2,664 research outputs found

    SimpleTrack:Adaptive Trajectory Compression with Deterministic Projection Matrix for Mobile Sensor Networks

    Full text link
    Some mobile sensor network applications require the sensor nodes to transfer their trajectories to a data sink. This paper proposes an adaptive trajectory (lossy) compression algorithm based on compressive sensing. The algorithm has two innovative elements. First, we propose a method to compute a deterministic projection matrix from a learnt dictionary. Second, we propose a method for the mobile nodes to adaptively predict the number of projections needed based on the speed of the mobile nodes. Extensive evaluation of the proposed algorithm using 6 datasets shows that our proposed algorithm can achieve sub-metre accuracy. In addition, our method of computing projection matrices outperforms two existing methods. Finally, comparison of our algorithm against a state-of-the-art trajectory compression algorithm show that our algorithm can reduce the error by 10-60 cm for the same compression ratio

    Data and resource management in wireless networks via data compression, GPS-free dissemination, and learning

    Get PDF
    “This research proposes several innovative approaches to collect data efficiently from large scale WSNs. First, a Z-compression algorithm has been proposed which exploits the temporal locality of the multi-dimensional sensing data and adapts the Z-order encoding algorithm to map multi-dimensional data to a one-dimensional data stream. The extended version of Z-compression adapts itself to working in low power WSNs running under low power listening (LPL) mode, and comprehensively analyzes its performance compressing both real-world and synthetic datasets. Second, it proposed an efficient geospatial based data collection scheme for IoTs that reduces redundant rebroadcast of up to 95% by only collecting the data of interest. As most of the low-cost wireless sensors won’t be equipped with a GPS module, the virtual coordinates are used to estimate the locations. The proposed work utilizes the anchor-based virtual coordinate system and DV-Hop (Distance vector of hops to anchors) to estimate the relative location of nodes to anchors. Also, it uses circle and hyperbola constraints to encode the position of interest (POI) and any user-defined trajectory into a data request message which allows only the sensors in the POI and routing trajectory to collect and route. It also provides location anonymity by avoiding using and transmitting GPS location information. This has been extended also for heterogeneous WSNs and refined the encoding algorithm by replacing the circle constraints with the ellipse constraints. Last, it proposes a framework that predicts the trajectory of the moving object using a Sequence-to-Sequence learning (Seq2Seq) model and only wakes-up the sensors that fall within the predicted trajectory of the moving object with a specially designed control packet. It reduces the computation time of encoding geospatial trajectory by more than 90% and preserves the location anonymity for the local edge servers”--Abstract, page iv

    Compression of Uncertain Trajectories in Road Networks

    Get PDF

    Collectively Simplifying Trajectories in a Database: A Query Accuracy Driven Approach

    Full text link
    Increasing and massive volumes of trajectory data are being accumulated that may serve a variety of applications, such as mining popular routes or identifying ridesharing candidates. As storing and querying massive trajectory data is costly, trajectory simplification techniques have been introduced that intuitively aim to reduce the sizes of trajectories, thus reducing storage and speeding up querying, while preserving as much information as possible. Existing techniques rely mainly on hand-crafted error measures when deciding which point to drop when simplifying a trajectory. While the hope may be that such simplification affects the subsequent usability of the data only minimally, the usability of the simplified data remains largely unexplored. Instead of using error measures that indirectly may to some extent yield simplified trajectories with high usability, we adopt a direct approach to simplification and present the first study of query accuracy driven trajectory simplification, where the direct objective is to achieve a simplified trajectory database that preserves the query accuracy of the original database as much as possible. Specifically, we propose a multi-agent reinforcement learning based solution with two agents working cooperatively to collectively simplify trajectories in a database while optimizing query usability. Extensive experiments on four real-world trajectory datasets show that the solution is capable of consistently outperforming baseline solutions over various query types and dynamics.Comment: This paper has been accepted by ICDE 202
    • …
    corecore