3,838 research outputs found

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    Wireless Sensing of Lower Lip and Thumb-Index Finger ‘Ramp-and-Hold’ Isometric Force Dynamics in a Small Cohort of Unilateral MCA Stroke: Discussion of Preliminary Findings

    Get PDF
    Automated wireless sensing of force dynamics during a visuomotor control task was used to rapidly assess residual motor function during finger pinch (right and left hand) and lower lip compression in a cohort of seven adult males with chronic, unilateral middle cerebral artery (MCA) stroke with infarct confirmed by anatomic magnetic resonance imaging (MRI). A matched cohort of 25 neurotypical adult males served as controls. Dependent variables were extracted from digitized records of ‘ramp-and-hold’ isometric contractions to target levels (0.25, 0.5, 1, and 2 Newtons) presented in a randomized block design; and included force reaction time, peak force, and dF/dtmax associated with force recruitment, and end-point accuracy and variability metrics during the contraction hold-phase (mean, SD, criterion percentage ‘on-target’). Maximum voluntary contraction force (MVCF) was also assessed to establish the force operating range. Results based on linear mixed modeling (LMM, adjusted for age and handedness) revealed significant patterns of dissolution in fine force regulation among MCA stroke participants, especially for the contralesional thumb-index finger followed by the ipsilesional digits, and the lower lip. For example, the contralesional thumb-index finger manifest increased reaction time, and greater overshoot in peak force during recruitment compared to controls. Impaired force regulation among MCA stroke participants during the contraction hold-phase was associated with significant increases in force SD, and dramatic reduction in the ability to regulate force output within prescribed target force window (±5% of target). Impaired force regulation during contraction hold-phase was greatest in the contralesional hand muscle group, followed by significant dissolution in ipsilateral digits, with smaller effects found for lower lip. These changes in fine force dynamics were accompanied by large reductions in the MVCF with the LMM marginal means for contralesional and ipsilesional pinch forces at just 34.77% (15.93 N vs. 45.82 N) and 66.45% (27.23 N vs. 40.98 N) of control performance, respectively. Biomechanical measures of fine force and MVCF performance in adult stroke survivors provide valuable information on the profile of residual motor function which can help inform clinical treatment strategies and quantitatively monitor the efficacy of rehabilitation or neuroprotection strategies

    Uniqueness of human running coordination: The integration of modern and ancient evolutionary innovations

    Get PDF
    Running is a pervasive activity across human cultures and a cornerstone of contemporary health, fitness and sporting activities. Yet for the overwhelming predominance of human existence running was an essential prerequisite for survival. A means to hunt, and a means to escape when hunted. In a very real sense humans have evolved to run. Yet curiously, perhaps due to running’s cultural ubiquity and the natural ease with which we learn to run, we rarely consider the uniqueness of human bipedal running within the animal kingdom. Our unique upright, single stance, bouncing running gait imposes a unique set of coordinative difficulties. Challenges demanding we precariously balance our fragile brains in the very position where they are most vulnerable to falling injury while simultaneously retaining stability, steering direction of travel, and powering the upcoming stride: all within the abbreviated time-frames afforded by short, violent ground contacts separated by long flight times. These running coordination challenges are solved through the tightly-integrated blending of primitive evolutionary legacies, conserved from reptilian and vertebrate lineages, and comparatively modern, more exclusively human, innovations. The integrated unification of these top-down and bottom-up control processes bestows humans with an agile control system, enabling us to readily modulate speeds, change direction, negotiate varied terrains and to instantaneously adapt to changing surface conditions. The seamless integration of these evolutionary processes is facilitated by pervasive, neural and biological, activity-dependent adaptive plasticity. Over time, and with progressive exposure, this adaptive plasticity shapes neural and biological structures to best cope with regularly imposed movement challenges. This pervasive plasticity enables the gradual construction of a robust system of distributed coordinated control, comprised of processes that are so deeply collectively entwined that describing their functionality in isolation obscures their true irrevocably entangled nature. Although other species rely on a similar set of coordinated processes to run, the bouncing bipedal nature of human running presents a specific set of coordination challenges, solved using a customized blend of evolved solutions. A deeper appreciation of the foundations of the running coordination phenomenon promotes conceptual clarity, potentially informing future advances in running training and running-injury rehabilitation interventions

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg
    • …
    corecore