth encoder circuit

124

Figure 5.13 Gropschadl unified radix-4 partial product generator

In the proposed design, the two digits input to the (4:2) adders - namely, the result of

the previous iteration, Rn, and the partial product, PPm both have the digit set, d e {0,

1, 1*, 2}. The partial product generation is decomposed into two steps: firstly, the

selected Galois Field is embedded into the multiplicand word by encoding it using the

novel d= 1 * representation; secondly, the radix-4 partial product is derived by using

the available redundant d = 2 representation. The first of these steps, embedding the

Galois Field, is implemented by the simple circuit shown in Figure 5.14. This is the

same coding system as used for the adder described in Chapter 4. Even though the

GF(p) line may have a very high fan out when the wordlength is long (see Figure

5.8), buffers can be added to the signal; moreover, the GF(p) line is out of the critical

path, hence the buffering does not affect the overall delay of the multiplier.

GF(p)?
1 -> GF(p)

0-> GF(2An)

A

V J

a, [11 3j[(

Figure 5.14 Field-Embedded Binary Number Encoder

Every two bits of the multiplier word, B, are recoded as a radix-4 digit, and the

multiplicand, A, then multiplied by the recoded bit to yield the appropriate partial

125

product, as shown in Table 5.3. Figure 5.15 shows the logic diagram of the partial

product generator, including the Field-embedded binary number encoder, which is

similar to that shown in Figure 5.11. It is seen to be simpler than the standard radix-4

Booth’s encoder, such as the one shown in Figure 5.13 [151]. In particular, the

negative multiple increment bits that occur in Booth’s coding are avoided, as these

can increase the logic depth of the adder array and negative partial products do not

exist in modular arithmetic. Note how the availability of the redundant digit, d = 2, at

the (4:2) adder input means there is no need for a carry-propagate addition when

encoding the radix-4 digit of 3.

Table 5.3 Radix-4 Partial Product Generation

(Bh BiA) Radix-4 digit Partial product, PP/[1:0]
0 0 0 0

0 1 1 A
1 0 2 Left shifts 1 bit
1 1 3 1A + 2A

GF(p)?
1 -> GF(p)

0-> GF(2An)

0

y s r

Figure 5.15 Radix-4 Partial Product Generator

~j_____ \ _9P__°J_1°j_ 1 j ? Multiplier

126

5.3.2 Unified Modulo Reduction

In order to carry out Montgomery reduction, one needs to work out the multiple of the

modulus such that when added to the partial product, the result of the last two digits

(for radix-4) becomes zero. Figure 5.8 shows that the modular multiple selection (i.e.

determining qj) causes irregularity in the design and is on the critical path. Therefore,

effort is needed to reduce the delay by taking into consideration pre-known factors as

early on in the calculation as possible. For example, the modulus M is always an odd

number (because r = 2”), so that the last bit of M, M[0], will always be 1. Therefore

the information presented in Table 5.4 regarding the two LSB’s of qrM is already

known before any modulo reductions are performed.

Table 5.4 Multiple of M

Multiple of M A/[1 ,0] = 0 1 Mi>o] = n
1 0 1 1 1

2 1 0 1 0

3 1 1 0 1

Table 5.5 shows what value of q, is required to ensure R = BS[1, 0] + qrM= 00 as a

function of the selected Galois Field, where the two LSB’s of the Partial Sum,

denoted by BS[1:0], are in conventional binary form rather than in redundant form.

Table 5.5 Selection of Modulo Multiple. ai*M

GF (p),

GF = 1

Partial Binary Sum,

BSri:01

<7>[L0]
ifMn .0 1 = 0 1

<7/11:0]
if MH.01 = 11

00 00 00
01 11 01
10 10 10
11 01 11

GF(2”) , '

GF = 0

00 00 00
01 01 11
10 10 10
11 11 01

127

From Table 5.5, it is easy to see that q,[0] = ££[0] independently of both the Galois

Field and M[1:0]. However, #,[1] is a function of M[1], BS[1:0], and the Galois Field

flag, GF. Figure 5.16 shows a simple circuit implementing the necessary logic

organised as a multiplexer controlled by ££[0].

B S [1] G F , . M[1]

BS[0]

Figure 5.16 qi[1] logic

Montgomery’s modular reduction technique is performed on non-redundant binary

numbers. Therefore, the redundant representation returned by the (4:2) adders must

be converted to binary to obtain the bits ££[1:0]. Table 5.6 presents this conversion

process, where PS, denotes the two bits representing the partial sum at bit position i

(see Figure 5.8). Note that ££i[l] is not included in the Table, because it is weighted

+ 2 and so has no effect on the value of ££[1].

The Table shows that ££[0] = ££o[0]. In fact, since Ca and Q> to the (4:2) adder are

both 0, ££[0] = ££o[0] © £o[0], and is available much earlier than ££[1]. The logic

for ££[1] is presented in Figure 5.17 as a multiplexer controlled by ££[0], in common

with Figure 5.16. Merging Figure 5.16 and Figure 5.17 yields the simplified circuit

for q,[\] shown in Figure 5.18.

128

Table 5.6 Binary Conversion

PSi[l] PS1[01 PS0[1] PSofOl digit[l] digit[0] BS [1] BS [0]
0 0 0 0 0 0 0 0
0 0 0 1 0 1* 0 1
0 0 1 0 0 2 1 0
0 0 1 1 0 1 0 1
0 1 0 0 1* 0 1 0
0 1 0 1 1* 1* 1 1
0 1 1 0 1* 2 0(x) 0(x)
0 1 1 1 1* 1 l(x) l(x)
1 0 0 0 2 0 0 0
1 0 0 1 2 1* 0(x) l(x)
1 0 1 0 2 2 1 0
1 0 1 1 2 1 0 1
1 1 0 0 1 0 1 0
1 1 0 1 1 1* l(x) l(x)
1 1 1 0 1 2 0 0
1 1 1 1 1 1 1 1

[0 ,1 ,2 ,1 1 ^ ^

[0,1]

Figure 5.17 Logic for BS[1]

G F M [1]

B S [0]

q[1J

Figure 5.18 Simplified logic for qt[1] combined with 2?5[1] logic

129

Once qt has been determined, the modulo M is multiplied by qt using the modulo

multiple generator shown in Figure 5.19, which has the same logic design as the

partial product generator presented earlier. Finally, the multiple, qrM, is then added

to partial sum (.PS) using the same modified (4:2) adder as shown in Figure 4.4. Note

that in Figure 5.8, the least significant four bits (2 binary bits) are discarded as they

are now zero and what was R2 is now fed back to the partial product adder as Ro-

GF(p)?
1 -> GF(p)

0-> GF(2*n)

choice of
mJtipie

Figure 5.19 Modulo multiple generator

5.3.3 Carry absorption Unit

In order to perform Montgomery modulo reduction, the last radix-4 digit of the partial

result was forced to zero by adding an appropriate multiple of the modulus. However,

due to the design of the specially adapted (4:2) redundant adder, the output of the last

two bits may not necessarily both become 0 ; instead they may stay in their redundant

form, i.e. 2. Therefore, effort has to be made to ensure that a ‘2’ digit will be changed

to 0 plus a carry. This can be easily done with an AND gate as shown in Figure 5.20.

Since the carry inputs to the first of the (4:2) adders are not used (and were previously

set to zero) the carry caused by changing a 2 to a 0 can be absorbed by that carry

input.

130

pp,
PP0 -

4:2 Adder 4:2 Adder 4:2 Adder 4:2 Adder

BS[1]PS, BS[0]

Modulo Multiple

q x M

PS,

4:2 A dder 4:2 Adder 4:2 Adder

1 upper bit
only

Figure 5.20 Modified architecture with carry absorption

However, if the carry is absorbed this way, then Ca[0] may no longer stay as 0 which

would affect the simplified design of the Montgomery modular reduction module. A

test unit can be implemented to check if value 2 will appear in the addition of the last

two bits of Ro = PS + qiM.

Since the input A could only be of value {0} or {1}, the last two bits of the partial

product PP formed by A*bt could only be of value {00}, {01}, {10}, {11} and {21},

as shown in Table 5.7.

131

Table 5.7 Possible results PP = A*bi

Aj+i, Aj 00 01 10 11

PP = A*bi

*0 = 00 *0 = 00 * © II o o * o II o o

ooII*

*1 = 0 1 *1 = 10 *1 = 11

* to II o o * 2 = 1 0 *2 = 00 * 2 = 1 0

*3 = 00 *3 = 11 *3 = 10 *3 = 21

Table 5.8 shows all possible result of the last two bits of PS = PP + R, verified by

simulation. The possible results are limited to {00}, {01}, {10}, {11} and {20}.

Table 5.8 All possible PS = PP+ R for GF(p)

PS R[1:0]

00 01 02 10 11 12 20 21 22

00 00 01 10 10 11 20 00 01 10

01 01 10 11 11 20 01 01 10 11

PP[1:0] 10 10 11 20 00 01 10 10 11 20

11 11 20 01 01 10 11 11 20 01

21 01 10 11 11 20 01 01 10 11

Montgomery modular reduction requires PS to be added to the appropriate multiple of

the Modulus, so that the last two bits of the sum become 00. Table 5.9 shows all

combination of PS + q,M. Table 5.8 already shows all the possible PS from

simulation. Due to the implementation of the adder, the sum of PS + qtM may not stay

as 2 even though the value is equivalent to 2. Instead, a carry may be carried forward

to the next bit. For example, 10 + 10 = 00 with carry and 11 +01 =20.

132

Table 5.9 Combinations of PS + aM

PS

00 01 10 11 20

qiM +00 +11 +10 +01 +00

carry no yes yes Yes yes

Table 5.10 shows the q*Mt results for all possible cases of PS (2 LSB only) for when

M =01 or 11. Table 5.9 shows all the results of PS + M*q„ note that some of the

results stay in the form of {20} instead of turning into {00} as explained earlier. Also,

c denotes a carry of 1 has been propagated to the next bit during the addition and d

denotes a carry of 1 is required to be propagated to the next bit because of the state

“2” being remained as a result of the addition. This concurred with the result from

Table 5.9, when PS = {00} and no carry is produced.

Table 5.10 Result M*q,- for different cases of PS

PSi+u PS, 00 01(0) 10(0) 11(0) 20

M*qt M = 01

ooIIo*

*3 = 11 * 2 = 1 0 *1 = 11

ooIIo*

M = 11

ooIIo*

*1 = 11 * 2 = 10 *3 = 21 * o II o o

Table 5.11 Results for R

PSi+u PS, 00 01 10 11 20

PS + M % M = 01 +00 = 00 +11 = 2 0

(d=l)

+10 = 00

(c=l)

+01 = 20

(d=l)

+00 = 00

(c = 1)

M = 11 +00 = 00 +11 = 2 0

(d=l)

+10 = 00

(c=l)

+21 = 2 0

(c=l)

(d = l)

+00 = 00

(c= 1)

133

Therefore unless the last two bit of PS = 00, a carry of 1 will be carried forward to the

rest of addition result R, so we can do a carry-test, which is carried out at the same

time as q{*M, as seen in Figure 5.21.

Carry only occurs for GF(p), therefore the carry test only needs to test for either PS =

1 (recoded as 11) or 2 (recoded as 10). Therefore only the upper bit of the two LSB of

PS need to be checked.

Since the least significant two (4:2) units are basically unused, the third (4:2) unit

effectively becomes the first (4:2) unit. The output of the carry test unit is then

connected to the Ca input of the (4:2) adder. Note that in the case when PS = {11} and

M = {11}, two different carries are produced. The second carry can be absorbed by

connecting it to signal C&.

The implementation of the carry test module is shown in Figure 5.22, it is

implemented as an OR gate for Ca and an additional 3-input NAND gate for C*.

134

Encode
Binary to
Redun­

dant

Encode
Binary to
R edun­

dant

Encode Encode
Binary to Binary to
Redun­ Redun­

dant dant

G F(p)?
1 -> G F(p)

0-> G F (2An)

Partial
Produc

-G e n e ra to r^

Partial
Produc
nerarort*

Partial
Produc

G enerator

Partial
Produc

Generator

PR. - ' 2

4:2 Adder 4:2 A dder 4:2 Adder4:2 Adder

Modulo Multiple
q

Encode
Binary to
Redun-
Mjpnt

Encode
Binary to
R edun
Mgant

Encode
Binary to
Redun
Mljant

Encode
Binary to
Redun-
Mjant

0-> G F

4:2 Adder

P S ,

4 :2 A dder

'2 Rn

4:2 Adder

VZ2.777.

• ' 2 5Sb

Y)

2PS,. 2

Redundant carry R edundant carry R edundant carry R edundant

to binary
^ — 1 1 to binary to binary to binary

PS PS PS PS

Figure 5.21 Overall architecture with carry test

135

PS0[1]PSi[1] MIlJPS^IJPSoM]

Figure 5.22 Carry Test

5.3.4 Redundant to Binary Number Conversion

The last step is to convert the final result of the multiplication from redundant

representation back to binary numbers. Table 5.12 shows the conversion of the

representations. 00 represent 0; both 01 and 11 represent 1 and 10 represents 2, which

mean 0 with a carry. Table 5.13 shows all the details of the conversion. The binary

value of each bit is not just based upon its value alone; it is also dependent on the

carry bit from the next least significant redundant digit.

Table 5.12 Redundant to binary representation

Binary representation

SUM CARRY

Redundant

representation

0 0 0

1 1 0

1* 1 0

2 0 1

136

Table 5.13 Redundant to binary conversion with Carry

Bit z Bit z'-l

X I x_o Y_1 Y_0

Carry from

bit z-1 bit z

Carry to bit

z+1

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 1 1 0

0 0 1 1 0 0 0

0 1 0 0 0 1 0

0 1 0 1 0 1 0

0 1 1 0 X X X

0 1 1 1 X X X

1 0 0 0 0 0 1

1 0 0 1 0 X X

1 0 1 0 1 1 1

1 0 1 1 0 0 1

1 1 0 0 0 1 0

1 1 0 1 0 X X

1 1 1 0 1 0 1

1 1 1 1 0 1 0

Bit z-1

Bit z

0 (00)
1*

(01)
1 (11) 2 (10)

0 (00) 0 1 1 0

1*

(01)
1

0 1 X X

1 (11) 0 X 1 0

2 (10) 1 X 0 1

137

Table 5.15 Karnaugh mao for carry bit generation

Bit /

1*
Carry 0(00) 1(11) 2(10)

(01)

0 (00) 0 0 1 1

1*

(01)
Bit i-l

0 0 X X

1 (11) 0 X 0 1

2 (10) 0 X 1 1

The actual value of the previous redundant representation is not essential; the

information that is required from the previous redundant bit is whether or not it will

provide a carry. That is when the radix-4 number is {10} which represents 2, the

carry bit is 1. Therefore, Table 5.16 will be more appropriate. Table 5.17 and Figure

5.18 show the relevant Karnaugh map.

Table 5.16 Redundant to binary conversion by checking carry from bit i-l

x j x_0 Carry from bit /-I Bit / Q

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 X X

1 0 0 0 1

1 0 1 1 1

1 1 0 1 0

1 1 1 0 1

138

Table 5.17 Karnaugh map for binary conversion by checking carry from the bit

i-l

Carry

from

bit z-1

Bit z

Binary 0 1 * 1 2

bit (0 0) (0 1) (1 1) (1 0)

0 0 1 1 0

1 1 X 0 1

Table 5.18 Karnaugh map for carry bit generation by checking carry from the

bit i-l

Carry

from

bit z-1

Bit i
0 1* 1 2

Carry
(00) (01) (11) (10)

0 0 0 0 1

1 0 X 1 1

Because of the way the numbers are coded, the lower bit of ‘O’ and ‘2’ are both ‘O’

and the lower bit for ‘l ’and ‘1*’ are both one, the upper bit effectively provides the

field information, apart from the state ‘O’, which shares the same characteristic in

both state. Therefore, for binary conversion, only the lower bit needs to be

considered, along with the cany bit from the previous redundant representation. For

the generation of the carry bit to the next bit, only three cases will produce a carry:

• state ‘2’ with no cany from bit z-1

• state ‘2’ with carry from the bit z-1

139

• state 41 ’ with carry from the bit i- 1

Therefore, each binary conversion module consists of the following circuit as shown

in Figure 5.23. Figure 5.24 shows the overall architecture of the multiplier.

c
P S ,

Figure 5.23 circuit for binary conversion

This chapter has presented a radix-4 unified field digit-serial Montgomery multiplier,

which includes:

• A novel (4:2) adder for unified GF(p) and GF(2") Galois Field Multiplication.

• A partial product generator to work with the proposed (4:2) adder

• A Montgomery reduction module

At the beginning of this chapter, common modulo reduction methods were discussed

and it was shown that Montgomery’s algorithm is considered to be one of the most

efficient algorithms around and is particularly suitable for the scope of this design.

The implementation of individual modules was then discussed. The redundant adder

described in Chapter 4 was used to reduce the long carry chain. The main difference

in implementation between the proposed idea and other previous research is that the

information regarding the Galois Field under which the addition is to be performed is

embedded into the digit coding, so that there is no need for a globally-broadcast

control signal.

140

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

2

Partial
Produc

-Generator 1*-

Partial
Produc

Generator ■*-

Partial
Produc

G enerator*

Partial
Produc

Generator

4:2 Adder 4:2 Adder 4:2 Adder4:2 Adder

BS[1]
PS, BS[0]PS,PS.

Modulo Multiple

Encode
Binary to
Redun- 1
Mtant

Encode
Binary to
Redun­
d a n t

Encode Encode
Binary to Binary to
Redun- Redun-
Mlpnt M(^nt

: 2^• U >

GF(p;
1 - >

0-> GF(
Gl (|

?
P)

>*n)

4:2 Adder

PS,

4:2 Adder

Redundant ^ carry Redundant
to binary to binary

PS

Figure 5.24 Final overall architecture

141

In this Chapter, the proposed radix-4 unified field digit-serial Montgomery multiplier

was shown. This multiplier is:

• Scalable - the proposed design embeds the field information into the digit

coding such that it does not allow the FSEL delay dominates the pipeline

stage. (4:2) redundant adder is used to remove carry propagation.

• Fast - This design is particularly suitable for long word length. It does not

have the problem that FSEL buffer delay starts to dominate the critical path

and affect the maximum clock rate achievable. This design can be pipelined to

enhance the performance.

• Impartial - Both GF(p) and GF(2") operations can be carried out equally

easily.

In the next chapter, the area and the delay in terms of Logical Effort will be assessed.

Methods to improve the overall performance of the multiplier will be introduced,

which include hardware optimisation and the use of quotient pipelining. Other

improvements and further research possibilities will be discussed and finally, the

conclusions from this research will be drawn.

