
Information-theoretic Graph Mining

Jing Feng

München 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/79055306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Information-theoretic Graph Mining

Jing Feng

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Jing Feng

aus Xi’an, China

München, den 03 Dec 2014

Erstgutachter: Prof. Dr. Christian Böhm

Zweitgutachter: Prof. Anthony K. H. Tung, PhD

Tag der mündlichen Prüfung: 11 June 2015

Contents

Abstract xvii

1 Introduction 1

1.1 Knowledge Discovery in Graph Data . 2

1.1.1 Graph data . 2

1.1.2 Graph Mining Tasks . 3

1.2 Mining Knowledge from Multiple Types of Graphs 4

1.2.1 Simple Graph . 6

1.2.2 Weighted Graph . 6

1.2.3 Multi-relational Graph . 7

1.2.4 Attributed Graph . 7

1.2.5 Bipartite Graph . 8

1.3 Information Theory for Graph Mining . 9

1.4 Thesis Contributions . 10

1.5 Thesis Organization . 11

2 Theoretical Background 13

2.1 Basic Knowledge of Graph Theory . 13

2.1.1 Graph Representation . 13

2.1.2 Graph Topological Properties . 15

2.1.3 Graph Clustering . 16

2.1.4 Graph Structure Mining . 23

vi CONTENTS

2.1.5 Link Prediction . 25

2.1.6 Graph Compression . 27

2.2 Basic Knowledge of Information Theory . 27

2.2.1 Information Theoretic Concepts . 27

2.2.2 Minimum Description Length Principle 29

2.3 Evaluations in Graph Mining . 31

3 Automatically Spotting Information-rich Nodes in Graphs 35

3.1 Introduction . 36

3.1.1 Motivation . 36

3.1.2 Contributions . 37

3.2 The Information Content of A Node . 39

3.2.1 Naive Coding Scheme . 39

3.2.2 Information Content of A Node . 40

3.3 Similarity Measure . 40

3.4 Embedding . 42

3.5 Algorithm Info-spot . 43

3.5.1 MDL-based Coding Scheme . 43

3.5.2 The Greedy Merging Algorithm Info-spot 45

3.5.3 Runtime Complexity . 47

3.6 Experiments . 47

3.6.1 Coauthor Network of 5 Famous Scientists 47

3.6.2 Data Mining Scientists Collaboration 51

3.6.3 Email Communication Network of 3 ex-CEO from Enron 51

3.7 Related Work and Discussion . 53

3.8 Chapter Conclusion . 54

4 Compression-based Graph Mining Exploiting Structure Primitives 57

4.1 Introduction . 58

CONTENTS vii

4.1.1 Motivation . 58

4.1.2 Contributions . 60

4.2 Graph Compression using Structure Primitives 61

4.2.1 Basic Coding Paradigm . 62

4.2.2 Extended Coding Paradigm . 66

4.3 Algorithm CXprime . 68

4.3.1 Graph Partitioning . 69

4.3.2 Link Prediction . 70

4.4 Experimental Evaluation . 72

4.4.1 Discovering the Graph Structure . 72

4.4.2 Graph Partitioning . 74

4.4.3 Link Prediction . 81

4.5 Related Work and Discussion . 83

4.5.1 Graph Structure and Pattern Mining . 83

