174 research outputs found

    Computably Based Locally Compact Spaces

    Full text link
    ASD (Abstract Stone Duality) is a re-axiomatisation of general topology in which the topology on a space is treated, not as an infinitary lattice, but as an exponential object of the same category as the original space, with an associated lambda-calculus. In this paper, this is shown to be equivalent to a notion of computable basis for locally compact sober spaces or locales, involving a family of open subspaces and accompanying family of compact ones. This generalises Smyth's effectively given domains and Jung's strong proximity lattices. Part of the data for a basis is the inclusion relation of compact subspaces within open ones, which is formulated in locale theory as the way-below relation on a continuous lattice. The finitary properties of this relation are characterised here, including the Wilker condition for the cover of a compact space by two open ones. The real line is used as a running example, being closely related to Scott's domain of intervals. ASD does not use the category of sets, but the full subcategory of overt discrete objects plays this role; it is an arithmetic universe (pretopos with lists). In particular, we use this subcategory to translate computable bases for classical spaces into objects in the ASD calculus.Comment: 70pp, LaTeX2e, uses diagrams.sty; Accepted for "Logical Methods in Computer Science" LMCS-2004-19; see http://www.cs.man.ac.uk/~pt/ASD for related papers. ACM-class: F.4.

    On the topological aspects of the theory of represented spaces

    Get PDF
    Represented spaces form the general setting for the study of computability derived from Turing machines. As such, they are the basic entities for endeavors such as computable analysis or computable measure theory. The theory of represented spaces is well-known to exhibit a strong topological flavour. We present an abstract and very succinct introduction to the field; drawing heavily on prior work by Escard\'o, Schr\"oder, and others. Central aspects of the theory are function spaces and various spaces of subsets derived from other represented spaces, and -- closely linked to these -- properties of represented spaces such as compactness, overtness and separation principles. Both the derived spaces and the properties are introduced by demanding the computability of certain mappings, and it is demonstrated that typically various interesting mappings induce the same property.Comment: Earlier versions were titled "Compactness and separation for represented spaces" and "A new introduction to the theory of represented spaces

    Closed Choice and a Uniform Low Basis Theorem

    Get PDF
    We study closed choice principles for different spaces. Given information about what does not constitute a solution, closed choice determines a solution. We show that with closed choice one can characterize several models of hypercomputation in a uniform framework using Weihrauch reducibility. The classes of functions which are reducible to closed choice of the singleton space, of the natural numbers, of Cantor space and of Baire space correspond to the class of computable functions, of functions computable with finitely many mind changes, of weakly computable functions and of effectively Borel measurable functions, respectively. We also prove that all these classes correspond to classes of non-deterministically computable functions with the respective spaces as advice spaces. Moreover, we prove that closed choice on Euclidean space can be considered as "locally compact choice" and it is obtained as product of closed choice on the natural numbers and on Cantor space. We also prove a Quotient Theorem for compact choice which shows that single-valued functions can be "divided" by compact choice in a certain sense. Another result is the Independent Choice Theorem, which provides a uniform proof that many choice principles are closed under composition. Finally, we also study the related class of low computable functions, which contains the class of weakly computable functions as well as the class of functions computable with finitely many mind changes. As one main result we prove a uniform version of the Low Basis Theorem that states that closed choice on Cantor space (and the Euclidean space) is low computable. We close with some related observations on the Turing jump operation and its initial topology

    Computational Problems in Metric Fixed Point Theory and their Weihrauch Degrees

    Full text link
    We study the computational difficulty of the problem of finding fixed points of nonexpansive mappings in uniformly convex Banach spaces. We show that the fixed point sets of computable nonexpansive self-maps of a nonempty, computably weakly closed, convex and bounded subset of a computable real Hilbert space are precisely the nonempty, co-r.e. weakly closed, convex subsets of the domain. A uniform version of this result allows us to determine the Weihrauch degree of the Browder-Goehde-Kirk theorem in computable real Hilbert space: it is equivalent to a closed choice principle, which receives as input a closed, convex and bounded set via negative information in the weak topology and outputs a point in the set, represented in the strong topology. While in finite dimensional uniformly convex Banach spaces, computable nonexpansive mappings always have computable fixed points, on the unit ball in infinite-dimensional separable Hilbert space the Browder-Goehde-Kirk theorem becomes Weihrauch-equivalent to the limit operator, and on the Hilbert cube it is equivalent to Weak Koenig's Lemma. In particular, computable nonexpansive mappings may not have any computable fixed points in infinite dimension. We also study the computational difficulty of the problem of finding rates of convergence for a large class of fixed point iterations, which generalise both Halpern- and Mann-iterations, and prove that the problem of finding rates of convergence already on the unit interval is equivalent to the limit operator.Comment: 44 page

    Effective Choice and Boundedness Principles in Computable Analysis

    Full text link
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice principles which are cornerstones among Weihrauch degrees and it turns out that certain core theorems in analysis can be classified naturally in this structure. In particular, we study theorems such as the Intermediate Value Theorem, the Baire Category Theorem, the Banach Inverse Mapping Theorem and others. We also explore how existing classifications of the Hahn-Banach Theorem and Weak K"onig's Lemma fit into this picture. We compare the results of our classification with existing classifications in constructive and reverse mathematics and we claim that in a certain sense our classification is finer and sheds some new light on the computational content of the respective theorems. We develop a number of separation techniques based on a new parallelization principle, on certain invariance properties of Weihrauch reducibility, on the Low Basis Theorem of Jockusch and Soare and based on the Baire Category Theorem. Finally, we present a number of metatheorems that allow to derive upper bounds for the classification of the Weihrauch degree of many theorems and we discuss the Brouwer Fixed Point Theorem as an example
    corecore