142

6 Comparisons, Improvements and Conclusions

Chapter 5 presented a radix-4 unified field digit-serial Montgomery multiplier, which

included:

• A novel (4:2) adder for unified G¥(p) and GF(2") Galois Field Multiplication.

• A new partial product generator to work with the proposed (4:2) adder

• A Montgomery reduction module adapted for redundant digits

In this chapter, the design of the unified field multiplier will be assessed and

compared with the previously proposed design. Chapter 4 showed that the proposed

redundant adder design is very much more scalable compared with that of Sava§ et.al.

[121]. This is due to the fact that in the proposed design, instead of broadcasting the

field information throughout the whole circuit, it is encoded within the number itself.

Scalability of a cryptographic processor is important because long word-length

multiplication is often required. Moreover, from the security point of view, the larger

the cryptographic operation processor, the less susceptible it is to differential power

attacks [1], therefore it is beneficial to make the design as large as possible without

compromising on the performance. The scalability of the partial product generator

will be assessed in the first part of this chapter. The use of quotient pipelining will be

introduced as a means of improving the performance of the multiplier. Conclusions

will be drawn in the third part of this chapter; improvement methods that could also

be applied to this radix-4 hardware multiplier will also be discussed.

6.1 Overall unified field multiplier assessments

The multiplier comprises four different modules: (1) Binary to Redundant number

encoder (AND gate); (2) Partial Product Generator; (3) (4:2) adder for partial

products summation and modulo reduction; (4) Modulus Multiplier Digit Selection.

These designs have been presented in the previous Chapters. The speed of the (4:2)

adder has been assessed using Logical Effort so the other modules will also be

143

evaluated using this method. However, the Binary to Redundant number encoder is

not on the critical path of the multiplier so there is no need to calculate its delay.

6.1.1 Area and Speed of Partial Product Generator

The gate count of the partial product generator for w-bit operands including the

binary to redundant number encoder is as follows:

• 2w AND

• 2w 4-input MUX

• 1 w OR

• lwXOR

The partial product generator processes the multiplicand in radix-4 format, i.e. two

bits are scanned per iteration. This halves the number of iterations required; however,

the area of the circuit is compromised. A traditional 4-input multiplexer

implementation is shown in Figure 6.1, but improvement can be made by

implementing each 4-input multiplexer as 4-way tri-state inverter [131], as shown in

Figure 6.2 and Figure 6.3.

lo

A

B

Z

Figure 6.1 Traditional MUX implementation

144

4=11

-q-=11

Figure 6.2 MUX implementation for Pi[l] as a 4-inputtri-state inverter

4=11q = o a

Figure 6.3 MUX implementation for Pi[0] as a 4-input tri-state inverter

Figure 6.4 shows the overall multiplexer input connection of the modulus

multiplication qtM. This also shows that instead of using unencoded multiplier and

multiplicand operands as inputs, and then decoding them using the 3-input NAND

gate implementation of multiplexers, it is more efficient to use the encoded multiplier

145

and multiplicand as inputs along with the tri-state inverter implementation of the

multiplexer. The same layout can be applied to the partial product generation AxB.

The timing and scalability assessment of the partial product generator using Logical

Effort is discussed in Section 6.1.2.

The 4-way inverting multiplexer consists of four transistor-select arms, each to be

selected by respective selection signal:

• s* 1 - multiplier A x B = 00, i.e. qt[1] NOR #,[0]

• s*2 - multiplier A x B = 01, i.e. (NOT #,[0]) NOR qt[1]

• s*3 - multiplier A x B = 10, i.e. (NOT qt[1]) NOR #,[0]

• s*4 - multiplier A x B = 11, i.e. (NOT qt[1]) NOR (NOT #,[0])

Each of the respective data input is connected to the output such that when an input is

selected, the relevant bundle will then be driven to state TRUE.

146

o

O

c>

O

O

O

O

Figure 6.4 Multiplexer input connection for qjM

The gate count of the modulo multiple q selection module (see Figure 5.18) is as

follows:

• 3 XOR

• 1 2-input MUX

This small module forms irregularity on the critical path, therefore effort is made to

ensure data is derived as efficiently as possible; details are discussed in Section 5.3.2.

Since there is an individual module that does not need to be replicated, the size of the

module becomes insignificant compared with the rest of the circuit. This module

operates in radix-4 mode such that the effect of the bottle-neck on the critical path is

minimised.

p
s *'

p
s® p

S« '
pS’

:7 =:2 / :
i

:2 / ::7 ::2/ ::2/ •
q*ur qxM

'2 R. '2 Rj

P
S 4

4 2 Adder

'2 R,

4:2 Adder 4:2 Adder4:2 Adder

M oduo Multiple

4:2 Adder 4:2 Adder 4:2 Adder

Figure 6.5 8-bit Multiplier simulation diagram

The 8-bit multiplier shown in Figure 6.5 was simulated using NC-Verilog and

synthesised using Synopsys, which showed that the critical path from the input to the

first row of adders to the output of the second row of adders was 3.77 ns including

0.31 ns register delay in 0.18pm VLSI technology (See Appendix 3 for timing

report.). Note that the multiplexer implementation used for the purpose of this

148

synthesis was in the form of traditional “AND - OR” gate structure as shown in

Figure 6.1. Section 6.1.2 will assess the implementation of multiplexer using tri-state

inverters as shown in Figure 6.2. Section 6.1.2 will show how this implementation

can provide an improvement on the multiplexer delay.

6.1.2 Overall unified field multiplier assessment - Scalability

In section 4.3, the scalability of the unified field adder was discussed, it was

concluded that (4:2) unified field adder provide the ability to increase the word length

of the adder without causing extra delay due to high fanout, which means the

proposed adder is truly scalable. This ability is granted by absorbing the field

information into the coding such that the field select signal does not need to be

broadcast through the adder.

In terms of the overall multiplier design, there are four occasions where a signal is to

be propagated along a chain of modules, which could affect the scalability of the

multiplier due to high fanout, they are:

1. Field information to multiplier A for partial product generation

2. Multiplicand digit bt propagation for partial product generation

3. Field information to modulus M for Modulus multiplication

4. qt propagation for modulus multiplication

Situations 1 and 3 do not impose any severe threats to the overall propagation delay,

because both multiplier A and modulus M stay constant while the multiplicand digit bt

and the modulo multiple qi change every iteration. The possible delay caused by long

propagation of multiplicand digit bt does not affect the critical path because the output

is well latched till it is required for the next computation. However, the delay is

affected by the modulo multiple qt which propagates along two times the word-length

worth of multiplexers, as shown in Figure 6.6. Later in this chapter we will show how

this situation can be rectified by applying appropriate pipelining.

149

M n G WMQ_ 1->GF(p)
0>GF(2Yi)

\0001 1011/ 2 ___YQOQl_Qiy_ i,2 __p 0 0 1 _ 10 iy_ 2 f e g OT JCM1y

<MGi cMilo CM1]1 <MUo

_qp_oi_ig_i_y _ _y 00 Qijo.1T/; ? ^

<MC!i cMq 0

Figure 6.6 PPG unit quotient qt propagation

Figure 6.7 shows the implementation of a multiplexer required for partial product

generation. The input load is connected to an inverter and two 3-input NAND gates.

Therefore, the branching effort (b) for qo and q\ is (1 + 5/3 + 5/3 + 3x2/3) = 19/3 per

multiplexer. Each partial product generation module has 2 multiplexers, therefore the

total branching effort b of the partial product generation module is (19/3x2) = 38/3

per bit. The calculation of the Logical Effort for the partial product generator is

shown in Table 6.1.

<*0---------

q1 TT

!U|[i] 2M[i] 3

q0qi = 01 q0qi = 10

M[i]

q0qi = 11

qM[i]

Figure 6.7 MUX implementation

150

Table 6.1 4 input MUX logical effort

Logical
effort g

Branching effort
b

Electrical
effort h

Parasitic
effort p

Path
effort
Sb(h)

Input 1 38/3 w 1 38/3 w

NOT 1 (5/3 + 2/3) / (5/3) 1 1 7/5

3 - NAND 5/3 (5/3 + 2/3) / (5/3) 1 3 5/3

3 -NAND 5/3 (2 + 4 + 4/3) / 4

(AOI + XOR)

1 3 55/18

Notice that the output of the final 3-input NAND gate is connected to the (4:2)

redundant adder, which means it is connected to an AOI and an XOR gate for the

worst case. The total path effort of the critical path for w word length is: F = GBH =

(w x 38/3) x 7/5 x 5/3 x 55/18 = 90.3 w.

The number of stages N needed including buffers can be calculated as follows:

If w = 1 bit:

N = Rnd (log4 F)

= Rnd (log4 90.3) = Rnd(In (90.3)/ In 4) = Rnd 3.25

:.N= 3

This means that 3 stages should be included in the path and therefore no buffers need

to be added. The stage load/drive a is calculated as follows:

a = j r l/N - 90.3 1/3 = 4.49

Finally, the delay along the critical path D is defined as Dcriticai = (N x a + P)/5 in

F04 unit.

151

D = (3x4.49 + 7)/5 = 4.09 F04

The delay of the 4-input multiplexer for different wordlength implemented using

NAND gates is summarised in Table 6.4.

Table 6.2 Logical effort delay for the 4-input multiplexer (traditional
implementation) of different wordlength

Wordlength

(bit)

ft ll D = (Na + P)/5 (F04)

4 (90.3 x 4)1/4 = 4.36 (4 x 4.36 + 7 + 1) /5 = 5.09

16 (90.3 x 4 x 4)1/5 = 4.29 (5 x 4.29 + 7 + 2) /5 = 6.09

64 (90.3 x 4 x 4 x 4)1/6 = 4.24 (6 x 4.24 + 7 + 3) 15 = 7.08

256 (90.3 x 4 x 4 x 4x 4)1/7 = 4.20 (7 x 4.20 + 7 + 4) /5 = 8.08

Figure 6.8 is a graph showing the relationship between wordlength of the multiplexer

chain vs. the delay from qt to qtM in F04 for both traditional multiplexer

implementation and tri-state inverter implementation. There is a logarithmic

relationship between the wordlength and the delay, whereby increasing w by a factor

of 4 adds only 1 F04 to the delay of buffering qt across the w-bit multiplexer.

Recall in section 4.3.2 shows that design by Sava§ et. al. has restriction on the word

length of adder before the delay caused by the field signal broadcast will dominate the

critical path. The proposed design is an improvement in comparison. However,

further improvement can be made by implementing the 4-input multiplexer as four

tri-state inverters as mentioned in Section 6.1.1.

The logical effort on each input for this 4-to-l multiplexer is (4+2)/3 = 2, plus 2/3 for

wire gives the total logical effort of 8/3 per bit. This is done by bundling the

complementary selection input “ab = xx” and “ab = xx” together. The parasitic delay

p is equal to 8. Whereas for the case using the 3-input NAND gate implementation,

the logical effort is equalled to 38/3 per bit. This can be summarised as shown in

Table 6.3.

152

Table 6.3 Logical effort for the 4-input multiplexer (4-input tri-state inverter

implementation)

Logical
effort £

Branching effort
b

Electrical
effort h

Parasitic
delay p

Path
effort
gb(h)

Input 1 (8/3 x 2 x w) / 2
(2 muxes per bit)

1 8/3 w

MUX-4 2 (2 + 4 + 4/3) / 4
(AOI + XOR)

1 8 22/6

Path Effort of the critical path F = gb(h) (critical path) = (w x 8/3) x 22/6 = 9.78 w,

compared with 90.3 w as in the previous case, there is a nine-fold improvement.

The number of stage N needed including buffers can be calculated as follows:

If w = 1 bit:

N = Rnd (log4 F)

= log4 9.78 = In (9.78)/ In 4 = 1.64

Rnd 1.64 = 2

:.N= 2

Therefore, there is no need for extra buffer, only 2 stages are needed. The stage

load/drive a and the delay D is calculated as follows:

a = f l/N = 9 7 3 1/2 = 3.13

D =(Nx a+ P)/5 = (2x3.13 + 8)/5 = 2.85 F04

The delay of the 4-input multiplexer for different wordlength is summarised in Table

6.4.

153

Table 6.4 Logical effort delay for the 4-input multiplexer (tri-state inverter
implementation) of different wordlength

Wordlength

(bit)

a ii D =(Na+P)/5(F04)

4 (9.78 x 4)1/3 = 3.39 (3x3.39 + 8 + l)/5 = 3.84

16 (9.78 x 4 x 4)1/4 = 3.54 (4x3.54 + 8 + 2) /5 = 4.83

64 (9.78 x 4 x 4 x 4)1/5 = 3.62 (5x3.62 + 8 + 3) /5 = 5.82

256 (9.78 x 4 x 4 x 4 x 4)1/6 = 3.68 (6x3.68 + 8 + 4) /5 = 6.82

9
8
7
6

5

4

3

2
1

0
300250200100 1500

wordlength (w)

-♦— Traditional
implementation

■*— tri-state inverter
implementation

Figure 6.8 Wordlength w vs. Delay (F04) for traditional and tri-state inverter

multiplexer implementation

Figure 6.8 shows the relationship between the wordlength and the delay of the

multiplexer. It shows the improvement of delay by using the tri-state multiplexer

compared with the traditional implementation, in fact the tri-state multiplexer

improves the speed by 1.2 F04 for all word-lengths.

154

6.1.3 Area and Speed of Modulus Multiplier Digit Selection

Finally, the delay of the modulus multiplier digit selection has to be found. Section

6.1.1 described the implementation of the tri-state inverter including the four

selection signals for the 4-input tri-state inverter. Table 6.5 shows the delay of the

modulus multiplier digit selection, considering the input 2?[1] is connected to an XOR

and a 2-input multiplexer, allowing 2x2/3 for wires, the total branching effort is

22/12. This is then connected to a NOR gate for encoding of tri-state inverter

selection.

Table 6.5 Modulus Multiplication Digit

Logical
effort £

Branching effort
b

Electrical
effort h

Parasitic
effort p

Path
effort
Zb(h)

Input
B[1]

1 (4 + 2 + 4/3) / 4 1 22/12

XOR 4 (2+ 2/3) /2 1 4 16/3

MUX 2 (5/3 + 5/3 + 1 +
6/3) / (5/3)

1 4 38/5

NOR 5/3 2
(q input to tri­
state MUX)

1 2 10/3

Path Effort of the critical path F = GBH (critical path) = 247.7.

The number of stages N needed including buffers can be calculated as follows:

N = Rnd (log4 F)

= log4 247.7 = In (247.7)/ In 4 = 3.98

Rnd 3.98 = 4

:.N= 4

155

However, there are 5 stages in the circuit because XORs have two stages.

01 = f l,N = 247.7 1/5 = 3.01

D = (N x a + P) / 5 = (5x3.01 + 10)/5 = 5.01 F04

The combined delay of the partial product generator and multiplier digit selector for

w bits is 2.85 + log4>v + 5.01 = log4W + 7.86. This delay is greater than the (4:2)

adder and so methods are needed to minimise the impact of it.

6.2 Quotient pipelining

Another method to improve the performance of the multiplier is by quotient

pipelining the architecture. Quotient pipeline was introduced by Shand [153] and

further developed by Orup [154]. They presented a variant of the Montgomery’s

algorithm such that the determination of the quotient becomes trivial and the cycle

time becomes independent of the choice of radix. The idea is to delay the use of

quotient digit q ^ , determined from information available in iteration i-d by d

iterations. This method is also used in designs such as [155] and [156].

The basic algorithm and the structure of the Montgomery multiplier presented so far

are based on the algorithm shown in Figure 6.9 and architecture shown inFigure 6.10.

The dependency of the modulus multiple selection unit to the last two non-redundant

bit of the addition of (R + byA) becomes the bottleneck to the design of the pipelined

structure.

156

Algorithm 1: MonProl (A, B, M) (radix-2)

MonProl (A, B, M)
i

R-1 := 0;
for / = 0 to n-1 do

qt := (Rj.i + bjA) Mod 2;
Ri := (i?M+ q,M+ bjA)/2;

end for
return R„.\;
}

Figure 6.9 Algorithm 1 non-pipelined

MSB, .. LSB

MS|B, LgB+2

Adder

Adder

D enotes PPG generation

s Denotes registers

X D enotes discarded bit

Figure 6.10 Architecture 1 non-pipelined

The quotient selection process is dependent on 2fcS[l] and 2?£[0] from the first row of

(4:2) adders, these are formed from the addition of the partial product AxBt and the

partial result from the previous iteration. In order to pipeline this structure efficiently,

the quotient pipelining method forces the last bit (in a radix-2 design), or in this case,

the last two bits of A to 0, since this design is a radix 4 operation. By doing so, the

two binary bits that are inspected for determining the quotient bit will only be

dependent on the partial result from the previous iteration, thus removing this logic

157

from the critical path. The algorithm for radix-2 operation and the architecture for the

proposed radix-4 multiplier are shown in Figure 6.11 and Figure 6.12 respectively.

Algorithm 2: MonPro2 (A, B, M)

MonPro2 (A, B, M)
{

5-i := 0;
A := 2x^4;
for / = 0 to n do

qt := (Sm) Mod 2;
Si := (Si-i + qtM+ M) /2;

end for
return Sn;
}

Figure 6.11 Algorithm 2 with quotient pipelining for radix-2 multiplication

A dder

A dder

M S B , . . . , L S B + 2 r lsbi

Modulus
se lectior

<7

R a-i (O)

D enotes P P G generation

X D enotes d iscarded bit

,LSBo

Figure 6.12 Proposed architecture with quotient pipelining (for radix-4

multiplication)

Figure 6.13 shows how quotient pipelining based on Algorithm 2 shown in Figure

6.11 can be incorporated into the proposed unified field multiplier.

158

pp
4A

R e g i s t e r

Modulo
Multiple

Selector q
Partial Product G enerator

VP ■~outa

(4:2) Adders Partial Product G enerator

(4:2) Adders

Figure 6.13 Quotient Pipelined multiplier architecture

This procedure requires one extra cycle of pre-processing and one extra cycle of post­

processing to remove the effects of the extra factor of 4. The quotient pipelined

version described above was simulated with w = 8 using NC-Verilog and synthesised

using Synopsys, which showed that the critical path which now only goes through the

(4:2) adders was 3.20 ns (worst case + register set up) using 0.18pm VLSI

technology. This is 0.57 ns faster than the original design because the qtM logic has

been removed from the critical path. At larger values of w the speed-up is even more

apparent.

