13 research outputs found

    Compressive Matched-Field Processing

    Full text link
    Source localization by matched-field processing (MFP) generally involves solving a number of computationally intensive partial differential equations. This paper introduces a technique that mitigates this computational workload by "compressing" these computations. Drawing on key concepts from the recently developed field of compressed sensing, it shows how a low-dimensional proxy for the Green's function can be constructed by backpropagating a small set of random receiver vectors. Then, the source can be located by performing a number of "short" correlations between this proxy and the projection of the recorded acoustic data in the compressed space. Numerical experiments in a Pekeris ocean waveguide are presented which demonstrate that this compressed version of MFP is as effective as traditional MFP even when the compression is significant. The results are particularly promising in the broadband regime where using as few as two random backpropagations per frequency performs almost as well as the traditional broadband MFP, but with the added benefit of generic applicability. That is, the computationally intensive backpropagations may be computed offline independently from the received signals, and may be reused to locate any source within the search grid area

    Dimensionality reduction with subgaussian matrices: a unified theory

    Full text link
    We present a theory for Euclidean dimensionality reduction with subgaussian matrices which unifies several restricted isometry property and Johnson-Lindenstrauss type results obtained earlier for specific data sets. In particular, we recover and, in several cases, improve results for sets of sparse and structured sparse vectors, low-rank matrices and tensors, and smooth manifolds. In addition, we establish a new Johnson-Lindenstrauss embedding for data sets taking the form of an infinite union of subspaces of a Hilbert space

    Multiple and single snapshot compressive beamforming

    Full text link
    For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction-of-arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged superposition of source amplitudes at all hypothetical DOAs. Regularizing with an â„“1\ell_1-norm constraint renders the problem solvable with convex optimization, and promoting sparsity gives high-resolution DOA maps. Here, the sparse source distribution is derived using maximum a posteriori (MAP) estimates for both single and multiple snapshots. CS does not require inversion of the data covariance matrix and thus works well even for a single snapshot where it gives higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods, even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths.Comment: In press Journal of Acoustical Society of Americ

    Grid-free compressive beamforming

    Get PDF
    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data.Comment: 14 pages, 8 figures, journal pape

    Robust Conditional Probability Constraint Matched Field Processing

    Get PDF
    192-200In order to improve the robustness of Adaptive Matched Field Processing (AMFP), a Conditional Probability Constraint Matched Field Processing (MFP-CPC) is proposed. The algorithm derives the posterior probability density of the source locations from Bayesian Criterion, then the main lobe of AMFP is protected and the side lobe is restricted by the posterior probability density, so MFP-CPC not only has the merit of high resolution as AMFP, but also improves the robustness. To evaluate the algorithm, the simulated and experimental data in an uncertain shallow ocean environment is used. The results show that in the uncertain ocean environment MFP-CPC is robust not only to the moored source, but also to the moving source. Meanwhile, the localization and tracking is consistent with the trajectory of the moving source

    High-resolution imaging methods in array signal processing

    Get PDF
    corecore