9 research outputs found

    Highly Relevant Routing Recommendation Systems for Handling Few Data Using MDL Principle and Embedded Relevance Boosting Factors

    Get PDF
    A route recommendation system can provide better recommendation if it also takes collected user reviews into account, e.g. places that generally get positive reviews may be preferred. However, to classify sentiment, many classification algorithms existing today suffer in handling small data items such as short written reviews. In this paper we propose a model for a strongly relevant route recommendation system that is based on an MDL-based (Minimum Description Length) sentiment classification and show that such a system is capable of handling small data items (short user reviews). Another highlight of the model is the inclusion of a set of boosting factors in the relevance calculation to improve the relevance in any recommendation system that implements the model.Comment: ACM SIGIR 2018 Workshop on Learning from Limited or Noisy Data for Information Retrieval (LND4IR'18), July 12, 2018, Ann Arbor, Michigan, USA, 8 pages, 9 figure

    Improving Performance of Relation Extraction Algorithm via Leveled Adversarial PCNN and Database Expansion

    Full text link
    This study introduces database expansion using the Minimum Description Length (MDL) algorithm to expand the database for better relation extraction. Different from other previous relation extraction researches, our method improves system performance by expanding data. The goal of database expansion, together with a robust deep learning classifier, is to diminish wrong labels due to the incomplete or not found nature of relation instances in the relation database (e.g., Freebase). The study uses a deep learning method (Piecewise Convolutional Neural Network or PCNN) as the base classifier of our proposed approach: the leveled adversarial attention neural networks (LATTADV-ATT). In the database expansion process, the semantic entity identification is used to enlarge new instances using the most similar itemsets of the most common patterns of the data to get its pairs of entities. About the deep learning method, the use of attention of selective sentences in PCNN can reduce noisy sentences. Also, the use of adversarial perturbation training is useful to improve the robustness of system performance. The performance even further is improved using a combination of leveled strategy and database expansion. There are two issues: 1) database expansion method: rule generation by allowing step sizes on selected strong semantic of most similar itemsets with aims to find entity pair for generating instances, 2) a better classifier model for relation extraction. Experimental result has shown that the use of the database expansion is beneficial. The MDL database expansion helps improvements in all methods compared to the unexpanded method. The LATTADV-ATT performs as a good classifier with high precision P@100=0.842 (at no expansion). It is even better while implemented on the expansion data with P@100=0.891 (at expansion factor k=7).Comment: 6 page

    The Minimum Description Length Principle for Pattern Mining: A Survey

    Full text link
    This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems

    Compression Picks Item Sets That Matter

    No full text

    Information-theoretic graph mining

    Get PDF
    Real world data from various application domains can be modeled as a graph, e.g. social networks and biomedical networks like protein interaction networks or co-activation networks of brain regions. A graph is a powerful concept to model arbitrary (structural) relationships among objects. In recent years, the prevalence of social networks has made graph mining an important center of attention in the data mining field. There are many important tasks in graph mining, such as graph clustering, outlier detection, and link prediction. Many algorithms have been proposed in the literature to solve these tasks. However, normally these issues are solved separately, although they are closely related. Detecting and exploiting the relationship among them is a new challenge in graph mining. Moreover, with data explosion, more information has already been integrated into graph structure. For example, bipartite graphs contain two types of node and graphs with node attributes offer additional non-structural information. Therefore, more challenges arise from the increasing graph complexity. This thesis aims to solve these challenges in order to gain new knowledge from graph data. An important paradigm of data mining used in this thesis is the principle of Minimum Description Length (MDL). It follows the assumption: the more knowledge we have learned from the data, the better we are able to compress the data. The MDL principle balances the complexity of the selected model and the goodness of fit between model and data. Thus, it naturally avoids over-fitting. This thesis proposes several algorithms based on the MDL principle to acquire knowledge from various types of graphs: Info-spot (Automatically Spotting Information-rich Nodes in Graphs) proposes a parameter-free and efficient algorithm for the fully automatic detection of interesting nodes which is a novel outlier notion in graph. Then in contrast to traditional graph mining approaches that focus on discovering dense subgraphs, a novel graph mining technique CXprime (Compression-based eXploiting Primitives) is proposed. It models the transitivity and the hubness of a graph using structure primitives (all possible three-node substructures). Under the coding scheme of CXprime, clusters with structural information can be discovered, dominating substructures of a graph can be distinguished, and a new link prediction score based on substructures is proposed. The next algorithm SCMiner (Summarization-Compression Miner) integrates tasks such as graph summarization, graph clustering, link prediction, and the discovery of the hidden structure of a bipartite graph on the basis of data compression. Finally, a method for non-redundant graph clustering called IROC (Information-theoretic non-Redundant Overlapping Clustering) is proposed to smartly combine structural information with non-structural information based on MDL. IROC is able to detect overlapping communities within subspaces of the attributes. To sum up, algorithms to unify different learning tasks for various types of graphs are proposed. Additionally, these algorithms are based on the MDL principle, which facilitates the unification of different graph learning tasks, the integration of different graph types, and the automatic selection of input parameters that are otherwise difficult to estimate