Figure 6.13 shows that the qt selector and qtM partial product generator operate in

parallel with the first (4:2) adder. Since the delay of the (4:2) dual field redundant

adder is 5.80 F04 and the selector and generator have a combined delay of 7.86 +

log4W F04, quotient pipelining does not completely “hide” the delay of the buffering.

Most delay is due to partial product generator (2.85 + log4>v F04) instead of qt

selector (5 F04) for w > 16. Taking the critical path as the PPG and the two (4:2)

159

adders, the delay in F04 calculated using logical effort would be: (2.85 + log4W + 2 x

5.8) =15.95 F04 for w = 8 .

Critical path does not go through q, every cycle because there is only a need to work

out once for each multi-precision word-serial multiplication. Since critical path

doesn’t go through <7 —selection unit every cycle, as a new q,, it is only needed to be

worked out once for each multi-precision word-serial multiplication. Therefore given

the size of the multiplier as L and the wordlength of A as w, the selection unit is

only used once in every w/L iterations. Therefore the critical path lies on the two dual

field (4:2) redundant adders. The domination of the (4:2) adder delay will be shown

clearly in the M xM example.

2 A bi M

+ (n) - bit Adder

A M—► *

(n+1) - bit Adder

M S B , . . .

S j (n) , .

L S B + 1 L S B

X

B + 1

s D e n o te s P P G g enera tion

D e n o te s re g is te rs

X D e n o te s d isc a rd e d bit

Figure 6.14 Daly's modified architecture

Daly and Mamane [156] suggested the idea of rearranging the order of the additions,

as shown in Figure 6.14, such that 2A xB can be parallelised with q,M. The number of

cycles required will be the same as that of the previous version where n+ 1 clock

cycles are required. Daly and Mamane [156] stated that there is a significant increase

in operation speed compared with the previous architecture because the summation of

the partial product 2Abi (radix-2 case) and the modulus multiple qtM can be

performed as soon as the LSB of the other addition are complete. However, due to the

fact that in the proposed radix-4 design, the modulus multiple selection process is

more complex, the partial product generation of q\M can only be carried out after the

160

modulus multiple selection is done. In the case of radix-2, there is only a need to

choose multiple of 0 or multiple of 1, whereas in the proposed radix-4 case, the

modulus multiple selection unit has to decide between xO, x l, x2 and x3, see Figure

6.15. Therefore, this reconfigured version of pipeline, does not affect the proposed

design dramatically as in the case of Daly and Mamane [156]. The main benefit is

that it provides a more symmetrical architecture. In fact, the original pipelined

architecture as shown in Figure 6.13 has only got 3 pipeline stages, whereas the

proposed multiplier using Daly’s quotient pipeline structure consists of 4 pipeline

stage, therefore, this new structure is not suitable for the proposed design. In Figure

6.13, the effect of buffering of qtM partial product generation is covered up by the

delay of the (4:2) addition; this is not the case in Figure 6.15. Therefore if Figure 6.15

is used, the width of the partial product generation will seriously affect not just the

scalability but also the delay. Another disadvantage of this pipeline architecture is

that the partial product generation modules can not be reused since they are operated

on simultaneously.

(4:2) Adders

R egisterR egister

Modulo
Multiple
S elector

Partial Product
Generator

Partial Product
Generator

(4:2) Adders

Figure 6*15 Proposed architecture using Daly’s quotient pipelined structure

161

6.3 M-bit x M-bit multiplication

For 160-bit x 160-bit multiplication, if the size of the multiplier is of 32-bit then the

operations of the multiplier is discussed as follows:

The partial product generation A*B will be done in 160/32 * 160/2 cycles = 400

cycles. 32-bits of multiplier A is multiplied by 2 bits of bt at each cycle and each b t

has to multiply 5 sets of A from bit {0...31}, {32...63}, {64...95}, {96...127}and

{128... 159}. 32 partial product generator modules are needed. Note that because of

the special encoding system used for the unified field design, each binary bit of

multiplier A is represented by two wires, therefore the register that holds yf{n..„+3 i}*/>j

is 32*2+2 = 66 bits in size.

Once the first set of partial product PP{32(n-\)... 3 2«-i} is generated, it can then be added

to the result of the previous iteration Ri{3 2(n-i)... 3 2«-i}, in the meantime the next set of

partial product PP{32n... 3 2(«+i> -i}can be generated. 32 (4:2) dual field redundant adder

modules are needed to perform the addition and configured as shown below. Note the

MSB (4:2) dual field redundant adder module is to take care of the possible overflow.

In order to perform the Montgomery modulo reduction, the 2 LSB of the addition is

connected to the modulus multiplier digit selection unit. Since this process is only

applied to the two LSBs, therefore it can be carried out as soon as the numbers are

available and can be processed in parallel with the rest of the additions.

Once q* is computed, qiM{3 2(n-\)... 3 2«-i} can be computed. Once again, it is generated in

5 groups of 32 bits: bit {0...31}, {32...63}, {64...95}, {96...127} and {128...159}

using 32+1 = 33 sets of partial product generator modules. The extra set of P P G

module is to take care of the possible overflow. For example, if the 2 MSB ={11} and

bj = 3, an over-flow will occur. Thus the results will be stored in a register that is 66

bits in size. As shown in Figure 6.16, the qtM should only be computed only once the

computation of A * b i is completed. This is to avoid the need of having to have two

sets of partial product generation modules.

162

The carry test can be carried out as soon a sPS\[\] and PSotl] are available, since the

test is only an AND and a 3-input NAND gate and it is not on the critical path, it is

not important when it is carried out, as long as it is done before the addition of PS +

qiM.

The process of the addition of PS + qtM will commence as soon as generation of PS is

completed. This is to avoid the need to have two sets of (4:2) redundant adder

modules; additionally one needs to make sure all the values required for this

calculation are available before the computation of the addition. Figure 6.17 shows

the timing diagram of the overall M*M operation, where both the adder and the

partial product generator modules are reused.

Figure 6.17 shows that the addition takes up 5.8 F04, whereas partial product

generation using 4-input tri-state inverter takes only 2.85 F04. Hence, the partial
thproduct generator finishes all the calculations for the i iteration before the (4:2)

adder even completes the first half of addition. Partial product generation for the next

iteration i+l (A*bi+j) and i+2 (A*bi+ 2) can be performed before the adder is ready to

compute addition for the next iteration.

Figure 6.17 also shows that the cycle delay is dependent on the delay of the two (4:2)

redundant addition process. The time taken to perform the first cycle Montgomery

Multiplication is (5.8 x 10 + 2.85 + log432) F04 = 63.35 F04. The total delay in F04

for 160 bit x 160 bit Montgomery Multiplication is [(5.8 x 10) x 160/2 + 2.85 +

log432] = 4645.35 FQ4.

163

159_______ 128 127_________96 95__________64 63_________ 32 31___________ o

Max n =160/32 = 5

65

2 bit

PP

o> =. o s."v (V|N> S

Only for
PSo and

PSiOnly
connected
to PS2 +

 Mgqi—
Carry
test

q selection

(4:2) Adder

Only for
 binary bit-
!___ _QiJ—Pi_

addition

(4:2) Adder

B

CO

CON>

o>
CO

2

<0cn
COo>

l\>~vj
N)
00

01
CO

Figure 6.16 Radix-4 operation

164

Figure 6.17 Tim ing diagram for radix-4 operation (reuse all modules)

165

Figure 6.18 shows the delay for radix-4 multiplication, however in this case the area

consumption is compromised by having a duplicated set of (4:2) adder modules. By

having this second set of (4:2) adder, the ^M {/.../+31} + PS{z.../+31} can be

preformed as soon as qt and q,M{i.. .i+31} are available. The time taken to perform

the first cycle Montgomery Multiplication is [(2.85 + log432) x 6 + 5.8 x 5] F04 =

61.1 F04. The delay for the first cycle in this case is slightly faster then that of the

previous case where all the modules are reused. This is because the delay is mainly

due to the PPG Axbi and the qtM{0. ..31} and its buffer delay.

The total delay in F04 for 160 bit x 160 bit Montgomery Multiplication is [(5.8 x 5)

x 160/2 + (2.85 + log432) x 6] = 2352.1 F04. The overall delay is due to the

qtM{i...i+3\} PPG modules and the PPG Axbi and the q\M{0 31} and its buffer

delay. Note that by having an extra (4:2) module, the total delay of the operation has

been reduced by almost 50%.

Figure 6.19 shows the delay for radix-4 multiplication, however in this case, the area

consumption is further compromised by having a duplicated set of (4:2) adder

modules and a duplicated set of PPG modules. By having this second set of (4:2)

adder, the qtM{i...i+31} + PS{/.../+31} can be preformed as soon as qt and

q,M{i...i+3l} are available. Also, Axbi+i can be carried out as soon as Axbt has

completed. The time taken to perform the first cycle Montgomery Multiplication is

the same as the case where an extra set of (4:2) adder is included: [(2.85 + log432) x 6

+ 5.8 x 5] F04 = 61.1F04. The delay for the first cycle in this case is slightly faster

than that of the previous case where all the modules are reused. This is because the

delay is mainly due to the PPG Axbi and the qiM{0...31} and its buffer delay. There

is no improvement in terms of delay because qiM{ 0—31} could only begin its

operation once b 4 { 0...31}, PP{0...31}+ i?{0...31} and qt selection are completed.

The total delay in F04 for 160 bit x 160 bit Montgomery Multiplication is [(5.8 x 5)

x 160/2 + (2.85 + log432) x 6] = 2352.1 F04. The overall delay is due to the

qtM{i...i+31} PPG modules and the PPG Axbi and the qtM{0...31} and its buffer

delay. Note that by having an extra PPG unit, the total delay of the operation is not

affected compared with the previous case. This is because by having extra PPG

166

modules, more Axbi can be performed within a cycle, however as the critical path lies

on qiM{i...i+31} + PS{/.../+31}, the improve performance on PPG does not affect

the overall delay of the Montgomery Multiplication.

In conclusion, if the multiplier is designed with hardware area consumption in mind

where there is only one of each module, the overall delay is the slowest. By having an

extra set of (4:2) adders, the total delay is improved significantly and the extra area

consumption is:

• 3x32 XOR/XNOR

• 2x32 NOR

• 1x32 NAND

• 1x32 NOT

• 2 x320AI CMOS complex gates

• 1x32 AOI CMOS complex gate

Finally, if both the adder and the PPG units are duplicated, it provides no extra

benefits in terms of delay, but at the same time the extra PPG units consume the

following:

• 2x32 AND

• 1x32 OR

• 1x32 XOR

• 2x32 4-input MUX

Therefore, having extra set of (4:2) redundant adders provides the best trade off

between delay and area.

167

X I

00

NJ

CT)

00

00

-8

CO

CO

Figure 6.18 R adix-4 operation (duplicated adder modules)

168

Figure 6.19 Radix-4 operation (duplicated adder and PPG modules)

169

6.4 Radix-2 Multiplier design

A novel unified field radix-4 multiplier using Montgomery Multiplication for the use

of GF(p) and GF(2") has been proposed. In terms of delay, the proposed adder design

is 24% slower than Sava§’s design, however, the proposed design is capable of radix-

4 operation, which will be beneficial to the implementation of the unified field

multiplier. Also, the adder has one major advantage compared with Sava§’s design

and that is scalability. However, the design of the partial product generator is severely

affected by the word length of the multiplier where buffering is needed. The partial

product generator scalability problem is largely due to the radix 4 design, in the case

of radix 4 multiplication x2 and x3 require “looking back” to the previous bit which

implies that the signal has to go through an extra set of multiplexers, requiring

extra buffering. Since the scalability problem of PPG is caused by the high radix

involved, radix 2 PPG should be investigated for its suitability.

For radix-2 design, the addition operation should remain the same. The values will

still be coded using the novel dual field representation:

Encoding

• 0 -00

• 1* -01

• 1 - 11

• 2 - 10

The operations of multiplication in radix-2 simplifies the circuit requirements, since

the multiplicand bt is only 0 or 1 (1 *), therefore the possible outcome per bit is only

0, l(or 1*). Note that the partial product generation no longer depends on the

previous bit as in the case of radix-4, since there is no x2 and x3. Figure 6.20 shows

the overall radix 2 multiplication results. Table 6.6 shows the logic circuit of the radix

2 PPG unit.

170

Table 6.6 Radix 2 multiplication

-'d/j Ai-j bi = 0 b '= l

00 00 00

01 00 01

10 00 10

G F (p)
1 ->G F(p)

Figure 6.20 Radix 2 PPG unit

6.4.1 Qrselection

In order to carry out Montgomery reduction, an appropriate multiple of the modulus

must be added to the Partial Sum PS, so that the last bit will equal 0. Unlike the

process of Montgomery reduction in radix—4, only one bit is under consideration in

the radix-2 case, which simplifies the matter greatly. For both GF(p) and GF(2”), 0+0

= 0 and 1+1 = 0. Note that since the LSB of M is always 1, therefore qt = PSb[0].

Hence, no delay is due to the logic; however, q(signal has high propagation delay as

discussed earlier in this chapter. Table 6.7 shows all radix 2 ^-selection possibilities.

171

Table 6.7 Radix 2 q- selection

PSo + qMo ^ = 0*1 ^ = 1*1

00 (0) 00 -

01 (1*) - 00

10(2) 00 -

11(1) - 00

6.4.2 Carry Test

Table 6.8 All possible PS

PS
R

00 01 02 10 11 12 20 21 22

00 00 01 10 10 11 20 00 01 10

M 01 01 10 11 11 20 01 01 10 11

10 10 11 20 00 01 10 10 11 20

Table 6.9 PS and a ftf combination

+ (PSi)PSo

(0)0 (0)1 (1)0 (1)1 (2)0

+0 00 - 0 - 0

qMo +1 10

(c= 1)

0

(c= 1)

Table 6.8 shows that the last bit of PSo will never become 2, however, a carry will be

propagated to the next bit when PSo is 1 or 2 (GF(p) only). Therefore, only PSoP]

needs to be examined, where PSoP] = 0, carry test also is 0 and when PSoP] = 1,

carry test also is 1. This is possible because PSo = 2 would not happen and in the case

of GF(2"), PSoP] = 0 . Hence, the carry test required is identical to the value of

PSoP] as summarised in Table 6.9.

172

6.4.3 qjM + PS

In the radix-4 case (see Figure 5.24), it has already been shown that the 2 LSB (4:2)

dual field redundant adders are no longer necessary, in the case of radix-2, the LSB is

no longer needed. It was mentioned before that for the partial product generation,

since only xO and xl are required, the PPG modules are not dependent on the

previous bit; therefore qtMo serves no purpose in this design. Figure 6.21 shows the

overall simplified radix-2 dual field Montgomery multiplier architecture.

6.4.4 M-bit x M-bit multiplication using radix-2

As in the radix-4 multiplication case (see section 6.3), the operation of a 160-bit x

160-bit multiplication radix-2 multiplication, where the size of the multiplier is 32-bit

is shown as follows:

For radix-2, the partial product generation^*B will be done in 160/32 * 160/1 cycles

= 800 cycles. This is double the number of cycle required by radix-4 multiplier. Since

multiplier A is multiplied by only 1 bit of bt at each cycle. Note that the register size

required for A n+3 i}* bi is 32*2 = 64 bit instead of 66 bit as in the radix-4 case

because A is now multiplied by either 0 or 1 . Apart from the points mentioned above,

the structure and operation of the radix-2 multiplier is the same as the proposed radix-

4 version. The overall radix-2 operation is show in Figure 6.22, it shows that the q,M

should only be computed only once the computation of A *bi is completed. This is to

avoid the need of having to have two sets of partial product generation modules.

173

Encode
Binary to
R edun­

dant

j Encode [
Binary to j
Redun- ;

dant

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

Partial j
Produc i

j - O enw alm j^ - "
i ____ i

Partial i

Produc i
Generator j<- ■

 ____ i

I Partial
| Produc
t"t35hwator̂

Partial
Produc

~Gsnferator

p p

4 :2 Adder 4 :2 Adder 4:2 Adder4 :2 Adder

P S 1PS. PS

Encode
| Binary to
i Redun­

dant

j Encode
l Binary to
! R edun­

dant

Encode
Binary to
Redun­

dant

qx L. L q x J tM f -------------1----

PSP S ­ PS

4 :2 Adderi 4 :2 Adder 4:2 A d d er1

carrycarry j Redundarh
I" to binary

J Redundan
| to binary

P SPSPS

Figure 6.21 Radix 2 Overall Architecture

174

The delay o f the radix-2 multiplication is found as follows:

The input load is connected to w-bit of PPG modules and each module consists of two

2-input NAND gates. Therefore, the branching effort (b) for b, (including allowance

for wires) is (2x4/3 + 2x2/3)w = 4w. Table 6.10 shows the logical effort calculation

of the radix 2 Montgomery Multiplier.

Table 6.10 Radix -2 Redundant Montgomery Multiplier Delay

Logical

effort £

Branching effort

b

Electrical

effort h

Parasitic

effort/?

Path

effort

gb(h)

Input

B[l]

1 (2 x 4/3 + 4/3) w /

4/3

1 3 w

NAND 2 (22/3)/4 1 2 22/6

Path Effort of the critical path F = GBH (critical path) =11 w

The number of stages N needed including buffers can be calculated as follows:

N = md (log4 F)

= log4 11 = In (11)/ In 4 = 1.73

Rnd 1.73 = 2

: .N ~ 2

Therefore 2 stages are needed, i.e. one buffer stage is added.

a = p ' IN= 11 1/2 = 3.32

D = (N x a + P)/5 = (2x3.32 + 2+l)/5 = 1.93 F04

175

Figure 6.22 shows the overall operation of the 160x160 bit radix 2 multiplier. Figure

6.23 shows that the addition takes up 5.8 F04, whereas partial product generation

using a 2-input NAND gate is only 1.93 F04.

Hence, the partial product generator finishes all the calculations for the z-th iteration

before the (4:2) adder even completes the first half of addition. Partial product

generation for the next iteration z'+l (A*bi+J), i+2 (A*bi+2), z+3 (A*bi+3) and z+4

(A*bi+4) can be performed before the adder is ready to compute addition for the next

iteration.

Radix-2 design reduces the delay of partial product generation, Montgomery modulus

selection which caused scalability problem and caused irregularity to the design and

affect the critical path in the radix-4 case. The scalability of the radix-4 design is

proven as follows:

It has been worked out that the (4:2) adder has a delay of 5.8 F04, it has been

mentioned that since the carry in to the adder is 0, which means that the LSB is ready

after only one XOR gate effectively » 5.8/3 = 1.93 F04. The delay of the qtM is also

1.93 F04. Therefore, the time allowed for buffer delay where the (4:2) adder delay is

5.8 F04 is calculated as: (5.8 - 1.93) F04 to buffer (log4w) and form qtM (1.93).

Therefore, even without quotient pipelining can have w= 16 radix-2 modulo multiplier

adder whose delay is not impacted by w.

