283 research outputs found

    A JPEG backward-compatible HDR image compression

    Get PDF
    High Dynamic Range (HDR) imaging is expected to become one of the technologies that could shape next generation of consumer digital photography. Manufacturers are rolling out cameras and displays capable of capturing and rendering HDR images. The popularity and full public adoption of HDR content is however hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of Low Dynamic Range (LDR) displays that are unable to render HDR. To facilitate wide spread of HDR usage, the backward compatibility of HDR technology with commonly used legacy image storage, rendering, and compression is necessary. Although many tone-mapping algorithms were developed for generating viewable LDR images from HDR content, there is no consensus on which algorithm to use and under which conditions. This paper, via a series of subjective evaluations, demonstrates the dependency of perceived quality of the tone-mapped LDR images on environmental parameters and image content. Based on the results of subjective tests, it proposes to extend JPEG file format, as the most popular image format, in a backward compatible manner to also deal with HDR pictures. To this end, the paper provides an architecture to achieve such backward compatibility with JPEG and demonstrates efficiency of a simple implementation of this framework when compared to the state of the art HDR image compression

    Algorithms for compression of high dynamic range images and video

    Get PDF
    The recent advances in sensor and display technologies have brought upon the High Dynamic Range (HDR) imaging capability. The modern multiple exposure HDR sensors can achieve the dynamic range of 100-120 dB and LED and OLED display devices have contrast ratios of 10^5:1 to 10^6:1. Despite the above advances in technology the image/video compression algorithms and associated hardware are yet based on Standard Dynamic Range (SDR) technology, i.e. they operate within an effective dynamic range of up to 70 dB for 8 bit gamma corrected images. Further the existing infrastructure for content distribution is also designed for SDR, which creates interoperability problems with true HDR capture and display equipment. The current solutions for the above problem include tone mapping the HDR content to fit SDR. However this approach leads to image quality associated problems, when strong dynamic range compression is applied. Even though some HDR-only solutions have been proposed in literature, they are not interoperable with current SDR infrastructure and are thus typically used in closed systems. Given the above observations a research gap was identified in the need for efficient algorithms for the compression of still images and video, which are capable of storing full dynamic range and colour gamut of HDR images and at the same time backward compatible with existing SDR infrastructure. To improve the usability of SDR content it is vital that any such algorithms should accommodate different tone mapping operators, including those that are spatially non-uniform. In the course of the research presented in this thesis a novel two layer CODEC architecture is introduced for both HDR image and video coding. Further a universal and computationally efficient approximation of the tone mapping operator is developed and presented. It is shown that the use of perceptually uniform colourspaces for internal representation of pixel data enables improved compression efficiency of the algorithms. Further proposed novel approaches to the compression of metadata for the tone mapping operator is shown to improve compression performance for low bitrate video content. Multiple compression algorithms are designed, implemented and compared and quality-complexity trade-offs are identified. Finally practical aspects of implementing the developed algorithms are explored by automating the design space exploration flow and integrating the high level systems design framework with domain specific tools for synthesis and simulation of multiprocessor systems. The directions for further work are also presented

    High dynamic range video compression exploiting luminance masking

    Get PDF

    High Dynamic Range Images Coding: Embedded and Multiple Description

    Get PDF
    The aim of this work is to highlight and discuss a new paradigm for representing high-dynamic range (HDR) images that can be used for both its coding and describing its multimedia content. In particular, the new approach defines a new representation domain that, conversely from the classical compressed one, enables to identify and exploit content metadata. Information related to content are used here to control both the encoding and the decoding process and are directly embedded in the compressed data stream. Firstly, thanks to the proposed solution, the content description can be quickly accessed without the need of fully decoding the compressed stream. This fact ensures a significant improvement in the performance of search and retrieval systems, such as for semantic browsing of image databases. Then, other potential benefits can be envisaged especially in the field of management and distribution of multimedia content, because the direct embedding of content metadata preserves the consistency between content stream and content description without the need of other external frameworks, such as MPEG-21. The paradigm proposed here may also be shifted to Multiple description coding, where different representations of the HDR image can be generated accordingly to its content. The advantages provided by the new proposed method are visible at different levels, i.e. when evaluating the redundancy reduction. Moreover, the descriptors extracted from the compressed data stream could be actively used in complex applications, such as fast retrieval of similar images from huge databases
    • …
    corecore