4.5.2 Compression-based Graph Mining . 83

4.5.3 Graph Partitioning . 84

4.5.4 Link prediction . 84

4.6 Chapter Conclusion . 85

5 Summarization-based Mining Bipartite Graphs 87

5.1 Introduction . 88

5.1.1 Motivation . 88

5.1.2 Contributions . 89

5.2 Compressing a Bipartite Graph . 90

5.2.1 Coding Scheme . 92

5.2.2 Hidden Relations Between Vertices . 94

5.3 Algorithm SCMiner . 96

5.3.1 Basic Idea . 97

5.3.2 Finding Super Node Candidates . 97

viii CONTENTS

5.3.3 Algorithm . 99

5.3.4 Properties . 99

5.4 Experiments . 100

5.4.1 Data Sets . 100

5.4.2 Clustering Quality . 102

5.4.3 Hidden Structure . 106

5.4.4 Link Prediction Accuracy . 109

5.5 Related Work and Discussion . 110

5.5.1 Co-clustering . 110

5.5.2 Graph Compression and Summarization 111

5.5.3 Link Prediction . 111

5.6 Chapter Conclusion . 112

6 Detection of Overlapping Communities in Attributed Graphs 113

6.1 Introduction . 114

6.1.1 Motivation . 114

6.1.2 Contributions . 116

6.2 Compressing an Attributed Graph . 117

6.2.1 Notations . 117

6.2.2 Coding Scheme . 119

6.3 Algorithm IROC . 124

6.3.1 Initialization . 124

6.3.2 Refinement . 125

6.3.3 Overall procedure . 128

6.4 Experiments . 129

6.4.1 Synthetic Data sets . 130

6.4.2 Real Data sets . 134

6.5 Related Work and Discussion . 138

6.5.1 Attributed Graph Clustering . 138

CONTENTS ix

6.5.2 Detecting Overlapping Communities 140

6.6 Chapter Conclusion . 141

7 Conclusions and Future Research 143

7.1 Spotting Information-rich Nodes in Graphs . 144

7.2 Compression-based Graph Mining Exploiting Structure Primitives 144

7.3 Summarization-based Mining Bipartite Graphs 145

7.4 Finding Overlapping Communities in Attributed Graphs 146

Acknowledgments 159

x CONTENTS

List of Figures

1.1 An Example of Collaboration Graph . 5

2.1 Graph Representation . 14

2.2 Examples of Typical Graph Clustering. 17

3.1 An Example of Using Regularities to Compress Graph and Detect Outstanding

Nodes . 38

3.2 Relation Pattern of Two Nodes . 41

3.3 An Example of Graph . 43

3.4 MDL Coding Example . 44

3.5 The Process of Compression . 48

3.6 Mapping Similarity Matrix of 5 Scientists Data Set to 4 Dimension and Plot in

Each Two Pairs (Most interesting nodes are highlighted with their name). 50

4.1 Two Differently Structured Sub-graphs. 59

4.2 All Possible Connections of Three-node Primitives 63

4.3 Example for Coding and De-coding. (a) Graph; black edges: already coded; red

edge: current edge; grey edges: not yet processed; (b) Adjacency matrix: filled

entries: already coded in diagonal-wise order of processing; red: current entry;