If quotient pipelining is applied, similar calculations can be carried out except there

are 5.8 F04 to buffer (log4 >v) and form #,M(1.93), instead of (5.8 — 1.93) as in the

previous case. Therefore, w = 43 9 = 222 is allowed without impacting the delay,

hence, radix-2 design is scalable especially when quotient pipelining is employed.

However, as can be seen in Figure 6.23, the delay of the addition dominates the

critical path, therefore the reduction in speed in the PPG operations and Montgomery

modulus selection does not affect the overall delay. Since for radix-2 operations,

176

twice as many iterations as needed for radix-4 are required; hence, although radix-2

operation has better scalability, its delay is two times worse than the radix-4 design.

159 128 127 96 95 64 63 32 31

Max n =160/32 = 5

63

1 bit

PP

(4:2) Adder

Only for
 binary bit-

! c[pf__
addition

cn „ 5 <:

O)

Only for
PS0[1]Only

connected
to PS* +

. —M iqi—

r ----
| Carry(4:2) Adder

8

CO

COto

CD
CO

O

SOcn

*

N)"si
IO
00

cnco

Figure 6.22 Radix 2 operation

177

ti
a *

0 5

O

00

Is)

ro
CD

oo
CO

CO

COO)
CO
00

ro

CD

00

cn
CD

cnoo
0 5o

Figure 6.23 Radix 2 (reuse all modules)

178

6.5 Conclusion

This thesis first of all described some of the most common symmetric key and public

key cryptography systems, and then showed the operations of elliptic curve

cryptography. The reason why elliptic curve cryptography was chosen is because it

provides similar level of security as previous systems but requires smaller key length.

It improves the security of system, because it reduces the possibility of the system

being susceptible to differential power attacks.

This thesis has introduced a new dual-field adder and a novel unified field radix-4

multiplier using Montgomery Multiplication for GF(p) and GF(2"). This design

makes use of the unexploited state in number representation for operation in GF(2")

where all carries are suppressed. The addition is carried out using a modified (4:2)

redundant adder to accommodate the extra 1* state.

In terms of delay, the proposed design is 24% slower than Savas’, however, the

proposed design is capable of radix-4 operation, which will be beneficial to the

implementation of the unified field multiplier. Also, the adder is more scalable

compared with Sava§’s design. It was found that when wordlength w = 23, the FSEL

buffer delay starts to dominate the critical path and affects the maximum clock rate

achievable. Also, Sava§’ adder is slower than the proposed unified adder when w >

109, and hence it is also less future prove than the proposed design.

The overall design of the proposed unified field multiplier was described in chapter 5.

The unified field multipliers have the advantages of low manufacturing cost, they also

provide compatibility and flexibility by being interoperable.

The radix-4 partial product generation units are made up of 2 multiplexers, 1 AND

and 1 XOR gate plus buffers. The multiplexers are implemented as 4-input tri-state

inverters to reduce delay compared with the traditional implementation using NAND

gates. A radix-4 Montgomery modulus selection has also been introduced, which

comprises 1 multiplexer and 2 XOR gates. It was also shown that 4-way inverting

multiplexer significantly improve the delay and scalability of the multiplier compared

with traditional multiplexer design.

179

The proposed Montgomery multiplier possesses some unique features such as the use

of the 1 * encoding, however, it does not provide the expected degree of improvement

over the previously proposed design. It has been identified that the partial product

generator modules is one of the main causes of poor scalability. The combined delay

of the partial product generator and multiplier digit selector for w bits is 2.85 + log4W

+ 5.01 = log4 >v + 7.86. This delay is greater than the (4:2) adder and so adequate

pipelining methods could be used to minimise the impact. Quotient pipelining was

discussed as a possible pipelined architecture.

M-bit x M-bit multiplication operation was investigated for both radix-4 and radix-2

design. Three different scenarios were assessed: (1) both the adders and PPG modules

are reused; (2) reuse PPG modules only and (3) reuse both adder and PPG modules.

The best trade off between speed and area consumption is the second case where only

PPG modules are reused.

Radix-2 PPG design reduces the delay, area and the scalability requirement of the

multiplier circuit; however, it increases the overall delay significantly due to doubling

the number of cycles required. Radix-4 design has limited scalability due to the

buffering delay of q„ but the overall delay is better than that of radix-2 design,

especially in the case when a separate adder is available.

Further investigation in the design of the multiplier could be done by exploring

different PPG designs. It is understood that increasing the radix will not improve the

situation since the circuit design of the PPG modules will become very complex to

perform x4, x5, x6 and x7. Another possibility is to explore the idea of mixed radix

architecture, with higher radix for GF(2"), since the GF(2") design is simpler because

of the lack of carry propagation, however, this will favour the theoretically less

complex design of GF(2”), i.e there is no longer impartial between fields.

180

Appendix 1 - Algorithms

1. Extended Euclidean Algorithm [157]

Given nonnegative integers u and v, this algorithm determines a vector (mI, m2, m3)

such that mmI + v m 2 = m 3 = gcd(M, v). The computation makes use of auxiliary vectors

(vl, v2, v3), (/l, t2, /3); all vectors are manipulated in such a way that the relations

lit\ + Vt2 = t 3 , MM, + vm2 = m3 , mv, + w 2 = v3

Hold through the calculation

XI. [Initialize.] Set (m i , m2, m3}<- (1, 0, m), (vi, v2, v3) <- (0, 1, v)

XI. [Is v3 = 0?] If v3 = 0, the algorithm terminates.

X3. [Divide, subtract.] Set q <- I_m3/ v3J and then set

(*i, h, h) <- (mi, m2, m3) - (vi, v2, v3)̂ r,

(M l, M2, M3) (Vl, V2, V3), (Vl, Y2, v3) <- (/ l , /2, /3)

Return Step X I.

181

2. Repeated square-and-multiply algorithm for exponentiation in Z„ [158]

INPUT: a e Zn and integer 0 < k < n whose binary representation is k = ^ & ,2 '.
i=0

OUTPUT: a* mod n

1. Set b 1. If k = 0 then return (b).

2. Set A a.

3. If ko = 1 then set b <-ar.

4. From i from 1 to t do the following:

1. Set A <- A2 mod n

2. If kj = 1 then set b 4rA*b mod n

5. Return (b).

3. Chinese Remainder Theorem (CRT)

Let nil, m2 , . . mr be positive integers that are relatively prime in pairs, i.e.,

gcd(my ,mk) = \ when j * k.

Let m = m\9 m2, ...mr, and let a, u\, u2, . . ur be integers. Then there is exactly one

integer u that satisfies the conditions:

a< u <a + m

and

u = Uj (modulo) for 1 < j < r.

182

4. Fermat’s Little Theorem

l ip is a prime and a is an integer with gcd(a, p) = 1, then

ap~l = l(mod p)

183

Appendix 2 - Logical Effort

Logical effort was first introduced by [131] and [159] describes logical effort in

details. Logical effort is a design model to estimate the performance of CMOS logical

circuit, namely the number of CMOS stage including buffers required and the overall

delay of the circuit.

The delay of CMOS logic gate (d) is defined as:

d = f + p (A-2. 1)

Where / denotes effort delay and p denotes parasitic delay

The effort delay if) consists of two components:

f = gh (A-2.2)

Where g denotes logical effort and h denotes electrical effort. Therefore,

d = gh + p (A-2. 3)

This is equivalent to:

d = load / drive + tgate (A-2. 4)

Definitions:

1. Logical effort g - the input capacitance of a logic gate relative to that of a

minimum size inverter

2. Electrical effort h - ratio of output capacitance to gate input capacitance

184

3. Parasitic delay p - total diffusion capacitance on the output node of a CMOS

logic gate relative to the input FET gate capacitance of a minimum-sized

inverter

Thus, Table A-2. 1 and Table A-2. 2 can be formed based on the definitions shown

above.

Table A -2 .1 Logical effort of static CMOS gates

Gate Number of inputs

1 2 3 4 5 n

Inverter

NAND

1

4/3 5/3 6/3 7/3 (n+2)/3

NOR 5/3 7/3 9/3 11/3 (2«+l)/3

Multiplexer 2 2 5 2 2

XOR,

XNOR

4 12 32

Table A-2. 2 Parasitic delay of static CMOS gates

Gate Parasitic Delay

Inverter P inv ~

w-input NAND ftP inv

w-input NOR ftP inv

n-way multiplexer 2nP inv

2-input XOR, XNOR 4nPim

It is common to approximate the delay in terms of fan-out — 4 (“F04”) inverter

delays. F04 delay means that the delay of 1 NOT gate with load of 4 NOT gates:

185

d = gh + p (A-2. 5)

d foa —1*4 + 1 — 5 (A-2. 6)

Therefore, to get the F04 delay, simply divide the total gate delay by 5.

Logical effort can also estimate the delay along the critical path; however, Branching

effort b and Path effort F will also need to be considered.

Definitions:

4. Branching effort b - ratio of total capacitative load on one CMOS logic gate’s

output along the critical path to the FET gate capacitance of the next CMOS

gate on the critical path

5. Path effort F:

Where G = Tig, B = Tib, and H = Tlh.

The total electrical effort H reduces to the ratio of the output capacitance loading the

last CMOS logic gate to the FET gate capacitance of the first CMOS logic gate along

the critical path (CQJ Cjn). Usually, H is forced to 1 by assuming that the circuit

being modelled is connected to a copy of itself. This allows input branching effort to

be incorporated in a delay estimate, and allows individual subcircuits to be modelled

independently before being cascaded to form a whole.

F = GBH (critical path) (A-2. 7)

186

6. Delay along a critical path D :

D = N a + P
or (A-2.8)
D = N a + P /5 (F 04)

Where N is the number of CMOS gates (including buffer) and a is load/drive.

7. The number of stages (including buffer) N can be found by:

N= md (log3.670 (A-2. 9)

Where “md (*)” denotes round up or down to the nearest integer.

8. load/drive a is defined as:

a = F vn (A-2. 10)

The delay of the critical path as shown in Equation A-2.8 can now be calculated.

187

Appendix 3 - Synthesis result report
Information: Updating design information... (UID-85)
* *

Report : timing
-path full
-delay max
-nworst 10
-input_pins
-nets
-max_paths 100
-capacitance

Design : top_level
Version: 2000.11-SP1
Date : Fri Aug 1 14:59:33 2003

Operating Conditions: tsmcl8osl20_max Library: tsmcl8osl20_max
Wire Load Model Mode: enclosed

Startpoint: uClock_Timer/y_reg[0]
(rising edge-triggered flip-flop clocked by CLK)

Endpoint: T_S[2] (output port clocked by CLK)
Path Group: CLK
Path Type: max

Des/Clust/Port Wire Load Model Library

top_level
Clock_Timer
sixteenFA_l
Four_mux_6
CELL_C_6
mux
sixteenFA_0
CELL_A_3
eight_two
CELL_B_5
q_selector

Point

4000
4000
ForQA
ForQA
ForQA
ForQA
4000
ForQA
4000
ForQA
ForQA

tsmcl8osl20_
tsmcl8osl20_
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20_
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20
tsmcl8osl20

Fanout

max
max
max
max
max
max
max
max
max
max
max

Cap Incr Path
0.00 0.00
0.00 0.00
0.00 0.00 r
0.31 0.31 f

0.01 0.00 0.31 f
0.00 0.31 f
0.10 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r

0.01 0.00 0.41 r
0.00 0.41 r
0.42 0.83 f

0.03 0.00 0.83 f
0.00 0.83 f

0.03 0.00 0.83 f
0.00 0.83 f

0.03 0.00 0.83 f
0.00 0.84 f
0.07 0.90 r

0.01 0.00 0.90 r
0.00 0.90 r
0.19 1.09 r

0.01 0.00 1.09 r
0.00 1.09 r

0.01 0.00 1.09 r
0.00 1.09 r

clock CLK (rise edge)
clock network delay (ideal)
uClock_Timer/y_reg[0]/CP (dfcrnl)
uClock_Timer/y_reg[0]/QN (dfcrnl)
uClock_Timer/n203 (net)
uClock_Timer/U59/I (invOdl)
uClock_Timer/U59/ZN (invOdl)
uClock_Timer/y[0] (net)
uClock_Timer/y[0] (Clock_Timer)
y [0] (net)
ueight_two/y[0] (eight_two)
ueight_two/y(0] (net)
ueight_two/Ul/y[0] (sixteenFA_l)
ueight_two/Ul/y[0] (net)
ueight_two/Ul/Al/y_0 (CELL_A_7)
ueight_two/Ul/Al/y_0 (net)
ueight_two/Ul/Al/U13/A2 (xr02d2)
ueight_two/Ul/Al/U13/Z (xr02d2)
ueight_two/Ul/Al/S_a_0 (net)
ueight_two/Ul/Al/S_a_0 (CELL_A_7)
ueight_two/Ul/S_a[0] (net)
ueight_two/Ul/Bl/S_a_0 (CELL_B_5)
ueight_two/Ul/Bl/S_a_0 (net)
ueight_two/Ul/Bl/Ul3/A2 (ndl2d2)
ueight_two/Ul/Bl/Ul3/ZN (ndl2d2)
ueight_two/Ul/Bl/nl07 (net)
ueight_two/Ul/Bl/U12/Al (an02dl)
ueight_two/Ul/Bl/Ul2/Z (an02dl)
ueight_two/Ul/Bl/C_b (net)
ueight_two/Ul/Bl/C_b (CELL_B_5)
ueight_two/Ul/C_b[0] (net)
ueight_two/Ul/C2/C_b (CELL_C_6)

188

ueight_two/Ul/C2/C_b (net)
ueight_two/Ul/C2/U9/I (inv0d2)
ueight_two/Ul/C2/U9/ZN (inv0d2)
ueight_two/Ul/C2/nl03 (net)
ueight_two/Ul/C2/U8/A2 (xn02d2)
ueight_two/Ul/C2/U8/ZN (xn02d2)
ueight_two/Ul/C2/S_c_0 (net)
ueight_two/Ul/C2/s_c_0 (CELL_C__6)
ueight_two/Ul/S[2] (net)
ueight_two/Ul/S[2] (sixteenFA_l)
ueight_two/aS[2] (net)
ueight_two/q/xl_0 (q_selector)
ueight_two/q/xl_0 (net)
ueight_two/q/U8/A2 (xr02dl)
ueight_two/q/U8/Z (xr02dl)
ueight_two/q/wire_b (net)
ueight_two/q/muxl/b (mux)
ueight_two/q/muxl/b (net)
ueight_two/q/muxl/Ull/IO (mx02d2)
ueight_two/q/muxl/Ull/Z (mx02d2)
ueight_two/q/muxl/n25 (net)
ueight_two/q/muxl/U10/I (inv0d7)
ueight_two/q/muxl/U10/ZN (inv0d7)
ueight_two/q/muxl/n26 (net)
ueight_two/q/muxl/U12/I (invOda)
ueight_two/q/muxl/U12/ZN (invOda)
ueight_two/q/muxl/op (net)
ueight_two/q/muxl/op (mux)
ueight_two/q/q_l (net)
ueight_two/q/q_l (q_selector)
ueight_two/q_l (net)
ueight_two/qMl/B[1] (qM_3)
ueight_two/qMl/B[1] (net)
ueight_two/qMl/mux2/sel[1] (Four_mux_6)
ueight_two/qMl/mux2/sel[1] (net)
ueight_two/qMl/mux2/U12/S (mx02d0)
ueight_two/qMl/mux2/U12/Z (mx02d0)
ueight_two/qMl/mux2/n97 (net)
ueight_two/qMl/mux2/U10/Il (mx02dl)
ueight_two/qMl/mux2/U10/Z (mx02dl)
ueight_two/qMl/mux2/op (net)
ueight_two/qMl/mux2/op (Four_mux_6)
ueight_two/qMl/P_0 (net)
ueight_two/qMl/P_0 (qM_3)
ueight_two/P[0] (net)
ueight_two/U2/y[0] (sixteenFA_0)
ueight_two/U2/y[0] (net)
ueight_two/U2/Al/y_0 (CELL_A_3)
ueight_two/U2/Al/y_0 (net)
ueight_two/U2/Al/U10/Al (nd02dl)
ueight_two/U2/Al/U10/ZN (nd02dl)
ueight_two/U2/Al/n85 (net)
ueight_two/U2/Al/U8/Al (an02d4)
ueight_two/U2/Al/U8/Z (an02d4)
ueight_two/U2/Al/C_a (net)
ueight_two/U2/Al/C_a (CELL_A_3)
ueight_two/U2/C_a[0] (net)
ueight_two/U2/B2/C_a (CELL_B_3)
ueight_two/U2/B2/C_a (net)
ueight_two/U2/B2/UlO/A2 (xr02d2)
ueight_two/U2/B2/U10/Z (xr02d2)
ueight_two/U2/B2/S_b_0 (net)
ueight_two/U2/B2/S_b_0 (CELL_B_3)
ueight_two/U2/S_b[2] (net)
ueight_two/U2/C2/S_b_0 (CELL_C_1)
ueight_two/U2/C2/S_b_0 (net)
ueight_two/U2/C2/U12/Al (xr02dl)
ueight_two/U2/C2/Ul2/Z (xr02dl)
ueight_two/U2/C2/S_c_0 (net)
ueight_two/U2/C2/S_c_0 (CELL_C_1)
ueight_two/U2/S[2] (net)
ueight_two/U2/S[2] (sixteenFA_0)
ueight_two/S[2] (net)
ueight_two/S[2] (eight_two)
S [2] (net)
uClock_Timer/S[2] (Clock_Timer)
uClock Timer/S[2] (net)

0.01 0.00 1.09 r
0.00 1.09 r
0.05 1.14 f

2 0.02 0.00 1.14 f
0.00 1.14 f
0.34 1.48 f

3 0.02 0.00 1.48 f
0.00 1.48 f

0.02 0.00 1.48 f
0.00 1.48 f

0.02 0.00 1.48 f
0.00 1.48 f

0.02 0.00 1.48 f
0.00 1.48 f
0.32 1.81 f

1 0.01 0.00 1.81 f
0.00 1.81 f

0.01 0.00 1.81 f
0.00 1.81 f
0.31 2.11 f

1 0.03 0.00 2.11 f
0.00 2.11 f
0.06 2.18 r

1 0.04 0.00 2.18 r
0.00 2.18 r
0.06 2.23 f

13 0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.00 2.23 f

0.16 0.00 2.23 f
0.02 2.25 f
0.32 2.58 r

1 0.01 0.00 2.58 r
0.00 2.58 r
0.21 2.79 r

2 0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r

0.02 0.00 2.79 r
0.00 2.79 r
0.11 2.89 f

1 0.01 0.00 2.89 f
0.00 2.89 f
0.20 3.10 f

2 0.02 0.00 3.10 f
0.00 3.10 f

0.02 0.00 3.10 f
0.00 3.10 f

0.02 0.00 3.10 f
0.00 3.10 f
0.39 3.49 f

2 0.02 0.00 3.49 f
0.00 3.49 f

0.02 0.00 3.49 f
0.00 3.49 f

0.02 0.00 3.49 f
0.00 3.49 f
0.29 3.77 r

1 0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r
0.00 3.77 r

0.00 0.00 3.77 r

189

uClock_Timer/T S [2] (Clock Timer) 0.00 3.77 r
T S [2] (net) 0.00 0.00 3.77 r
T_S[2] (out) 0.00 3.77 r
data arrival time 3.77
clock CLK (rise edge) 4.00 4.00
clock network delay (ideal) 0.00 4.00
clock uncertainty -0.20 3.80
output external delay 0.00 3.80
data required time 3.80

data required time 3.80
data arrival time -3.77

slack (MET) 0.03

190

Appendix 4 - Paper 1 [1271

A (4:2) Adder for Unified GF (p) and GF (2°) Galois Field Multipliers

Lai Sze Au and Neil Burgess,

Cardiff School o f Engineering,

Queens Buildings,

The Parade,

CARDIFF CF24 3TF

U.K.

