2,008 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    The prospects for mathematical logic in the twenty-first century

    Get PDF
    The four authors present their speculations about the future developments of mathematical logic in the twenty-first century. The areas of recursion theory, proof theory and logic for computer science, model theory, and set theory are discussed independently.Comment: Association for Symbolic Logi

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    O-Minimal Hybrid Reachability Games

    Full text link
    In this paper, we consider reachability games over general hybrid systems, and distinguish between two possible observation frameworks for those games: either the precise dynamics of the system is seen by the players (this is the perfect observation framework), or only the starting point and the delays are known by the players (this is the partial observation framework). In the first more classical framework, we show that time-abstract bisimulation is not adequate for solving this problem, although it is sufficient in the case of timed automata . That is why we consider an other equivalence, namely the suffix equivalence based on the encoding of trajectories through words. We show that this suffix equivalence is in general a correct abstraction for games. We apply this result to o-minimal hybrid systems, and get decidability and computability results in this framework. For the second framework which assumes a partial observation of the dynamics of the system, we propose another abstraction, called the superword encoding, which is suitable to solve the games under that assumption. In that framework, we also provide decidability and computability results

    Delta-Complete Decision Procedures for Satisfiability over the Reals

    Full text link
    We introduce the notion of "\delta-complete decision procedures" for solving SMT problems over the real numbers, with the aim of handling a wide range of nonlinear functions including transcendental functions and solutions of Lipschitz-continuous ODEs. Given an SMT problem \varphi and a positive rational number \delta, a \delta-complete decision procedure determines either that \varphi is unsatisfiable, or that the "\delta-weakening" of \varphi is satisfiable. Here, the \delta-weakening of \varphi is a variant of \varphi that allows \delta-bounded numerical perturbations on \varphi. We prove the existence of \delta-complete decision procedures for bounded SMT over reals with functions mentioned above. For functions in Type 2 complexity class C, under mild assumptions, the bounded \delta-SMT problem is in NP^C. \delta-Complete decision procedures can exploit scalable numerical methods for handling nonlinearity, and we propose to use this notion as an ideal requirement for numerically-driven decision procedures. As a concrete example, we formally analyze the DPLL framework, which integrates Interval Constraint Propagation (ICP) in DPLL(T), and establish necessary and sufficient conditions for its \delta-completeness. We discuss practical applications of \delta-complete decision procedures for correctness-critical applications including formal verification and theorem proving.Comment: A shorter version appears in IJCAR 201

    Computability and dynamical systems

    Get PDF
    In this paper we explore results that establish a link between dynamical systems and computability theory (not numerical analysis). In the last few decades, computers have increasingly been used as simulation tools for gaining insight into dynamical behavior. However, due to the presence of errors inherent in such numerical simulations, with few exceptions, computers have not been used for the nobler task of proving mathematical results. Nevertheless, there have been some recent developments in the latter direction. Here we introduce some of the ideas and techniques used so far, and suggest some lines of research for further work on this fascinating topic
    corecore