(c) Current stage of adjacency lists, see Section 4.2.1. 64

4.4 Multiple Primitives. 67

4.5 Coding Scheme Evaluation on Synthetic Data. 73

xii LIST OF FIGURES

4.6 Coding Scheme Evaluation on Real-World Data. 74

4.7 Syn1 with Two Stars and One Clique. 76

4.8 Coding Cost of Clusters. 76

4.9 Syn2 with Three Stars. 77

4.10 Graph Partitioning of Zachary’s karate club Data. 79

4.11 Precision of Synthetic Data Sets. 82

5.1 Tasks of SCMiner. 91

5.2 Summarization and Compression. 92

5.3 The Strategy Used for Merging Nodes . 95

5.4 Results for Various ε. 103

5.5 Cluster Purity on Movielens Data. 105

5.6 Hidden Structure Detected by SCMiner and CA. From Left to Right: Data Set

BP1, BP2, BP3. 106

5.7 Hidden Structure of Cities Detected by CA (left) and SCMiner (right). For

SCMiner results, Square C represents a cluster consisting of capitals, Square

F financial cities, Square E economic cities and Square W is the isolated city

Washington, DC. On the other side, the cluster represented by Circle C main-

ly contains accountancy firms, Circle AB advertising and banking companies,

Circle LB banking and law firms, and Circle L law firms. 107

5.8 Hidden Structure of MovieLens Detected by CA (left) and SCMiner (right). For

SCMiner results, Square O1 and O2 denote clusters containing old users, Square

YW represents a cluster of young women, and Square YM1 and YM2 young

man. On the other side, the cluster represented by Circle FM represents high

scored movies, Circle CD comedy and drama, Circle CR action, romance and

comedy. Circles AA and AS represent adventure, action, thriller movies and

action, sci-fi, thriller movies, respectively. 107

6.1 Motivational Example of a Social Friendship Network. 115

6.2 The Codebook of an Attribute Matrix . 121

LIST OF FIGURES xiii

6.3 The Assignment List of Vertices . 123

6.4 Clustering Results of Syn1 in Attributed Matrix. 133

6.5 Run Time of Varying Vertices. 133

6.6 Run Time of Varying Dimensionality. 134

6.7 Overlapping Between Cluster 2 and Cluster 11 of Ego-network “1912”. 136

xiv LIST OF FIGURES

List of Tables

3.1 Results of Info-spot and Oddball on 5 Famous Scientists Dataset 51

3.2 Results of Info-spot and Oddball on Data Mining Dataset 52

3.3 Results of Info-spot and Oddball on Email Communication Dataset 53

4.1 Distinguishing Graph Structure on Real Data Sets 74

4.2 Example of Differing People in MCL and CXprime 80

4.3 Compression Rates (Bits) . 81

4.4 Precision of Real Data Sets (%) . 83

5.1 Synthetic Bipartite Graphs . 101

5.2 Clustering Performance on Synthetic Data. 102

5.3 Results on World Cities Data. 104

5.4 Link Prediction Performances. 109

6.1 Parameter Settings for Generating Synthetic Data Set 130

6.2 Evaluation Overlapping Clusters of Synthetic Data Sets 131

6.3 F-Measure of Facebook Data Sets . 135

6.4 Overlapping of Ego-network “1912” . 136

6.5 Subspace detected by IROC of Ego-network “1912” 137

6.6 F-Measure of Google+ Data Sets . 138

xvi LIST OF TABLES

Abstract

Real world data from various application domains can be modeled as a graph, e.g. social net-

works and biomedical networks like protein interaction networks or co-activation networks of

brain regions. A graph is a powerful concept to model arbitrary (structural) relationships among

objects. In recent years, the prevalence of social networks has made graph mining an important

center of attention in the data mining field. There are many important tasks in graph mining,

such as graph clustering, outlier detection, and link prediction. Many algorithms have been pro-

posed in the literature to solve these tasks. However, normally these issues are solved separately,

although they are closely related. Detecting and exploiting the relationship among them is a new

challenge in graph mining. Moreover, with data explosion, more information has already been

integrated into graph structure. For example, bipartite graphs contain two types of node and

graphs with node attributes offer additional non-structural information. Therefore, more chal-

lenges arise from the increasing graph complexity. This thesis aims to solve these challenges in

order to gain new knowledge from graph data.

An important paradigm of data mining used in this thesis is the principle of Minimum De-

scription Length (MDL). It follows the assumption: the more knowledge we have learned from

the data, the better we are able to compress the data. The MDL principle balances the complexity

of the selected model and the goodness of fit between model and data. Thus, it naturally avoids

over-fitting.

This thesis proposes several algorithms based on the MDL principle to acquire knowledge

from various types of graphs: Info-spot (Automatically Spotting Information-rich Nodes in

Graphs) proposes a parameter-free and efficient algorithm for the fully automatic detection of

xviii Abstract

interesting nodes which is a novel outlier notion in graph. Then in contrast to traditional graph

mining approaches that focus on discovering dense subgraphs, a novel graph mining technique

CXprime (Compression-based eXploiting Primitives) is proposed. It models the transitivity and

the hubness of a graph using structure primitives (all possible three-node substructures). Under

the coding scheme of CXprime, clusters with structural information can be discovered, domi-

nating substructures of a graph can be distinguished, and a new link prediction score based on

substructures is proposed. The next algorithm SCMiner (Summarization-Compression Miner)

integrates tasks such as graph summarization, graph clustering, link prediction, and the discovery

of the hidden structure of a bipartite graph on the basis of data compression. Finally, a method for

non-redundant graph clustering called IROC (Information-theoretic non-Redundant Overlapping

Clustering) is proposed to smartly combine structural information with non-structural informa-

tion based on MDL. IROC is able to detect overlapping communities within subspaces of the

attributes.