{auls,burgessn}@cf.ac.uk

Abstract
This p a p e r d e s c r ib e s a n e w re d u n d a n t b in a r y a d d e r
th a t su p p o r ts c a r r y - s a v e a d d it io n s u n d e r e i th e r o f th e
G a lo is F ie ld s , G F (p) o r G F (2"), w ith o u t th e n e e d f o r
an e x te rn a l c o n tro l s ig n a l to s p e c ify w h ich f i e l d is to
b e used. The p r o p o s e d a d d e r w il l f i n d u se in u n ified
G a lo is F ie ld m u ltip lie r s f o r c r y p to g ra p h ic
a p p lica tio n s . I ts m a in a d v a n ta g e o v e r p r e v io u s ly
r e p o r te d a d d e r s is th a t a c o n tr o l s ig n a l w h ich is
b ro a d c a s t to a l l c e l ls to su p p r e s s c a r r ie s u n d er
G F (T) is n o t n eed ed , le a d in g to a su b s ta n tia l g a in in
im p lem en ta tio n e ffic ien cy .

1: Introduction

The prime Galois Field GF(p>) and the binary
extension Galois Field GF(2”) are the two most
important number systems for elliptic curve
cryptosystems. The popularity and the need for
implementation o f dual mode Galois Field
Arithmetic operators has increased, due to the
interest in inter-operation between different fields. A
small number o f attempts have been made in recent
years to design dual field arithmetic multipliers.

E. Sava? e t a l. [3] proposed a scalable and unified
multiplier architecture for finite fields GF(p) and GF
(2") in 2000, which makes use o f Montgomery
multiplication to facilitate LSB-first processing.

This work was supported by ARM Ltd. URL: www.arm.com
URL: www.arm.com

Figure 1 shows the Processing Unit (PU) of the
multiplier. In this design, the operands are required to
be transformed into the Montgomery domain.

TC« TS,* TCATB,*

shifts
I Alignment

j Layer

DualMiekl
Adder

Dual-field
Adder

Dual-field
Adder

TC,m TSjM TC,*’I TS,»'I TC,^> TS,*"

Figure 1 Sava? et aTs Processing Unit with w = 3

The Dual-field Adder in Figure 1 is a full adder
with an extra control signal as shown in Figure 2. In
order to perform the dual-field function o f the Dual­
field Adder, a control signal FSE L is needed.

191

http://www.arm.com
http://www.arm.com

c O

• d >
b O

Figure 2 Synthesized circuit of the dual-field
adder

When the control signal is 1, the multiplier will
perform arithmetic functions in the field of GF(p)
and when it is 0, the carry-out will be forced to 0 and
the multiplier performs operations in the field of
GF(2n).

Johann GroPshadl [2] proposed a bit-serial unified
multiplier architecture for finite field GF(p) and
GF(2") in 2001 based on an MSB-first iterative
algorithm for modulo multiplication.

Figure 3 shows the arithmetic unit that is used for
the implementation of the modulo multiplier. The
first (w+l)-bit carry-save adder performs the addition
of the partial products. The output Sum Rs and Carry
Rc are used to 6stimate the multiples of modulus to be
subtracted in the next step with another (w+l)-bit
carry-save adder. Figure 4 is a block diagram of the
bit-serial multiplier architecture described in [3]. In
order to perform carry-free addition for GF (2"), all
the carry bits of the adder (Rc) are set to 0, which in
turn set further control signals. Modulo reduction
occurs within the multiplication process by
concurrent subtraction of a multiple of the modulus.

Both these proposals require broadcasting a control
signal, which is costly and slow, to all the full adder
cells so as to suppress all carries in a multiplier. This
is especially true when switching between fields, as

can occur in a server operating on many different
data streams. This paper describes a limited carry
propagation adder circuit capable of adding numbers
over either a prime Galois field denoted GF(p) or a
binary Galois field denoted GF(2"), but without the
need for a control signal to specify which of the two
field types is being used.

Rs Rc

Rc

Rs Rc

/(-bit
h ard w ired

le ft sh ift r.
k e {0,1} Rs RC

Rs Rc

(n+1)-bit Sum and Carry Latch

(n+ 1)-bit Sum and Carry Latch

(n+1)-bit Carry-Save A dder

 ̂Rs

(n+1)-bit Carry Save Adder

Figure 3 Arithmetic unit of an /i-bit unified
multiplier

I n p u t (
O u tp u t (w b it)

n - b i t M u l t ip l i e r R e g i s t e r

sin

R cR s

n - b i t B u s

(n + 1) - b i t M o d u l / I P R e g i s t e r

P i p e l in e d
C L A (w b it)

n - b i t I/O R e g i s t e r

n - b i t M u lt i p l ic a n d R e g i s t e r

(n + 1) - b i t A r ith m e t i c U n it

Figure 4 Block diagram of the bit-serial multiplier architecture

192

2: Dual Field (4:2) Adder Table 1 Redundant Binary Adder Coding

The main arithmetic operations in prime GF(p)
and binary field GF(2W) are addition, multiplication
and inversion. The most important of these
operations is the field multiplication operation,
formulated as a sequence of additions and
subtractions. Although die GF(p) and GF(2") fields
have different properties, addition operations in the
two fields are structurally very similar. The crucial
difference between arithmetic over these two types
of Galois field is that addition over GF(p) is
identical to conventional addition in which carry
signals propagate along the length of the sum
during the addition, whereas addition over GF(2")
comprises a bit-wise XOR operation with no carries
propagating along the sum. The adder presented
here is a so-called “restricted carry” adder which is
capable of adding numbers over GF(p) or GF(2") in
such a way that carries propagate only a limited
distance over GF(p) and not at all over GF(2").

This section introduces a new dual field adder
based on the (4:2) carry-save adder modified so that
it is capable of adding specially-encoded operand
digits. Hence, no external control signal is needed
to suppress carries in GF(2") arithmetic. (4:2)
adders have been used before in binary multiplier
designs as an alternative to carry-save adders
because they have more regular multiplier tree
layouts. The new adder will permit these same
layout advantages to be applied to Galois Field
multiplication under either GF(p) or GF(2") with
some performance advantage over previously
reported work.

2.1: Redundant Binary Adder

The Redundant Binary Adder, illustrated in
Figure 5, is a binary adder capable of adding two
numbers with the digit set e {0, 1, 2} (or
equivalently dx e {-1, 0, 1}) such that carries do not
traverse the length of the sum [1]. Note that carry
signals transform from {0,2} to {0,1} as they shift
one place to the left. Each block in the first two
rows of Figure 5 can be implemented as a full adder
to yield a structure similar to that of Figure 2. The
last row of blocks simply concatenate pairs of
inputs to provide the output digits.

In the Redundant Binary Adder, digits are
implemented using two binary signals (or, in silicon
chip terms, wires). If neither signal is ‘High’ the
value ‘0’ is represented; if both signals are ‘High’
the value ‘2’ is represented; otherwise, if only one
signal is ‘High’ the value ‘1’ is represented (see
Table 1). A variety of other coding schemes are
possible, but all have the characteristic that only
three digits need be represented differently.

Code Digit

00 0

01 1

10 1

11 2

{0..2} {0 ..2} {0..2} {0..2}

{0 ,2} {0,2}

0 ,1 } {0 ..; 0,1} {0..:

{0,2} {0.2}

{0 .1} 0,1} {0,1 0,1} {0,1

Sum
[0 ..2]

Sum
[0-3]

Sum
[0-2]

Sum
[0-3]

Sum
[0-3]

{0..2} {0- 2} {0..2}

Figure 5 Schematic diagram of a Redundant
Binary Adder

2.2: Dual-mode Galois Field Adder

A dual-mode Galois Field adder can be
constructed by introducing a fourth digit, denoted
1*, that indicates the digit ‘1’ over GF(2^. Then,
addition over GF(p) is implementable using the
digits {0,1,2}, while addition over GF(2") is
implementable using the digits {0,1*}. Addition
over GF(2") can be summarised by the expressions:
1 * + 1 * = 0, and 0 + k = k + 0 = k. The following
digit sets are defined for addition in the two fields:

• for GF(p), 3 values are needed: {0, 1,2}
• for GF(2"), only 2 values are needed: {0,

1*}
Therefore, 5 values are apparently needed in

total. However, only 4 values are actually needed
because the zero elements in both fields are defined
identically (see Tables 2 and 3).

193

Table 2 Table of addition for GF(p)

0 1 2

0 /o 1

1 \ \ i \ \ \ \ \
3

2 2 3 4

needed. Moreover, there are several don’t care
states which also give some degrees of freedom: for
example, the sums 1 * + 1 and 1 * + 2 cannot occur
in any cell. After some experiments, the digit set
encoding shown in Table 4 was chosen for the input
to cell A.

Table 4 Cell A input coding

Table 3 Table of addition of for GF(2")

iiiii
o

1ii\

i *

0 / ' 0 1* ^

1 *

i

V 1 * - — " 0

Incorporating the 1* digit into the Redundant
Binary Adder is readily accommodated to yield a
dual-mode Galois Field adder, as shown in Figure
6. The four symbols {0,1,2,1*} require two wires
for their full representation, in common with the
redundant binary adder of Figure 1. This enables a
unified adder to be constructed, similar in structure
to the Redundant Binary Adder (Figure 5).
However, the blocks are not now full adders, and so
optimum logic circuits for the dual field adder need
to be derived.

x(1:0) y (1 :0) x(1:0) y (1:0)
10,1,2,1*] (0 , 1 , 2 . 1*J [0 , 1 , 2 , 1*] [0 , 1 , 2 , 1*]

[0 . .4](0 . .4]

[0 . 3][0 .3]

(0 . 2][0 . 2]

V V
Figure 6 Redundant Dual Field adder

3: Logic Design of Dual Adder

The digits used in the dual adder can be encoded
in a variety of different ways. In order to implement
the most efficient gate design, i.e. as close to the
number of gates required by the original full adder
based design as possible, different number
encodings are utilised in different cells where

Code Sum

00: 0

01: 1*

10: 2

11: 1

The optimal coding for the output sum digit of
Cell A was found to be the same as the digit input
coding. Also, the output coding of cell C had to be
identical to that of cell A, so that the outputs of one
dual field adder could be connected directly to the
inputs of another in order to realise multiplier
designs. The most efficient output sum digit coding
for Cell B was found to be different to that of Cells
A and C (see Table 5). In this case, the codes for
“1” and “1*” were swapped over for the most
efficient truth table realisation. The don’t care state
occurs because the digit “2” is not required by the
sum output of Cell B.

Table 5 Cell B output coding

Code Sum

00: 0

01: 1

10: X

11: 1*

A diagram of the logic circuit of the complete
adder is shown in Figure 7.

194

c o m

sjq

SJ1|

Figure 7 Overall gate implementation of adder

4: Comparisons and Conclusions

This paper has presented a novel (4:2) adder for
unified GF(p) and GF(2") Galois Field
Multiplication. The main difference in
implementation between the proposed idea and
other previous research is that information
regarding the Galois Field under which the addition
is to be performed is embedded into the digit
coding, obviating the need for a globally-broadcast
control signal.

The complete adder of Figure 7 was simulated
using NC-Verilog and synthesised using Synopsis,
which showed that the critical path (through the
three XOR gates) was 1.5 ns using 0.18pm VLSI
technology. By comparison, the four-input carry-

save adders presented in [3,4] are implemented as
pairs of full adders with extra gates on the carry
outputs to suppress carries (see Figure 2). Ignoring
pipeline stages, these adder cells have a total
CMOS logic gate count of 14 (counting XOR gates
as two gates) as follows:

• 2 x 2 XOR
• 2 x 1 NOR
• 2 x 1 NOT
• 2 x 1 AOI CMOS complex gate

The proposed adder has a critical path length of
only three XOR gates, with a CMOS logic gate
count of only 13, made upas follows:

• 3 XOR/XNOR
• 2 NOR
• 1 NAND
• 1 NOT
• 2 OAI CMOS complex gates
• 1 AOI CMOS complex gate

Hence, the new adder is faster and has a simpler
field specification mechanism, as well as requiring
slightly less logic than previous dual field adders.

Full implementation of a multiplier architecture
based on the proposed dual field adder is in
progress.

5: References

[1] A. Azivienis, “Signed-Digit Number
Representations for fast parallel Arithmetic”,
IR E Trans. E lec t. C o m p ., EC-10, pp.389-400,
Sept. 1961

[2] Johann Gropschadl, “A bit-serial unified

multiplier architecture for finite fields GF(p)

and GF(2Am)’\ Proc. CHES 2001, Paris, 2001,

pp 202-218.

[3] E. Savas, A.F. Tenca, and C.K. Koc, “A

scalable and unified multiplier architecture for

finite fields GF(p) and GF (2'")”, Proc. CHES

2000, Worcester, MA, August 17-18 2000, pp.

277-295

195

Appendix 5 - Paper 2 [1601

Unified Radix-4 Multiplier for GF(p) and GF(2Aw)

Lai-Sze Au and Neil Burgess
Cardiff School o f Engineering,

Queen’s Buildings,
The Parade,

CARDIFF CF24 3TF
United Kingdom

{auls, burgessn}@cfac. uk

Abstract

This paper describes a scalable unified architecture fo r Montgomery multiplication over
either o f the fin ite fie lds GF(p) and GF(T). This architecture has the advantage o f
possessing a new redundant binary adder that supports carry-save additions under either o f
the Galois Fields without the needfor an external control signal to specify which fie ld is to be
used. Its main advantage over previously reported dual fie ld multiplier is that a control
signal which is broadcast to all cells to suppress carries under GF(T) is not needed.
Consequently, large multipliers can be synthesised whose pipelined speed is independent o f
the buffering required fo r the control signal.

1. Introduction

There are two recent trends in multiplier design for cryptographic applications: firstly, the
multiplier should be designed as a parallel medium-wordlength architecture so as to increase
performance while enhancing resistance to attacks based on differential power analysis [1];
secondly, the multiplier should be capable o f operating on either of the popular Galois Field
systems [2]. The prime Galois Field GF(/?) and the binary extension Galois Field GF(2") are
the two most important number systems for elliptic curve cryptosystems. The popularity and
the need for implementation o f dual mode Galois Field Arithmetic operators has increased
due to the interest in inter-operation between different fields, and attempts have been made in
recent years to design “dual field” Galois field arithmetic multipliers capable of operating
under either field [3-5].

E. Sava§ et al. [3] proposed a scalable and unified multiplier architecture for finite fields
GF ip) and GF(2”) in 2000, which makes use o f Montgomery multiplication to facilitate LSB-
first processing. Figure 1 shows the Processing Unit (PU) of the multiplier. In this design,
the operands are required to be transformed into the Montgomery domain. The Dual-field
Adder in Figure 1 is a full adder with an extra control signal as shown in Figure 2. In order to
perform the dual-field function o f the Dual-field Adder, a control signal FSEL is needed.
When the control signal is 1, the multiplier will perform arithmetic functions in the field of
GF^)- and when it is 0, the carry-out will be forced to 0 and the multiplier performs
operations in the field o f GF(2”). Note that the critical path from any data input {a, b or c) to
either output traverses four logic levels, assuming XOR gates have a logic depth of 2.

196

c ---

TC, TC,

Dual-field |
Adder jFSEL

Dual-field
Adder

Dual-field
Adder

Shift &
Alignment

Layer

Dual-field
Adder

Dual-field
Adder

Dual-field
Adder

T C ^ TS2«-’> TC,**-1) TS1a"1) T C 0<H) T S / 1*

Figure 1. Sava$ et a/’s Processing Unit with_w = 3

FSEL

Figure 2. Synthesized circuit of the dual-field adder

Johann Groszshaedl [4] proposed a bit-serial unified multiplier architecture for finite field
GF(p) and GF(2”) in 2001 based on an MSB-first iterative algorithm for modulo
multiplication. Figure 3 shows the arithmetic unit that is used for the implementation of the
modulo multiplier. The first («+l)-bit carry-save adder performs the addition of the partial
products. The output Sum Rs and Carry Rc are used to estimate the multiple of the modulus to
be subtracted in the next step with another (n+l)-bit carry-save adder.

Figure 4 is a block diagram of the bit-serial multiplier architecture described in [4]. In
order to perform carry-free addition for GF(2"), all the carry bits of the adder (Rc) are set to 0,
which in turn set further control signals. Modulo reduction occurs within the multiplication
process by concurrent subtraction of a multiple of the modulus.

