5 research outputs found

    Compression of Deep Neural Networks on the Fly

    Full text link
    Thanks to their state-of-the-art performance, deep neural networks are increasingly used for object recognition. To achieve these results, they use millions of parameters to be trained. However, when targeting embedded applications the size of these models becomes problematic. As a consequence, their usage on smartphones or other resource limited devices is prohibited. In this paper we introduce a novel compression method for deep neural networks that is performed during the learning phase. It consists in adding an extra regularization term to the cost function of fully-connected layers. We combine this method with Product Quantization (PQ) of the trained weights for higher savings in storage consumption. We evaluate our method on two data sets (MNIST and CIFAR10), on which we achieve significantly larger compression rates than state-of-the-art methods

    Efficient Deep Learning in Network Compression and Acceleration

    Get PDF
    While deep learning delivers state-of-the-art accuracy on many artificial intelligence tasks, it comes at the cost of high computational complexity due to large parameters. It is important to design or develop efficient methods to support deep learning toward enabling its scalable deployment, particularly for embedded devices such as mobile, Internet of things (IOT), and drones. In this chapter, I will present a comprehensive survey of several advanced approaches for efficient deep learning in network compression and acceleration. I will describe the central ideas behind each approach and explore the similarities and differences between different methods. Finally, I will present some future directions in this field

    Deep Learning for Mobile Multimedia: A Survey

    Get PDF
    Deep Learning (DL) has become a crucial technology for multimedia computing. It offers a powerful instrument to automatically produce high-level abstractions of complex multimedia data, which can be exploited in a number of applications, including object detection and recognition, speech-to- text, media retrieval, multimodal data analysis, and so on. The availability of affordable large-scale parallel processing architectures, and the sharing of effective open-source codes implementing the basic learning algorithms, caused a rapid diffusion of DL methodologies, bringing a number of new technologies and applications that outperform, in most cases, traditional machine learning technologies. In recent years, the possibility of implementing DL technologies on mobile devices has attracted significant attention. Thanks to this technology, portable devices may become smart objects capable of learning and acting. The path toward these exciting future scenarios, however, entangles a number of important research challenges. DL architectures and algorithms are hardly adapted to the storage and computation resources of a mobile device. Therefore, there is a need for new generations of mobile processors and chipsets, small footprint learning and inference algorithms, new models of collaborative and distributed processing, and a number of other fundamental building blocks. This survey reports the state of the art in this exciting research area, looking back to the evolution of neural networks, and arriving to the most recent results in terms of methodologies, technologies, and applications for mobile environments
    corecore