To sum up, algorithms to unify different learning tasks for various types of graphs are pro-

posed. Additionally, these algorithms are based on the MDL principle, which facilitates the

unification of different graph learning tasks, the integration of different graph types, and the

automatic selection of input parameters that are otherwise difficult to estimate.

Zusammenfassung

Reale Daten von unterschiedlichsten Domnen können als Graphen modelliert werden, z.B. soziale

Netzwerke und biomedizinische Netzwerke wie Protein-Interaktions Netzwerke oder Co-Aktivie-

rungsnetzwerke von Gehirnregionen. Ein Graph ist ein mächtiges Konzept, um beliebige (struk-

turelle) Beziehungen zwischen Objekten zu modellieren. In den letzten Jahren ist gerade durch

die Verbreitung sozialer Netzwerke das Graph Mining zu einem wichtigen Fokus innerhalb des

Data Mining Forschungsgebiets geworden. Es existieren viele wichtige Aufgaben innerhalb des

Graph Minings, wie z.B. Graph Clustering (Gruppierung der Knoten), Outlier Detection (Er-

mittlung von Ausreißern) und Link Prediction (Vorhersage von Kanten). Viele Algorithmen

zur Lösung dieser Aufgaben wurden entwickelt. Allerdings werden diese Probleme oft ein-

zeln gelöst, obwohl sie eine enge Beziehung zueinander haben. Diese Beziehung aufzuzeigen

und zu nutzen ist eine neue Herausforderung im Graph Mining. Außerdem werden mit der

zunehmenden Datenexplosion immer mehr Informationen in die Graphstrukturen integriert. Zum

Beispiel beinhalten bipartite Graphen zwei Typen von Knoten. Graphen mit Attributen an den

Knoten bieten zusätzliche nicht-strukturelle Informationen. Daher treten durch diese erhöhte

Komplexität immer weitere Herausforderungen auf. Diese Doktorarbeit versucht diese Heraus-

forderungen zu lösen um neues Wissen von Graphdaten zu erhalten.

Ein wichtiges Data Mining Paradigma, das dieser Doktorarbeit zugrunde liegt, ist das Prinzip

der “Minimum Description Length” (MDL, minimale Beschreibungslänge). Es folgt der An-

nahme, dass, je mehr Wissen wir von den Daten erfahren können, desto besser können wir die

Daten komprimieren. Das MDL Prinzip balanciert die Komplexität eines gewählten Model-

s mit der Güte wie dieses Modell auf die Daten passt. Damit vermeidet es automatisch, dass

xx Zusammenfassung

das Modell zu komplex wird (so genanntes over-fitting). Diese Doktorarbeit stellt mehrere Al-

gorithmen vor, die auf dem MDL Prinzip beruhen um Wissen über diverse Graphtypen zu er-

halten: Info-spot stellt einen Parameter-freien und effizienten Algorithmus vor um vollautoma-

tisch die interessantesten Knoten zu erkennen. Dies stellt eine neue Definition des Konzepts

“Outlier” in Graphen dar. Danach stellen wir im Gegensatz zu traditionellen Graph Mining

Ansätzen, die sich auf die Entdeckung dichter Subgraphen fokussieren, eine neue Graph Min-

ing Technik namens CXprime vor. Sie modelliert die Transitivität und die Anzahl von Hubs in

einem Graphen durch Strukturprimitive (alle Kombinationen von Kanten in drei Knoten). Das

Kodierungsschema von CXprime ist in der Lage, Gruppen mit Strukturinformationen ausfindig

zu machen, dominierende Unterstrukturen eines Graphen zu unterscheiden und Kanten unter zu

Hilfe nahme dieser Unterstrukturen vorherzusagen. Der nächste Algorithmus SCMiner integriert

Aufgaben wie Graphsummierung, Graph Clustering, Kantenvorhersage und die Entdeckung von

versteckten Strukturen innerhalb eines bipartiten Graphen auf der Basis von Datenkompression.