197

R sAr-bit
h ardw ire

d left
sh ift

* 6 {0 ,1} R s Rc

(n+1)-bit Carry S a v e A dd er

Rc

(n+ 1)-b it S u m an d Carry Latch

(n + 1)-b it C a rry -S a v e A dd er

(n + 1)-b it S u m an d Carry Latch

j Rc

Rs R c

Figure 3. Arithmetic unit of an /f-bit unified multiplier

Output (wbit)Input (tvbit> n-bit I/O Register

n-bit Multiplier Register

Rs Rcxsub

dear n-bit Bus
(n+1)-bit Arithmetic Unit

n-bit Multiplicand Register

(n+1)-bit Modul/IPRegister

Figure 4. Block diagram of the bit-serial multiplier architecture

Both these proposals (and others such as [5]) require broadcasting a control signal to all
the full adder cells to suppress the output carries from all the full adders in the multiplier.
This is costly and slow, especially when switching between fields, as can occur often in a
server operating on many different data streams. This paper describes a new multiplier which
operates in both GF(/?) and GF(2"). The new multiplier makes use of our previously-
presented dual field adder based on a (4:2) carry-save adder cell, modified so that it is capable
of adding specially-encoded operand digits [6]. Our unified field multiplier avoids the delay
of field-control signal propagation, particularly important as multipliers increase in
wordlength for both improved performance and security. The paper is organised as follows:
in the next section, we describe the detailed design of the modified (4:2) adder, showing how
the particular digit coding schemes employed were selected. Sections 3 and 4 present the full
multiplier architecture, together with modules for binary number conversion, partial product
generation, and modulo reduction. The paper concludes in Section 5 with a brief discussion
of further work.

2. Dual-mode Galois Field Adder Design

(4:2) adders have been used before in binary multiplier designs as an alternative to carry-
save adders because they have more regular multiplier tree layouts, requiring less
interconnect than other reduction tree topologies [7,8]. The new adder will permit these same
layout advantages to be applied to Galois Field multiplication under either GF(p) or GF(2”).
In [6], we described how introducing a fourth digit, denoted 1*, that indicates the digit ‘1’
over GF(2”) enabled us to take advantage o f previously unexploited don’t care states in the
(4:2) adder cell.

The new (4:2) adder com prises three separate stages, implemented using three different
cells: the first stage (cell A) receives two 2-bit operands, x (l :0) an d y (l :0) with the digit set, d
e {0, 1,2, 1*}, and adds them so that the to form a 2-bit sum digit, sA e {0,1,2,1*}, and a carry
bit, cA e {0,2}. The addition is summarised in Table 1, showing that there is considerable
flexibility available in the ce ll’s implementation. Specifically, there are four don’t care
states, and the output digit ‘2 ’, can be represented by either sA = 2 or cA = 2 .

Table 1. Cell A addition Table 2. Cell B addition Table 3. Cell C addition

0 1 2 1*
0 0 1 2 1*
1 1 2 3 X
2 2 3 4 X
1* 1* X X 0

0 1
0 0 1
1 1 2
2 2 3
1* 1* X

0 1
0 0 1
1 1 2
X X X
1* 1* X

The second stage (cell B) receives the 2-bit sum digit, sA, and the shifted carry bit, cA, from
cell A, and adds them to form the 2-bit sum digit, sB e {0,1,1*}, and a carry bit, cB e {0,2}.
The addition is summ arised in Table 2, showing that there is less flexibility available in this
cell’s implementation than in cell A, as there is only one don’t care state.

Finally, the third stage (cell C) receives the 2-bit sum digit, sB, and the shifted carry bit, cB,
output by cell B and adds them to form the 2-bit sum digit, sc e {0,1,2,1*}. This digit set
matches the digit set o f the (4:2) adder’s inputs, so that the addition is complete [9]. The
third stage o f the addition is summ arised in Table 3, showing that there is more flexibility
available in this ce ll’s im plem entation, due to the increased number o f don’t care states.

2.1. Cell A digit coding

The digit coding for cell A was chosen as follows: 5̂ (0) should be a 2-input XOR
function, so as to m atch the delay o f a conventional (4:2) adder, and the other two logic
functions are required to be as sim ple as possible. This immediately implies the codes for 1
and 1* should have a Ham ming distance o f 1 to meet the 5̂ (0) constraint. After some
experiments, we made the assignm ents (0, 1) = 1*, and (1, 1) = 1, together with the arbitrary
assignment (0,0) = 0, leaving (1,0) = 2. Filling out Table 1 with these digit representations
gives the Karnaugh map shown in Table 4, where *-’ reflects that the decision about how to
represent the output ‘2 ’ is yet to be made, and ‘X ’ denotes “don’t care”.

Table 4. Karnaugh Map for Cell A addition

0->00 1* -»01 1 ->11 2-> 10
0->00 o. (o.o) 0. (0.1) 0. (1.1) (-.0)
1* -*01 0, (0,1) 0. (0.0) X, (X.0) X, (X.1)
1 -> 11 o.n .n X. (X.0) -,(-,0) 1.(1-1)
2 —>10 (-,0) X. (X.l) 1.(1.1) 1. (1.0)

199

The (-,0)’ entries must become either ‘1, (0,0)’ or ‘0, (1,0)’ to represent an output o f 2. If
they are set consistently to ‘0, (1,0)*, then 5̂ (1) = x (l) v y (l) is obtained by exploiting the
don’t care states. Finally, by setting all the remaining don’t care states for cA low, we obtain
Q = ^ (1) a > (1) a {-*(0) v “’XO)}, implementable as a 2-input NAND driving a 3-input
AND, matching the CM OS VLSI delay o f the XOR. The final map for cell A is presented in
Table 5.

Table 5. Karnaugh Map for Cell A addition

0->00 1*->01 1 ->11 2->10
0->00 0. (0.0) 0, (0,1) 0. (1.1) 0. (1.0)
1*->01 o. (o.n 0. (0.0) 0. (1.0) 0. (1.1)
1 -*11 o.n .n 0, (1.0) 0.(1.0) 1. (1.1)
2->10 o.n.o) 0. (1.1) 1. (1-1) 1. (1.0)

2.2. Cell B digit coding

Using the same coding for cell B as was used in cell A yields 5^(0) = 5̂ (0) © cAi as
required. However, the logic for sb(1) is not as simple as required with this output encoding.
Swapping the output representations for 1 and 1* - that is replacing (0,1) by (1,1) and vice
versa, did not impact the 5X0) logic, while simplifying the 5^(1) logic to 5g(l) = “^ (l) a
^ (0)- Finally, c b = ^ (1) a (“^ (O) v c a) . The Karnaugh map for cell B is presented in Table
6 .

Table 6. Karnaugh Map for Cell Table 7. Karnaugh Map for Cell

0 1
0 -> 0 0 0, (0,0) 0, (0, 1)
1* ->01 0, (1, 1) 0, (1,0)
1 -> 11 0, (0, 1) 1, (0,0)
2 -> 1 0 1, (0,0) 1, (0,1)

0 1
0 - > 0 0 (0 ,0) (1 ,1)
1 - > 0 1 (1 ,1) (1 ,0)

1 * - > 1 1 (0 ,1) (1 .0)
X - > 1 0 (0 ,0) (1 .1)

23. Cell C digit coding

This design is straightforward: the output coding must match the input coding o f cell A
(i.e. 1* -» (0,1) and 1 —> (1,1)), and the input coding matches the output coding o f cell B. By
exploiting the don’t care states, the logic equations are 5X1) = “^ (l) a 5fl(0) v Cb, and 5c(0) =
5X0) ® cb• The final Karnaugh map o f Cell C is presented in Table 7.

Figure 5 shows the final CM OS gate implementation o f the adder, where some further
logic optimisation has been made (i) to cover the lack o f AND and OR gates in CMOS, and
(ii) to take advantage o f CM OS com plex gates.

3. Multiplier Design

The overall structure o f this m ultiplier is shown in Figure 6 . It shows that the multiplier
comprises six different modules: (1) Binary to Redundant number encoder; (2) Partial
Product Generator; (3) (4:2) adders for partial products summation; (4) Modulus Multiplier
D ig it Selection; (5) M odulus M ultiple Generator; (6) (4:2) adders for modulo reduction.
However, only four different modules are required because the two (4:2) adders required are
the same as are the partial product and modulus multiple generators are also identical. The
(4 :2) adder has already been introduced, so this section shall present the design o f binary to
redundant num ber encoder and also the design o f the partial product generator. The modulo
reduction will be presented in the next section o f the paper.

200

x[1:0] y[1:0]

i Cell A

S,[0]Sa[1]

<C.
Cell B

Sb[0]Sb[1]

! Cell C

Figure 5. Overall gate implementation of dual field (4:2) adder

The two digits input to the (4:2) adders - namely, the result o f the previous iteration, Rn,
and the partial product, PP„, both have the digit set, d e (0, 1, 1*, 2}. The partial product
generation is decomposed into two steps: firstly, the selected Galois Field is embedded into
the multiplicand word by encoding it using the novel d - 1 * representation; secondly, the
radix-4 partial product is derived by using the available redundant d = 2 representation. The
first o f these steps, embedding the Galois Field, is implemented by the simple circuit shown
in Figure 7.

Every two bits o f the m ultiplier word, B , are recoded as a radix-4 digit, and the
multiplicand, A, then m ultiplied by the recoded bit to yield the appropriate partial product, as
shown in Table 8. Figure 8 shows the logic diagram o f the partial product generator,
including the Field-embedded binary num ber encoder, and is seen to be simpler than the
standard radix-4 B ooth’s encoder [10]. In particular, the negative multiple increment bits that
occur in Booth’s coding are avoided, as these can increase the logic depth o f the adder array.
Note how the availability o f the redundant digit, d — 2, at the (4:2) adder input obviates the
need for a carry-propagate addition when encoding the radix-4 digit o f 3.

201

Binary to
Redun-

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

Encode
Binary to
Redun­

dant

GF(p)?
1 -> GF(p)

0-> GF(2An)

Partial I Partial Partial
Produc I

' ^G & T T S T atb r K

Partal
Produc Produc

4:2 Adder 4:2 Adder 4:2 Adder 4:2 Adder

2 BSfOl

Modulo Multiple

4:2 Adder ■ ■ ■

|

4:2 Adder | 4:2 Adder 4:2 AM w

2 R - '2 Ro

Figure 6. W ordxDigit Dual-Field Multiplier Architecture

GF(p)?
1 -> GF(p)

0-> GF(2An)

a,[1] aJO]

GF(p)?
1 -> GF(p)

0-> GF(2An)

Figure 8. Field-Embedded
Binary Number Encoder

Figure 7. Radix-4 Partial Product
Generator

Table 8. Radix-4 Partial Product Generation

(B„ Radix-4 digit Partial product. PPA 1:01
00 0 0
01 1 A
10 2 Left shift A 1 bit
11 3 1A + 2A

202

4. Modular Reduction

This design made use o f M ontgom ery’s multiplication techniques to perform the modular
multiplication. M ontgom ery’s m odular multiplication algorithm is described as follows:

Montgomery’s Modular Multiplication Algorithm

{Pre-condition: M prime to r and^4 non-redundant}
S:= 0;
For i := 0 to n - 1 do
Begin

9, := (s0 + a,b0)(-m ~])m o d r ;
S := (S + a, x B + qt x M)d ivr ;
{Invariant: 0 < S < M+B}

End;
{Post-condition: Sxr* = A x B + Q xM)

Figure 6 shows that the m odular m ultiple selection (i.e. determining q,) causes irregularity
in the design and is on the critical path. Therefore, effort is needed to reduce the delay by
taking into consideration pre-known factors as early on in the calculation as possible. For
example, the m odulus M is always an odd number (because r - 2”), so that the last bit o f M,
M[0], will always be 1. Therefore the information presented in Table 9 regarding the two
LSB’s o f q ? M is already known before any modulo reductions are performed.

BS[1] GF . i M[1]

Table 9. Multiple of M
Multiple o f M M l . 01 = 01 M 1.01 = 11

1 01 11
2 10 10
3 11 01 BS[0]

q,(1] T
Figure 9. ,̂[1] logic

Table 10 shows what value o f qt is required to ensure R = 2?5[1, 0] + q?M = 00 as a
function o f the selected Galois Field, where the two LSB’s o f the Partial Sum, denoted
BS[1:0], are in conventional binary form rather than in redundant form.

Table. 10 Selection of Modulo Multiple, arM

GF(p),
GF = 1

Partial Binary Sum, ofl:01 ifMH,01 = 01 <i,ri:01 ifMB.01 = 11
00 00 00
01 11 01
10 10 10
11 01 11

GF(2"),
GF = 0

nn nn nn
01 01 11
10 10 10
11 11 01

From Table 10, it is easy to see that #,[0] = BS[0] independently o f both the Galois Field
and A/[1:0]. However, qt[1] is a function o f A /PL BS[1:0], and the Galois Field flag, GF.
Figure 9 shows a simple circuit implementing the necessary logic organised as a multiplexer
controlled by BS[0].

203

M ontgom ery’s m odular reduction technique is performed on non-redundant binary
numbers. Therefore, the redundant representation returned by the (4:2) adders must be
converted to binary to obtain the bits 5«S[1:0]. Table 11 presents this conversion process,
where PS, denotes the two bits representing the partial sum at bit position i (see Figure 6).
Note that P S j[l] is not included in the Table, because it is weighted +2 and so has no effect
on the value o f BS[1].

Table 10.1. Binary Conversion

PSi[0] P S n li] PSn[0] digit[1] digit[0] BS [1] BS [0]
0 0 0 0 0 0 0
0 0 1 0 1* 0 1
0 1 0 0 2 1 0
0 1 1 0 1 0 1
1 0 0 1* 0 1 0
1 0 1 1* 1* 1 1

1 1 0 1* 2 0(x) ooo
1 1 1 1* 1 100 100
0 0 0 2 0 0 0
0 0 1 2 1* 000 1(X)
0 1 0 2 2 1 0
0 1 1 2 1 0 1
1 0 0 1 0 1 0
1 0 1 1 1* 100 1(x)
1 1 0 1 2 0 0
1 1 1 1 1 1 1

The Table shows that ^ [0] = /W0[0]. In fact, since Ca and Cb to the (4:2) adder are both
0, BS[0] = .PPotO] © ^o[0], and is available much earlier than BS[1]. The logic for BS[1] is
presented in Figure 10 as a m ultiplexer controlled by BS[0], in common with Figure 9.
M erging Figures 9 and 10 yields the simplified circuit for qt[1] shown in Figure 11.

P S o l l J P S J O] GFl I M[1]

X 7 -BS[0]

q.m |
Figure 10. Logic for BS111

PSJ1] PS,[0]

BS[0]

[BS[1]

Figure 11. Simplified logic for <7.111

Once has been determined, the modulo M is multiplied by qt using the modulo multiple
generator shown in Figure 12, which has the same logic design as in the partial product
generator presented earlier. Finally, the multiple, q,-M, is then added to partial sum (PS)
using the same m odified (4:2) adder as shown in Figure 5. Note that in Figure 6, the least
significant four bits (2 binary bits) are discarded as they are now zero and what was R2 is now
fed back to the partial product adder as Rq.

204

GF(p)?
1 -> GF(p)

0-> GFfZM)

choice of
multiple

MMJ1]

Figure 12. Modulo multiple generator

5. Comparisons

When compared with E. Sava° et a l.’s design [5], previously shown in Figure 1, the unified
multiplier presented here has the advantage that the Galois Field selection line does not cause
extra delays due to potentially large fanouts. In Figure 1, the FSEL line has to drive 2w NOT
gates in the dual field adders, where w is the word-length o f the adder.
The delay o f the FSEL line driving 2w inverters can be estimated by using Logical Effort [11]
as being roughly log42w F 0 4 delays, where F 0 4 denotes “fanout o f 4 inverters” . The pipeline
delay comprises this buffer delay and the adder delay, assuming that the partial product is
gener-ated in a prior pipeline stage.

In Figure 2, there are two critical paths through the adder: one starts with inputs a and b and
traverses an XOR gate, a (2,2) AND-OR-invert (AOI) gate, and a NOR gate; the other starts
with the FSEL line and com prises the FSEL buffer, an inverter, and the same NOR gate as
the other path. The FSEL delay dom inates the pipeline stage when the buffer delay becomes
larger than the delay o f the XOR combined with the AOI gate. From Logical Effort, the delay
o f the buffer was found to be log4w; the delay o f an XOR gate (assuming its implementation
by a CMOS (2,2) AOI gate) and a second (2,2) AOI gate is given by 2((2(1 + 4)/5 = 2.4 F04,
using the equation d = g h + p and inserting the relevant values. Therefore when log42w > 2.4,
or w = 14, the FSEL buffer delay starts to dominate the critical path and affects the maximum
clock rate achievable. M ore-over, if only one bit is processed per pipeline stage, then this
design could be vulnerable to Pow er Analysis cryptographic attacks as the word-length is
small [1]. However, increasing the num ber o f bits per stage increases the fanout on the FSEL
line, further degrading performance.

The word-length in the proposed design can be increased per pipeline stage as much as
needed without causing extra delay so that this design is truly scalable. Moreover, this design
could proc-ess more than one digit per pipeline stage without any extra delay due to field
selection, although there would be additional delay due to the extra adders in each pipeline
stage. However, the M ul-tiplicand A and the Modulus A /need to be converted into the novel
redundant num ber coding, but this can be done in parallel with the M ultiplier B being fed to
the row o f partial product genera-tors, thus avoiding any delay due solely to field selection.

In terms o f area, E. Sava° et a l.’s design requires two extra gates per full adder for field
selec-tion. The proposed design requires w extra AND gates in the partial product and
modulus multi-pie generators to embed the field information into the digits, while the unified
field (4:2) adders have the same num ber o f logic gates as two full adders [6]. Thus, the area
o f the proposed design m atches that o f previous designs.

205

6. Conclusion and future work

This paper has presented a Montgomery modulo multiplier using a novel (4:2) adder
for uni-fied GF(/?) and GF(2«) Galois Field Multiplication. The main difference in
implementation be-tween the proposed idea and other previous research is that information
regarding the Galois Field under which the addition is to be performed is embedded into the
digit coding, obviating the need for a globally-broadcast control signal. Also, both the partial
product generation and modulo reduction are performed using radix-4 algorithms to
accelerate the processing time.

The critical path of this architecture, from the input to the first row of (4:2) adders to the
out-put of the second row of (4:2) adders consists of 7 XOR gates and 2 multiplexers, of
which 6 XOR gates are in the two (4:2) adders. This logic depth compares favourably with
the radix-2 unified adders presented in Section 1 of this paper, which have a critical path of 8
logic levels excluding the logic needed to derive qt. We are currently implementing the
proposed design in CMOS VLSI.

Acknowledgement
This work was supported by ARM Ltd., Fulboum Road, Cambridge, U.K.

References
[1] C. D. Walter, “Techniques for the Hardware Implementation of Modular Multiplication”, Proc. 2nd IMACS

Int. Conf. on Circuits, Systems & Computers, Athens, October 1998, vol. 2, pp 945-949.
[2] J. Goodman and A.P. Chandrakasan, “An Energy-efficient Reconfigurable Public-key Cryptography

Processor”, IE E E J . S o lid -S ta te C ir c u its , vol. 36, pp. 1808-1820 (November 2001)
[3] E. Savas, A.F. Tenca, and C.K. Koc, “A scalable and unified multiplier architecture for finite fields GF(p) and

GF(2'")”, Proc. CHES 2000, Worcester, MA, August 2000, pp. 277-295
[4] Johann Gropschadl, “A bit-serial unified multiplier architecture for finite fields GF(p) and GF(2m)”, Proc.