    Mining complex data in highly streaming environments

    Get PDF
    Data is growing at a rapid rate because of advanced hardware and software technologies and platforms such as e-health systems, sensor networks, and social media. One of the challenging problems is storing, processing and transferring this big data in an efficient and effective way. One solution to tackle these challenges is to construct synopsis by means of data summarization techniques. Motivated by the fact that without summarization, processing, analyzing and communicating this vast amount of data is inefficient, this thesis introduces new summarization frameworks with the main goals of reducing communication costs and accelerating data mining processes in different application scenarios. Specifically, we study the following big data summarizaion techniques:(i) dimensionality reduction;(ii)clustering,and(iii)histogram, considering their importance and wide use in various areas and domains. In our work, we propose three different frameworks using these summarization techniques to cover three different aspects of big data:"Volume","Velocity"and"Variety" in centralized and decentralized platforms. We use dimensionality reduction techniques for summarizing large 2D-arrays, clustering and histograms for processing multiple data streams. With respect to the importance and rapid growth of emerging e-health applications such as tele-radiology and tele-medicine that require fast, low cost, and often lossless access to massive amounts of medical images and data over band limited channels,our first framework attempts to summarize streams of large volume medical images (e.g. X-rays) for the purpose of compression. Significant amounts of correlation and redundancy exist across different medical images. These can be extracted and used as a data summary to achieve better compression, and consequently less storage and less communication overheads on the network. We propose a novel memory-assisted compression framework as a learning-based universal coding, which can be used to complement any existing algorithm to further eliminate redundancies/similarities across images. This approach is motivated by the fact that, often in medical applications, massive amounts of correlated images from the same family are available as training data for learning the dependencies and deriving appropriate reference or synopses models. The models can then be used for compression of any new image from the same family. In particular, dimensionality reduction techniques such as Principal Component Analysis (PCA) and Non-negative Matrix Factorization (NMF) are applied on a set of images from training data to form the required reference models. The proposed memory-assisted compression allows each image to be processed independently of other images, and hence allows individual image access and transmission. In the second part of our work,we investigate the problem of summarizing distributed multidimensional data streams using clustering. We devise a distributed clustering framework, DistClusTree, that extends the centralized ClusTree approach. The main difficulty in distributed clustering is balancing communication costs and clustering quality. We tackle this in DistClusTree through combining spatial index summaries and online tracking for efficient local and global incremental clustering. We demonstrate through extensive experiments the efficacy of the framework in terms of communication costs and approximate clustering quality. In the last part, we use a multidimensional index structure to merge distributed summaries in the form of a centralized histogram as another widely used summarization technique with the application in approximate range query answering. In this thesis, we propose the index-based Distributed Mergeable Summaries (iDMS) framework based on kd-trees that addresses these challenges with data generative models of Gaussian mixture models (GMMs) and a Generative Adversarial Network (GAN). iDMS maintains a global approximate kd-tree at a central site via GMMs or GANs upon new arrivals of streaming data at local sites. Experimental results validate the effectiveness and efficiency of iDMS against baseline distributed settings in terms of approximation error and communication costs
    corecore