Zuletzt ist eine Methode namens IROC für nicht-redundantes Graphclustering gegeben um sinn-

voll Strukturinformation mit nicht-struktureller Information basierend auf MDL zu kombinieren.

IROC ist dazu in der Lage überlappende strukturelle Gruppierungen innerhalb der Unterräume

der Attribute eines Graphen zu finden.

Zusammengefasst werden Algorithmen vorgestellt um verschiedene Lernaufgaben mit un-

terschiedlichen Graphtypen zu vereinen. Zusätzlich basieren alle diese Algorithmen auf dem

MDL Prinzip, welches die Vereinigung von verschiedenen Graphlerntechniken, die Integration

von unterschiedlichen Graphtypen und die automatische Selektierung von Eingabeparametern,

die sonst schwierig zu schätzen wären, überhaupt erst ermöglicht.

Chapter 1

Introduction

With the rapid development of data generation and collection techniques, people have gradually

realized the importance of data. The explosive growth rate stimulates people’s desires to make

profit from data. Thus the technique called “Data Mining” that automatically extracts useful

knowledge from data has emerged during the last decades. It aids people to understand the

current situation or make decisions for the future by discovering the knowledge behind data. For

decades, the technique is diversified by developing various methods for mining data stored in

different types, such as numerical data, categorical data, relational data and etc.

In the new century, when human beings step into the Internet era, the quantities and complex-

ities of the obtained data have dramatically increased. Due to the powerful ability of modeling

the relationship of the complex data, graph structure is gradually attracting more and more at-

tentions. In real life, graphs can be used to model many interesting events from various fields,

including social networks, web connections, road maps, protein-protein interaction networks and

etc. Therefore, in recent years graphs become one of the most popular structures that data sci-

entists used to analyze data, and graph mining that aims to discover knowledge from graph data

has become one of the most important branches of data mining.

In this chapter, first and foremost, Section 1.1 briefly introduces the concept of knowledge

discover in graph data. Then Section 1.2 further elaborates mining knowledge from different

types of graph. In Section 1.3, information theory for graph mining is introduced. Section

2 1. Introduction

1.4 concludes the proposed algorithms and the contributions. Finally, Section 1.5 displays the

structure of the thesis.

1.1 Knowledge Discovery in Graph Data

A graph consists of a set of nodes and links between them. Normally, they are named as vertices

and edges respectively. Knowledge discovery in graph data is called graph mining which aims

to extract useful and novel knowledge from graph data. In this section, we firstly describe the

merits of graph structure and then introduce some graph mining tasks.

1.1.1 Graph data

Why graph data is becoming more prevalent? Firstly, in mathematic and computer science, graph

is the data structure that lays emphasis on depicting the relationships among objects. With the

increasing of data complexity, people gradually concern more about modeling data objects by

their relationships. With vertices representing data objects and edges expressing relationships

between pairs of data objects, graph is a general data structure that can represents any kind

of data. Graph holds the merit of well expressing the structure of the data. Moreover, data

in many application fields, like social network, biology, commerce, can be modeled as graph.

Specifically, the most popular and successful applications of graph modeling is in social network,

like Facebook and Twitter, where users are considered as vertices and their relationships are

regarded as edges. Graph is used in biology field as well, where vertices represent genes or

proteins and edges represent their interactions. Furthermore, graph is also used in modeling

Internet. Here, vertices represent the web pages and edges are hyper-links in between. In brief,

modeling these real data as graph reveals the interaction among data objects, which has the

potential to aid us further understanding the data. Due to the fact that graph is a powerful data

modeling tool and it is widely applicable in real life, this thesis mainly focuses on graph mining.