CHES 2001, Paris, August 2001, pp 202-218.
[5] J. Wolkerstorfer, “Dual-Field Arithmetic Unit for GF(p) and GF(2m)”, Proc. CHES 2002, San Francisco,

August 2002
[6] L.S. Au, N. Burgess “A (4:2) Adder for Unified GF(p) and GF(2”) Galois Field Multipliers”, Proc. 36th

Asilomar Conference on Signals, Systems and Computers, November 2002
[7] N. Takagi, H. Yasura and S. Yajima, “High-speed VLSI multiplication algorithm with a redundant binary

addition tree”, IE E E T ra n sa c tio n s o n C o m p u te rs , vol. 34, pp. 789-796 (August 1985)
[8] M.R. Santoro and M.A. Horowitz, “SPIM: a pipelined 64*64-bit iterative multiplier”, IE E E J o u rn a l o f S o lid -

S ta te C ir c u its , Vol. 24, pp. 487-493 (April 1989)
[9] A. Azivienis, “Signed-Digit Number Representations for Fast Parallel Arithmetic”, IR E Trans. E lec t. C om p.,

vol. EC-10, pp.389-400, (September 1961)
[10] J. Groszschaedl, “A unified radix-4 partial product generator for integers and binary polynomials” Proc. IEEE

ISCAS, Scottsdale, AZ, pp. 567 - 570 vol.3 (May 2002)
[11] I. Sutherland, B. Sproull, C. Harris, “Logical Effort - Designing Fast CMOS Circuits”, Morgan Kaufmann

Publishers, (1999)

206

References

[1] Walter C. D, “Longer Keys may facilitate Side Channel Attacks”, Proceedings
of the 10th Annual Workshop on Selected Areas in Cryptography - SAC 2003,
p. 14-15, 2003

[2] Smith J.L., “The Design of Lucifer, A Cryptographic Device for Data
Communications”, IBM Research Report RC3326,1971

[3] National Bureau of Standards, “Data Encryption Standard”, Federal
Information Processing Standards Publication FIBS PUB 46,1977

[4] ANSI X3.92, “American National Standard for Data Encryption Algorithm
(DEA)”, American National Standards Institute, 1981

[5] http://csrc.nist.gov/publications/fips/fips46-3/fips46-3 .pdf

[6] http://www.semiconductors.philips.com/markets/identification/datasheets/index.html

[7] http://www.fecinc.co.jp/pdf/IC_CHIP.PDF

[8] Preissig R. S., “Data Encryption Standard (DES) Implementation on the
TMS320C6000”, Texas Instruments Application report SPRA702, 2000
http ://www. ee. ic. ac.uk/pcheung/teaching/ee3_Study_Proj ect/DES%20Implem
entation(702).pdf

[9] Lai X. and Massey J., “A Proposal for a NEW Block Encryption Standard”,
proceedings of Advances in Cryptology - EUROCRYPT’90, Springer-Verlag,
p. 389-404, 1991

[10] Lai X., Massey J. and Murphy S., “Markov Ciphers and Differential
Cryptanalysis”, Proceedings of Advances in Cryptology - EUROCRYPT’91,
Springer-Verlag, p. 17-38, 1991

[11] http://csrc.nist.gov/publications/fips/fips 197/fips-197.pdf

[12] Daemen J. and Rijmen V., “The Rijndael Block Cipher- AES Proposal”, First
AES Candidate Conference (AES1), 1998

[13] Diffie W. and Heilman M., “New directions in cryptography”, IEEE
Transactions on Information theory, Vol. 22, p. 644-654, 1976

[14] Maurer U., “Towards the equivalence of breaking the Diffie-Hellman protocol
and computing discrete logarithms”, Advances in Cryptology - Crypto '94,
Springer-Verlag, p. 271-281, 1994

[15] Diffie W., van Oorschot P.C., and Wiener M.J. “Authentication and
authenticated key exchanges”, Designs, Codes and Cryptography, vol 2, p.
107-125, 1992

207

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3
http://www.semiconductors.philips.com/markets/identification/datasheets/index.html
http://www.fecinc.co.jp/pdf/IC_CHIP.PDF
http://csrc.nist.gov/publications/fips/fips

http://www3.sympatico.ca/wienerfamily/Michael/MichaelPapers/STS.pdf

[16] http://www.itl.nist.gov/fipspubs/fip 180-1 .htm

[17] ElGamal T., “A public key cryptosystem and a signature scheme based on
discrete logarithms”, Proceedings of Crypto '84, LNCS, vol. 196, p. 10-18,
1984

[18] http://www.itl.nist.gov/fipspubs/fipl 86.htm

[19]: Rivest R., Shamir A. and Adleman L., “A method for obtaining digital
signatures and public-key cryptosystems”, Communications of the ACM, vol.
21, p. 120-126, 1978

[20] Rivest R., Shamir A. and Adelman L., “On Digital Signatures and Public Key
Cryptosystems”, MIT Laboratory for Computer Science Technical
Memorandum 82, 1977

[21] http://www.ipa.go.jp/security/enc/CRYPTREC/fy 15/doc/l 014_Menezes.sigs.pdf

[22] http://csrc.nist.gov/publications/fips/fipsl 86-2/fipsl 86-2-change 1 .pdf

[23] ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1 /pkcs-1 v2-1 .doc

[24] American National Standards Institute, “ANSI X9.31-1998: Public Key
Cryptography Using Reversible Algorithms for the Financial Services
Industry (rDSA)”, 1998

[25] Rivest R. L. and Kaliski B., “ RSA Problem”, MIT Laboratory for Computer
Science & RSA Laboratories, 2003
http://theory.lcs.mit.edu/~rivest/RivestKaliski-RSAProblem.pdf

[26] Boneh D. and Venkatesan R., “Breaking RSA may not be equivalent to
factoring”, Proceedings Of Eurocrypt’98, LNCS, Springer-Verlag, vol. 1233,
p. 59-71, 1998
http://theory.stanford.edu/~dabo/papers/no_rsa_red.pdf

[27] Boneh D., “Twenty years of attacks on the RSA cryptosystem”, Notices of the
AMS, vol. 46, p. 203-213, 1999
http://www.ams.org/notices/199902/boneh.pdf

[28] Davida G., “Chosen signature cryptanalysis of the RSA (MIT) public key
cryptosystem”, Techical Report: TR-CS-82-2, Dept, of Electrical Engineering
and Computer Science, University of Wisconsin, Milwaukee, Wisconsin,
1982

[29] Denning D. E., “Digital signatures with RSA and other public-key
cryptosystems”, Comm. ACM 27, vol. 27, p. 388-392,1984

208

http://www3.sympatico.ca/wienerfamily/Michael/MichaelPapers/STS.pdf
http://www.itl.nist.gov/fipspubs/fip
http://www.itl.nist.gov/fipspubs/fipl
http://www.ipa.go.jp/security/enc/CRYPTREC/fy
http://csrc.nist.gov/publications/fips/fipsl
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1
http://theory.lcs.mit.edu/~rivest/RivestKaliski-RSAProblem.pdf
http://theory.stanford.edu/~dabo/papers/no_rsa_red.pdf
http://www.ams.org/notices/199902/boneh.pdf

[30] Desmedt Y. and Odlyzko A. M., “A chosen text attack on the RSA
cryptosystem and some discrete logarithm schemes”, Proceedings
CRYPTO’85, Springer-Verlag, LNCS, vol 218, p. 516-522, 1986
http://www.dtc.umn.edu/~odlyzko/doc/arch/rsa.attack.pdf

[31] Bellare M. and Rogaway P., “Optimal asymmetric encryption-how to encrypt
with RSA”, Proceedings Eurocrypt’94, Springer-Verlag, LNCN, vol. 218, p.
92-111, 1994

[32] Okamoto T. and Pointcheval D., “REACT: Rapid enhanced-security
asymmetric cryptosystem transform”, Proceedings of the 2001 Conference on
Topics in Cryptology: The Cryptographers’ Track RSA Conference, Springer-
Verlag, p. 159-175,2001

[33] Shoup V., “A Proposal for an ISO Standard for Public Key Encryption
(version 2.1)”, 2001
http://shoup.net/papers/

[34] Hastad J., “Solving simultaneous modular equations of low degrees”, SIAM
Journal on Computing: Special issue on cryptography, vol. 17, p. 336-341,
1988

[35] Boneh D. and Durfee G., “Cryptanalysis of RSA with private key d less than
N0'292”5 IEEE Transactions on Information Theory, vol. 46, p. 1339-1349,
2000

[36] Wiener M., “Cryptanalysis of short RSA secret exponents”, IEEE
Transactions on Information Theory, Vol. 36, p. 553-558, 1990

[37] Zimmermann P . , “The Official PGP User’s Guide”, The MIT Press, 1995

[38] NIST, “Key Management Guideline - Workshop Document” Draft, 2001.
http://csrc.nist.gov/encryption/kms/key-management-guideline-(workshop).pdf

[39] American National Standards Institute, “ANSI X9.52-1998: Triple Data
Encryption Algorithm Modes of Operation”, 1998

[40] NIST, “Secure Hash Standard”, 2002.
http://csrc.nist.gov/publications/fips/fips 180-2/fips 180-2.pdf

[41] American National Standards Institute, “Public Key Cryptography for the
Financial Services Industry: Agreement of Symmetric Keys Using discrete

. Logarithm Cryptography”, 2001

[42] NIST, “DRAFT Special Publication 800-56, Recommendation on Key
Establishment Schemes” Draft, 2003

[43] RSA Laboratories, “PKCS #1 v2.0: RSA Cryptography Standard”, 1998.

209

http://www.dtc.umn.edu/~odlyzko/doc/arch/rsa.attack.pdf
http://shoup.net/papers/
http://csrc.nist.gov/encryption/kms/key-management-guideline-(workshop).pdf
http://csrc.nist.gov/publications/fips/fips

[44] American National Standards Institute, “Key Management Using Reversible
Public Key Cryptography for the Financial Services Industry”, Work in
Progress

[45] American National Standards Institute, “Public Key Cryptography for the
Financial Services Industry, The Elliptic Curve Digital Signature Algorithm
(ECDSA)”, 1999

[46] American National Standards Institute, “Public Key Cryptography for the
Financial Services Industry, Key Agreement and Key Transport Using Elliptic
Curve Cryptography”, 1999

[47] NIST, “DRAFT Special Publication 800-38b, Recommendation for Block
Cipher Modes of Operation: The RMAC Authentication Mode” Draft, 2002

[48] NIST, “The Keyed-Hash Message Authentication Code (HMAC)”, 2002

[49] Bernstein D.J., “Circuits for Integer Factorization: A Proposal”, Manuscript,
2001.
http://cr.yp.to/papers.html#nfscircuit

[50] Shamir A. and Tromer E., “Factoring Large Numbers with the TWIRL
Device”, Proceedings of Crypto 2003, Springer-Verlag, LNCS, vol 2729, p.
1-26, 2003
http://www.wisdom.weizmann.ac.il/~tromer/papers/twirl.pdf)

[51] http://www.rsasecurity.com/rsalabs/technotes/twirl.html

[52] NESSIE Consortium, “Portfolio of recommended cryptographic primitives”,
2003.
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/decision-final.pdf

[53] Miller V., “Uses of elliptic curves in cryptography” Advances in Cryptology,
CRYPTO ’85, Springer-Verlag, LNCS, vol 218, p. 417-426, 1986

[54] Koblitz N., “Elliptic Curve Cryptosystems”, Mathematics of Computation,
vol. 48, p. 203-209, 1987

[55] Schroeppel R., Orman H. and O’Malley S., “Fast Key Exchange with Elliptic
Curve Systems”, Advances in Cryptography, Crypto '95, Springer-Verlag,
LNCS, vol. 963, p. 43-56, 1995
http://www.zone-h.org/files/33/TR95-03.pdf

[56] Robshaw M.J.B. and Yin Y. L., “Elliptic Curve Cryptosystems”, An RSA
Laboratories Technical Notes, revised 1997.
http://www.rsasecurity.com/rsalabs/technotes/elliptic_curve.html

[57] Choie Y., Jeong E., Lee E., “Supersingular Hyperelliptic curve of Genus 2
over Finite Fields”, Cryptology ePrint Achive: Report, 2002

210

http://cr.yp.to/papers.html%23nfscircuit
http://www.wisdom.weizmann.ac.il/~tromer/papers/twirl.pdf
http://www.rsasecurity.com/rsalabs/technotes/twirl.html
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/decision-final.pdf
http://www.zone-h.org/files/33/TR95-03.pdf
http://www.rsasecurity.com/rsalabs/technotes/elliptic_curve.html

http://math.postech.ac.kr/~ancy/pub/joumal/ss_g2_update.pdf

[58] Wiener M.J. and Zuccherato R.J., “Faster Attacks on Elliptic Curve
Cryptosystems”, Springer-Verlag, LNCS, vol. 1556, p. 190, 1999.
http://www3.sympatico.ca/wienerfamily/Michael/MichaelPapers/ECattack.pdf

[59] Montgomery P. L., “Speeding the Pollard and Elliptic Curve Methods of
Factorization”, Mathematics of Computation, vol. 48, p. 243-264, 1987

[60] Okeya K., Kurumatani,H. and Sakurai,K., "Elliptic Curves with the
Montgomery-Form and Their Cryptographic Applications", Public Key
Cryptography (PKC 2000), LNCS, vol. 1751, p. 238-257, 2000

[61] Kocher C, “Cryptanalysis of Diffie-Hellman, RSA, DSS, and Other Systems
Using Timing Attacks”, Proceedings of Advances in cryptology, CRYPTO
’95: 15th Annual International Cryptology Conferences, Santa Barbara,
California, USA, Sringer-Verlag, p.171-183, 1995
http://www.cryptography.com

[62] Kocher C, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”, Advances in Cryptology - CRYPTO ’96, LNCS,
vol. 1109, p. 104-113, 1996

[63] HITACHI, “Key Agreement scheme OK-ECDH”, 2001.
http ://www. sdl .hitachi. co .j p/crypto/ok-ecdh/index.html

[64] Okeya K. and Sakurai K, “Efficient Elliptic Curve Cryptosystems from a
Scalar Multiplication Algorithm with Recovery of the y- Coordinate on a
Montgomery-Form Elliptic Curve”, Cryptographic Hardware and Embedded
System (CHES 2001), LNCS, vol. 2162, p. 126-141, 2001

[65] Silverman J.H., “The Arithmetic of Elliptic Curves”, Grad. Texts in
Mathematics, Springer-Verlag, vol 106, 1986

[66] Menezes A. J., “Elliptic Curve Public Key Cryptosystems”, Kluwer Academic
Publishers, 1993

[67] Hankerson D., “Performance comparisons of elliptic curve systems in
software”, 5th workshop on Elliptic Curve Cryptography (ECC 2001),
University of Waterloo, Canada, p. 2001.
http ://www.cacr .math.uwaterloo .ca/conferences/2001/ecc/hankerson.pdf

[68]. Leung I., “A Microcoded Elliptic Curve Cryptographic Processor”, Mphil
thesis, The Chinese University of Hong Kong, 2001
http://www.cse.cuhk.edu.hk/~khleung/thesis/thesis.html

[69] Chudnovsky D.V., “Sequences of numbers generated by addition in formal
groups and new primality and factorisation tests”, Advances in Applied Math,
p. 385-434, 1986

211

http://math.postech.ac.kr/~ancy/pub/joumal/ss_g2_update.pdf
http://www3.sympatico.ca/wienerfamily/Michael/MichaelPapers/ECattack.pdf
http://www.cryptography.com
http://www.cacr
http://www.cse.cuhk.edu.hk/~khleung/thesis/thesis.html

[70] Cohen H., Miyaji A. and Takatoshi O., “Efficient Elliptic Curve
Exponentiation Using Mixed Coordinates”, Proceedings Of the International
Conference on the Theory and Application of Cryptology and Information
Security: Advances in Cryptology, LNCS, vol. 1514, p. 51-65, 1998

[71] Paar C., “Implementation options for finite field arithmetic for elliptic curve
cryptosystems”, invited presentation at the 3rd workshop on elliptic Curve
Cryptography (ECC’99), University of Waterloo, Waterloo, Ontario, Canada,
1999
http://www.crypto.ruhr-uni-bochum.de/Publikationen/texte/paar_ecc99.pdf

[72] De Win E., Bosselaers A., Vendenbergh S., De Gersem P. and Vandewalle J.,
“A fast software implementation for arithmetic operations in GF(2”)”,
Proceedings of Asiacrypt’96, LNCS, vol. 1163, p. 65-76,1996

[73] Hankerson D., Hernandez J.L. and Menesez A., “Software Implementation of
Elliptic Curve Cryptography over Binary Fields”, Proceedings of CHES’
2000, Spring-Verlag, LNCS, vol. 1965, p. 1-24, 2000.

