762 research outputs found

    Narrow Band Interference Elimination based on Compressed Sensing in UWB Energy Detector

    Get PDF
    Wireless communication applications with large signal bandwidth are developed tremendously in recent times. Due to large bandwidth the wide band communication causes huge power consumption and signal deterioration after addition of narrow band interference (NBI). The ultra wide band (UWB) energy detector, which is highly robust against NBI signal is presented. Compressed sensing is implemented to reduce the power consumption at the analog to digital converter with approximated message passing reconstruction. In addition to this, digital notch is employed to eliminate the NBI affected measurements from compressed version of the received signal before applying it to the energy detector. To analyze the efficiency of the detector, the energy detection and bit error probability of the detector in the absence of NBI and after mitigating NBI is compared. The simulation results are the evidence of effectiveness of the presented energy detector.

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Compressive Sensing for Spread Spectrum Receivers

    Get PDF
    With the advent of ubiquitous computing there are two design parameters of wireless communication devices that become very important power: efficiency and production cost. Compressive sensing enables the receiver in such devices to sample below the Shannon-Nyquist sampling rate, which may lead to a decrease in the two design parameters. This paper investigates the use of Compressive Sensing (CS) in a general Code Division Multiple Access (CDMA) receiver. We show that when using spread spectrum codes in the signal domain, the CS measurement matrix may be simplified. This measurement scheme, named Compressive Spread Spectrum (CSS), allows for a simple, effective receiver design. Furthermore, we numerically evaluate the proposed receiver in terms of bit error rate under different signal to noise ratio conditions and compare it with other receiver structures. These numerical experiments show that though the bit error rate performance is degraded by the subsampling in the CS-enabled receivers, this may be remedied by including quantization in the receiver model. We also study the computational complexity of the proposed receiver design under different sparsity and measurement ratios. Our work shows that it is possible to subsample a CDMA signal using CSS and that in one example the CSS receiver outperforms the classical receiver.Comment: 11 pages, 11 figures, 1 table, accepted for publication in IEEE Transactions on Wireless Communication

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin

    Distributed UAV Swarm Augmented Wideband Spectrum Sensing Using Nyquist Folding Receiver

    Full text link
    Distributed unmanned aerial vehicle (UAV) swarms are formed by multiple UAVs with increased portability, higher levels of sensing capabilities, and more powerful autonomy. These features make them attractive for many recent applica-tions, potentially increasing the shortage of spectrum resources. In this paper, wideband spectrum sensing augmented technology is discussed for distributed UAV swarms to improve the utilization of spectrum. However, the sub-Nyquist sampling applied in existing schemes has high hardware complexity, power consumption, and low recovery efficiency for non-strictly sparse conditions. Thus, the Nyquist folding receiver (NYFR) is considered for the distributed UAV swarms, which can theoretically achieve full-band spectrum detection and reception using a single analog-to-digital converter (ADC) at low speed for all circuit components. There is a focus on the sensing model of two multichannel scenarios for the distributed UAV swarms, one with a complete functional receiver for the UAV swarm with RIS, and another with a decentralized UAV swarm equipped with a complete functional receiver for each UAV element. The key issue is to consider whether the application of RIS technology will bring advantages to spectrum sensing and the data fusion problem of decentralized UAV swarms based on the NYFR architecture. Therefore, the property for multiple pulse reconstruction is analyzed through the Gershgorin circle theorem, especially for very short pulses. Further, the block sparse recovery property is analyzed for wide bandwidth signals. The proposed technology can improve the processing capability for multiple signals and wide bandwidth signals while reducing interference from folded noise and subsampled harmonics. Experiment results show augmented spectrum sensing efficiency under non-strictly sparse conditions

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown
    corecore