1.1 Knowledge Discovery in Graph Data 3

1.1.2 Graph Mining Tasks

In general, there are many ways to mine novel and useful knowledge from graph data, which can

be categorized into different graph mining tasks, e.g. anomaly detection, community detection,

link prediction, etc. In the following, we elaborate those ones that are studied in this thesis in

more details.

Firstly, finding out special outstanding vertices from a large graph is a very interesting task.

Vertices in a graph may play different roles, due to the diverse connections. Specifically, some

vertices connecting with many other vertices are considered as hubs or centers of the graph.

Some vertices connecting two or more densely connected clusters play as the role of bridges.

Some vertices form unique structure with their neighbors, e.g. clique. One example in real data

is identifying which person is the most active user in a group of Facebook or discovering which

gene is the key factor to form an important structure in biology data.

Secondly, analyzing the topological structure contributes to understand the overall trends of

data. Different connections lead to various topological structures of graphs. For example, social

network data usually exhibits small-world phenomenon which means that connections between

pairs of vertices are relatively tight. Web data usually shows itself as the combination of many

spoke structures because main pages always link to many sub-pages.

Thirdly, link prediction is a practical task for many applications. Based on the existing edges,

we can predict the missing links or the link which will appear in the future. It helps social net-

working site to recommend friends or applications to users, and it also aids biologist to discover

new connections between genes or proteins.

Moreover, discovering special structures from graph data is an effective way to understand

it. Vertices and edges can form special structures, like tree structures, densely connected clus-

ters, star structures and etc. Graph clustering or community detection is one important task that

arranges nodes with common characteristics into groups. To be specific, nodes in clusters may

contain similar characters, possess similar connections or have tight relationships. For example,

by graph clustering we can judge which authors are in the same research field in collaboration

network, and we can analyze which proteins provide similar functions in protein interaction net-

4 1. Introduction

work.

Next, substructure mining discovers small structures that appear frequently in a large graph.

The large graph can be simplified by these frequently appearing substructures. Thus in social

network we can analyze how people construct their friend circles. Besides, we can find that which

kinds of combined genes often appear in the protein. Additionally, some nodes form unique

structures in the graph. For example, nodes grouping as a clique depicts tight relationships,

nodes forming as a star expresses a central structure and nodes taking on a tree structure presents

a hierarchical structure.

Overall, the tasks for mining graph data are not limited to the above. Graph data is complex,

thus there are still much more interesting knowledge need to be discovered. Moreover, each

graph mining task is not independent. They are closely interrelated. For example, graph clusters

are also graph substructures. Links have higher probabilities to exist among the vertices in the

same cluster. Frequent appearing substructures can be abstracted to summarize a graph. It is

interesting to adopt the interrelationship of these graph mining tasks and to propose algorithms

that are able to achieve multiple tasks at the same time.

1.2 Mining Knowledge from Multiple Types of Graphs

As the complexity of real data is increasing, the obtained graph does not only consist of normal

vertices and edges. Moreover, vertices and edges may associate with some additional informa-

tion, which leads to variety of graph types. Figure 1.1 shows a group of graphs with different

types which are generated from the collaboration field. Vertices are authors and papers, edges

are relations between them. As shown in the figure, graph type can be diversified by adding extra

edge information or vertex information. In the following, we will introduce these types of graph

and the challenges of mining these graphs in more details.

1.2 Mining Knowledge from Multiple Types of Graphs 5

(a) Simple Graph(b) Weighted Graph (c) Multi‐Relational Graph

Age: 32
Gender: Male
University: MIT

Age: 43
Gender: Male
University: UCLA

(d) Attributed Graph

(e) Bipartite Graph

5

Age: 26
Gender: Female
University: UCLA Age: 28

Gender: Female
University: MIT

Age: 25
Gender: Male
University: UCLA

Age: 42
Gender: Male
University: UCLA

Age: 33
Gender: Male
University: NYU

Author

Paper

Co‐author Relation

Friendship Relation

Project Relation

Writing Relation

+ Node Information

+ Node Information

+ Edge
Information

+ Edge
Information

Figure 1.1: An Example of Collaboration Graph

6 1. Introduction

1.2.1 Simple Graph

A set of objects with pairwise relationships can be naturally modeled as a graph. Objects are