[74] Lopez J. and Dahab R., “High-Speed software multiplication in F(2m)”,
Proceedings of the First International conference on Progress in cryptology,
Springer-Verlag, LNCS, vol. 1977, p. 203-212, 2000.
http://www.dcc.unicamp.br/ic-main/publications-e.html

[75] Ash D., Blake I. and Vanstone S.A., “Low Complexity Normal Basis”,
Discrete Applied Mathematics, Vol. 25, p. 191-210, 1989

[76] Mullin R. C., Onyszchuk I. M., Vanstone S. A. and Wilson R., “Optimal
Normal Basis in GF(pm)”, Discrete Applied Mathematics, Vol. 22, p. 149-161
1988

[77] Massey J.L. and Omura J.K., “ Computational method and apparatus for finite
field arithmetic”, US patent # 4587627, 1986

[78] Mullin R.C., “Multiple Bit Multiplier”, US Patent # 5787028, 1998

[79] Mullin R.C, Onyszchuk I. M. and Vanstone S. A., “Computational Method
and Apparatus for Finite Field Multiplication”, US Patent # 4745568, 1988

[80] http://www.certicom.com

[81J Johnson D. and Menezes A., “The Elliptic Curve Digital Signature Algorithm
(ECDSA)”, Technical Report CORR 99-34, Dept, of C&O, University of
Waterloo, Canada, 2000
http://www.cacr.math.uwaterloo.ca

[82] Hankerson D. and Menezes A., “Elliptic Curve Discrete Logarithm Problem”,
Technical notes, Technische universiteit eindhoven, 2003

212

http://www.crypto.ruhr-uni-bochum.de/Publikationen/texte/paar_ecc99.pdf
http://www.dcc.unicamp.br/ic-main/publications-e.html
http://www.certicom.com
http://www.cacr.math.uwaterloo.ca

http://www.win.tue.nl/~henkvt/ecdlp.pdf

[83] Pohlig S. and Heilman M., “An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance”, IEEE Transactions on
Information Theory, vol. 24, p. 106-110, 1978

[84] Pollard J., “Monte Carlo methods for index computation mod/?”, Mathematics
of Computation, vol. 32, p. 918-924, 1978

[85] Teske E., “Speeding up Pollard’s rho method for computing discrete
logarithms”, Proceedings of the Third International Symposium on
Algorithmic Number Theory, Springer-Verlag, LNCS, vol. 1423, p. 541-554,
1998

[8 6] Van Oorschot P. and Wiener M. J., “Parallel collision search with
cryptanalytic applications”, Journal of Cryptology, vol. 12, p. 1-28,1999

[87] Silverman R. and Stapleton J., Contribution to ANSI X9F1 working group,
1997

[8 8] Menezes A., Okamoto T., and Vanstone S., “Reducing elliptic curve
logarithms to logarithms in a finite field”, IEEE Transactions on Information
Theory, vol. 39, p. 1639-1646, 1993

[89] Frey G. and Riick II., “A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves”, Mathematics of Computation
vol. 62, p. 865-871, 1991

[90] Frey G., “How to disguise an elliptic curve (Weil descent)”, talk at ECC’98,
University of Waterloo, Canada, 1998
http ://www.cacr .math.uwaterloo .ca

[91] Frey G., “Applications of arithmetical geometry to cryptographic
instructions”, Proceedings of the Fifth International Conference on Finite
Fields and Applications, Springer-Verlag, p. 128-161, 2001

[92] Gaudry P., Hess F. and Smart N. P., “Constructive and Destructive Facets of
Weil Descent on Elliptic Curves”, Technical Report CSTR-00-016,
Department of Computer Science, University of Bristol, 2000

[93] Semaev I., “Evaluation of discrete logarithms in a group of p-torsion points of
an elliptic curve in characteristic /?”, Mathematics of computation, vol. 67, p.

. 353-356, 1998

[94] Smart N., “The discrete logarithm problem on elliptic curves of trace one”,
Journal of Cryptology, vol. 12, p. 193-196, 1999

[95] Satoh T. and Araki K., “Fermat quotients and the polynomial time discrete log
algorithm for anomalous elliptic curves”, Commentarii Mathematici

213

http://www.win.tue.nl/~henkvt/ecdlp.pdf
http://www.cacr

Universitatis Sancti Pauli, vol. 47, p. 81-92,1998

[96] Adlman L., DeMarrais J. and Huang M., “A subexponential algorithm for
discrete logarithms over the rational subgroup of the Jacobians of large genus
hyperelliptic curves over finite fields”, Algorithmic Number Theory,
Springer-Verlag, LNCS, vol. 877, p. 28-40,1994

[97] Enge A. “Computing Discrete Logarithms in High-Genus Hyperelliptic
Jacobians in Provably Subexponential Time”, Mathematics of Computation
Col. 71, p. 729-742, 2002

[98] Silverman J. and Suzuki j., “Elliptic curve discrete logarithms and the index
calculus”, Advances in Cryptology - Asiacrypt ’98, Springer-Verlag, LNCS,
vol. 1514, p. 110-125, 1999

[99] Kocher C., “Timing Attacks on Implementations of Diffie-Helman, RSA,
DSS, and Other Systems”, Advances in Cryptology - CRYPTO’96, LNCS,
vol. 1109, p. 104-113, 1996

[100] Kocher P., Jaffe J. and Jun B., “ Differential Power Analysis”, CRYPTO’99,
Springer-Verlag, LNCS, vol. 1666, p. 388-397, 1999

[101] Fischer W., Giraud C., Knudsen E. W. and Seifert J-P, “Parallel scalar
multiplication on general elliptic curves over Fp hedged against non­
differential side-channel attacks”, Cryptology ePrint Archive, Report
2002/007, IACR, 2002.
http://eprint.iacr.org

[102] Coron J-S, “Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems”, In workshop on cryptographic hardware and embedded
systems - CHES’99, Springer-Verlag, LNCS, vol. 1717, p. 292-302, 1999
http://www.gemplus.com/smart/r_d/publications/pdfiCor99dpa.pdf

[103] Kommerling O. and Kuhn M., “Design Principles for Tamper-Resistant
Smartcard Processors”, Processdings of USENIX Workshop on Smartcard
Technology, Chicago, p. 9-20, 1999

[104] Goubin L., “A Refined Power-Analysis Attack on Elliptic Curve
Cryptosystems”, In Workshop on Practice and Theory in Public Key
Cryptosystems (PKC), Spring-Verlag, LNCS, vol. 2567, p. 199-210, 2003

[105] Izu T. and Takahi T., “Exceptional Procedure Attack on Elliptic Curve
Cryptosystems”, In Workshop on Practice and Theory in Public Key
Cryptosystem (PKC), Springer-Verlag, LNCS, vol. 2567, p. 224-239, 2003

[106] Biehl I., Meyer B. and Muller V., “Differential Fault Attacks on Elliptic
Curve Cryptosystems”, Proceedings of Advances in Cryptology (CRYPTO),
Springer-Verlag, LNCS, vol. 1880, p. 131-146, 2000

214

http://eprint.iacr.org
http://www.gemplus.com/smart/r_d/publications/pdfiCor99dpa.pdf

[107] Clavier C. and Joye M., “Universal Exponentiation Algorithm”, Workshop on
Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag
LNCS 2162, p. 300-308, 2001

[108] Brier E. And Joye M., “Weierstrass Elltipic Curves and Side-Channel
Attacks”, Workshop on Practice and Theory in Public Key Cryptosystem
(PKC), Springer-Verlag, LNCS, vol. 2274, p. 335-345, 2002

[109] Joye M. and Quisquater J-J., “Hessian Elliptic Curves and Side-Channel
Attacks”, Proceedings of Cryptographic Hardware and Embedded Systems
(CHES), Springer-Verlag, LNCS, vol. 2162, p. 402-410, 2001

[110] Liardet P-Y and Smart N.P. “Preventing SPA/ DPS in ECC Systems Using the
Jacobi Form”, Proceedings of Cryptographic Hardware and Embedded
Systems (CHES), Springer-Verlag, LNCS, vol. 2162, p. 391-401, 2001

[111] Joye M. and Yen S M. “The Montgomery Powering Ladder”, Proceedings of
Hardware and Embedded Systems - CHES 2002, Springer-Verlag, LNCS,
vol. 2523, p. 291-302, 2003

[112] Ha J.C. and Moon S.J., “Randomised Signed-Scalar Multiplication of ECC to
Resist Power attacks”, workshop on cryptographic hardware and embedded
systems (CHES), Spring-Verlag, LNCS, vol. 2523, p. 551-563, 2002

[113] Oswald E. and Aigner M. “Randomised Addition-Subtraction Chain as a
Countermeasure Against Power Attacks”, workshop on cryptographic
hardware and embedded systems (CHES), Springer-Verlag, LNCS, vol. 2162,
p. 39-50, 2001

[114] Joye M. and Tymen C. ’’Protections Against Differential Analysis for Elliptic
Curve Cryptography - An Algebraic Approach”, workshop on cryptographic
hardware and embedded systems (CHES), Springer-Verlag, LNCS, vol. 2162,
p. 377-290, 2001

[115] Guajardo J., Wollinger T. and Parr C. “Area efficient GF(p) Architectures for
GF(pm) Multipliers”, Proceedings of 45th IEEE International Midwest
Symposium on Circuits and Systems - MWSCAS 2002, Tulsa, Oklahoma,
vol. 2, p. 37-40, 2002

[116] Gutub A. A-A., Tenca A.F. and Koc C.K. “Scalable VLSI Architecture for
GF(p) Montgomery Modular Inverse Computation”, IEEE Computer Society
Annual Symposium on VLSI, Pittsburgh, Pennsylvania, p. 53-58, 2002

[117] Wu H., “Montgomery Multiplier and Squarer for a Class of Finite Fields”,
IEEE Transactions on Computers, vol. 51, p. 521-529, 2002

[118] Montgomery P.L., “Modular Multiplication without Trial Division”, Math.
Computation, vol. 44, p. 519-521, 1985

215

[119] Tenca A.F. and Koc C.K., “A Scalable Architecture for Modular
Multiplication Based on Montgomery’s Algorithm”, IEEE Transactions on
Computers, vol. 52, p. 1215-1221, 2003

[120] Walter C., “Technique for the Hardware Implementation of Modular
Multiplication”, Proceedings of Second IMACS International Conference on
Circuits, Systems & Computers, Athens, vol. 2, p. 945-949, 1998

[121] Sava§ E., Tenca A. F., and K0 9 C. K., “A scalable and unified multiplier
architecture for finite fields GF(p) and GF(2Am”)”, Cryptographic Hardware
and Embedded Systems - CHES 2000, Second International Workshop,
Worcester, MA, USA, Springer-Verlag, LNCS, vol. 1965, p. 277-292, 2000

[122] Sava§ E., Tenca A. F., Ciftcibasi M. E., and K0 9 . C. K., “Novel multiplier
architectures for GF(p) and GF(2A«)”, Proceedings of Computers and Digital
Techniques, vol. 151, p. 147-160, 2004.

[123] GroPschadl J., “A bit-serial unified multiplier architecture for finite fields
GF(p) and GF(2m)”, Proceedings of CHES 2001, Paris, p. 202-218, 2001

[124] Wolkerstorfer J., “Dual-Field Arithmetic Unit for GF(p) and GF(2m)”,
Proceedings CHES 2002, San Francisco, vol. 2523, p. 500-514, 2002

[125] Sava§ E. and K0 9 . C. K., “Architectures for unified field inversion with
applications in elliptic curve cryptography”. Proceedings of the 9th IEEE
International Conference on Electronics, Circuits and Systems - ICECS 2002,
Dubrovnik, Croatia, vol. 3, p. 1155-1158, 2002

[126] Gutub A. A.-A., Tenca A. F., Sava§ E. and K0 9 ., C. K. “Scalable and unified
hardware to compute Montgomery inverse in GF(p) and GF(2A«)”,
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, Springer-Verlag,
LNCS, vol. 2523, p. 484-499, 2002.

[127] Au L.S. and Burgess N., “A (4:2) Adder for Unified GF(p) and GF(2") Galois
Field Multipliers”, Proceedings of 36th Asilomar Conference on Signals,
Systems and Computers, vol. 2, p. 1619-1623, 2002

[128] Azivienis A., “Signed-Digit Number Representations for fast parallel
arithmetic”, IRE Transactions on Electronic Computers, vol. 10, p. 389-400,
1961

[129] Takagi N., Yasura H. and Yajima S., “High-speed VLSI multiplication
algorithm with a redundant binary addition tree”, IEEE Transactions on
Computers, vol. 34, p. 789-796, 1985

[130] Santoro M.R. and Horowitz M.A., “SPIM: a pipelined 64x64-bit iterative
multiplier”, IEEE Journal of Solid-State Circuits, Vol. 24, p. 487-493, 1989

216

[131] Sutherland I., Sproull B. and Harris C. “Logical Effort - Designing Fast
CMOS Circuits”, Morgan Kaufmann Publishers, 1999

[132] Ho R., Hai K. W. and Horowitz M., “The Future of Wires”, Proceedings of
the IEEE, vol. 89, p. 490-504, 2001

[133] Knuth D. E., “The Art of Computer Programming, Vol. 2”, Seminumerical
Algorithms, 2nd edition, Addison-Wesley, Reading, Mass., 1981

[134] Bosselaers A., Govaerts R. and Vandewalle J. “Comparison of three modular
reduction functions”, Crypto ’93, Springer-Verlag, LNCS, vol. 773, p. 175-
176, 1993

[135] Dhem J-F., “Design of an efficient public-key cryptographic library of RISC-
based smart cards”, PhD thesis, Universite catholique de Louvain - UCL
Crypto Group - Laboratoire de microelectronique (DICE), 1998

[136] Brickell E.F., “A Fast Modular Multiplication Algorithm with Application to
Two Key Cryptography”, Proceedings of Crypto’82, Plenum Press, p. 51-60,
1983

[137] Barratt P., “Communications authentication and security using public key
encryption”, Master’s thesis, Oxford University, 1984

[138] Barrett P. “Implementing the Rivest, Shamir and Adleman public key
encryption algorithm on standard digital signal processor” In Advances in
Cryptology - CRYPTO ’8 6 , Santa Barbara, California, LNCS, vol. 263, p.
311-323, 1987

[139] GroBschadl J., “High-Speed RSA Hardware Based on Barett’S Modular
Reduction Method”, CHES 2000, Springer-Verlag Berlin Heidelberg 2000,
LNCS, vol. 1965, p. 191-203,2000

[140] Savas E., “Implementation Aspects of Elliptic Curve Cryptography”, Ph.D.
Thesis, Department of Electrical & Computer Engineering, Oregon State
University, 2000
http://islab.oregonstate.edu/papers/00Savas.pdf

[141] Tenca A. F. and Koc C. K. “A scalable architecture for Montgomery
multiplication”, Cryptographic Hardware and Embedded Systems, First
International Workshop, Worcester, MA, USA, Springer-Verlag, LNCS, vol.
1717, p. 94-108, 1999

[142] Drabek V., “Montgomery Multiplication in GF(p) and GF(2A«)”, Proceedings
of Electronic Devices and Systems, Bmo, CZ, p. 106-109, 2003

[143] Tenca A. F. and Koc. C. K., “A scalable architecture for modular
multiplication based on Montgomery's algorithm”, IEEE Transactions on
Computers, vol. 52, p. 1215-1221, 2003

217

http://islab.oregonstate.edu/papers/00Savas.pdf

[144] Wu H., “Montgomery Multiplier and Squarer in GF(2m)”, Proceedings of
Cryptographic Hardware and Embedded Systems (CHES 2000), vol. 1965, p.
264-276, 2000

[145] Koc C. K. and Acar T. “Montgomery Multiplication in GF(2*)” Design,
Codes and Cryptography, Kluwer Academic Publishers, Boston, vol. 1, p. 57-
69, 1998

[146] Hong J-H, Wu C-W, “Radix-4 modular multiplication and exponentiation
algorithms for the RSA public-key cryptosystem”, Proceedings of the 2000
conference on Asia South Pacific design automation, Yokohama, Japan, p.
565-570, 2000

[147] Komerup P., "High-radix modular multiplication for cryptosystems,"
Proceedings of 11 IEEE Symposium Computer Arithmetic, Windsor,
Ontario, Canada, p. 277-283, 1993.

[148] Tenca A. F., Todorov G. and K0 9 C. K., “High-Radix Design of a Scalable
Modular Multiplier”, Proceedings of the Third International Workshop on
Cryptographic Hardware and Embedded Systems, Spinger-Verlag, vol. 2162,
p. 185-201,2001

[149] Takagi N., “A Radix-4 Modular Multiplication Hardware Algorithm for
Modular Exponentiation”, IEEE Transactions on Computers, Vol. 41, p. 949-
956, 1992

[150] Walter C. D., “Space/Time Trade-Offs for Higher Radix Modular
Multiplication Using Repeated Addition”, IEEE Transactions on Computers,
vol. 46, pl39-141, 1997

[151] GroPschadl J., “A unified radix-4 partial product generator for integers and
binary polynomial”, Proceedings of the 35th IEEE International Symposium
on Circuits and Systems (ISCAS 2002), Vol. 3, p. 567-570, 2002.

[152] Booth A. D. “A Signed Binary Multiplication technique” Quarterly J.
Mechanics and Applied Mathematics, vol. 4, p. 236-240, 1951

[153] Shand M. and Vuillemin J. E., “Fast implementations of RSA cryptography”,
Proceedings of the 11th IEEE Symposium on Computer Arithmetic, Windsor,
Canada, p. 252-259, 1993

[154] Orup H., “Simplifying Quotient Determination in High-Radix Modular
Multiplication”, Proceedings of 12th Symposium Computer Arithmetic, p.
193-199, 1995
file :///vlsi_soft/vlsi03/literature/Orup-HighRadix-ARITH95 .pdf.

218

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Orlando G. and Paar C., “A scalable GF(p) elliptic curve processor
architecture for programmable hardware.” Workshop on Cryptographic
Hardware and Embedded Systems (CHES ’01), vol. 2162, p. 348-363, 2001

Daly A. and Mamane W. P., “Efficient architectures for implementing
Montgomery modular multiplication and RSA modular exponentiation on
reconfigurable logic”, Proceedings of the 2002 ACM/SIGDA 10th
international symposium on Field-progrmmable Gate Arrays, p. 40-49, 2002

Knuth D. E., “The Art of Computer Programming, Vol. 2”, Seminumerical
Algorithms, 2nd edition, Addison-Wesley, Reading, Mass., 1981

Menezes A., van Oorschot P. and Vanstone S. “Handbook of Applied
Cryptography” CRC Press, 1996
www.cacr.math.uwaterloo.ca/ha

Sproull R. F. and Sutherland I. E., “Logical Effort: designing for speed on the
back of an envelope”, IEEE Advanced Research in VLSI, Ed. C. Sequin,
(Boston, MA: MIT Press), 1991

Au L-S. and Burgess N., “Unified Radix-4 Multiplier for GF(p) and
GF(2A«)”, Proceedings of 14th IEEE International Conference on Application-
Specific Systems, Architectures and Processors, The Hague, Netherlands, p.
226-236 2003

Biham E., “A Fast New DES Implementation in Software Source”,
Proceedings of the 4th International Workshop on Fast Software Encryption,
Springer-Verlah, LNCS, Vol. 1267, p. 260-272, 1997

Clavier C., Coron J-S. and Dabbous N., “Differential Power Analysis in the
presence of hardware countermeasures”, Proceedings of Cryptographic
Hardware and Embedded Systems - CHES 2000, LNCS, vol. 1965, p. 252-
263, 2000

Hewlett Packard Company, “A Fast Implementation of DES and Triple-DES
on PA-RISC 2.0, 2000
http://www.usenix.org/events/osdi2000/fulll papers/corella.pdf

Eldridge S. and Walter C., “Hardware Implementation of Montgomery’s
Modular Multiplication Algorithm”, IEEE Transactions on Computers, vol.
42, p. 693-699, 1993

219

http://www.cacr.math.uwaterloo.ca/ha
http://www.usenix.org/events/osdi2000/fulll