represented as vertices, and any two objects that have some certain relationship are joined by an

edge. The existence of the directions of the edges distinguishes directed graph from undirected

graph. In this thesis, we only consider the undirected situation without considering the orienta-

tion of the edges. An example of a simple undirected graph is shown in Figure 1.1 (a). In the

example graph, vertices stand for authors and edges represent co-author relationships. The whole

graph represents the cooperative relationship of a group of authors. In general, the graph clearly

expresses the ability of representing the relationships of all the objects by the links.

Mining simple graphs has been concerned for a while. Many algorithms have been proposed

to fulfill different tasks described in Section 1.1.2, such as graph clustering, link prediction,

substructure mining, etc. Challenges of mining such simple graphs are to improve the efficiency

and effectiveness of these methods as well as to discover novel knowledge that classical methods

cannot find out. For example, comparing with the classical algorithms, new algorithms will be

able to improve the quality of the clustering results. In other cases, they are able to discover some

novel knowledge, like the new type of clusters or structures.

1.2.2 Weighted Graph

A graph is named as weighted graph if its edge associates with a numerical value. The numerical

value is called weight which normally expresses the strength of the connection. Usually, the

weight is a non-negative value. Figure 1.1 (b) is a weighted graph example coming from a

collaboration network. In the example graph, the edges express the cooperative relationship and

the weight expresses the number of papers the two authors have published together. Therefore,

weighted graph can be transferred from a simple graph by considering the strengths of the links.

For mining the weighted graph, we need to consider not only the connections but also their

strengths. To be specific, when clustering the weighted graph, we need to add weight to the

measurement of density of the connection. Substructures contain higher weights are considered

more interesting. In link prediction, not only future links need to be predicted but also the

1.2 Mining Knowledge from Multiple Types of Graphs 7

strength of the links.

1.2.3 Multi-relational Graph

In real life example, there may be more than one relationship between two objects. For instance,

two people can be not only colleagues but also friends. Thus we introduce multi-relational graph

which may contain more than one type of edges between same pair of nodes. Figure 1.1 (c)

is an example of a multi-relational graph from the collaboration field. Edges with different

colors stand for different relationships: blue edges represent the co-author relationship, red edges

indicate friendship relations and green edges express colleague relations. Therefore, comparing

with simple graph, multi-relational graph contains more link information, and consists of more

complex structures.

Mining multi-relational graph needs to consider the relations between multiple types of

edges. The mining process on such graph is influenced by all the types of edges. Intuitively,

different types of community can be discovered from it. Regarding link prediction, with multi-

relational graph we can not only predict the edges, but also specify the type of edge which can

be the explanation of the predication. It is a challenge to find out these information from the

multi-relational graph.

1.2.4 Attributed Graph

Vertices with attributes provide additional information to graphs. Therefore, an attributed graph

is defined as a simple graph plus additional node information. The additional node information

can be a numerical or categorical vector which indicates the characteristics of the vertices. For

example, Figure 1.1 (d) is an attributed graph which is generated from the simple graph Figure

1.1 (a) by considering the extra node information. Similarly, the graph demonstrates the cooper-

ation relationship of the authors. Simultaneously, we consider the author’s information, like age,

gender, university and etc.

The importance of mining attributed graph is the balance of the structure information and the

feature information. Take the graph clustering as an example, from the point view of structure,

8 1. Introduction

clusters should be densely connected, while from the point view of attributes, clusters should

contain similar attributes. Finding the best result by considering both influence factors is a chal-

lenge.

1.2.5 Bipartite Graph

Figure 1.1 (e) is an example of a bipartite graph which contains two types of vertices and the

edges only exist between different type of vertices. The example bipartite graph shows the re-

lationship between authors and papers. If an author writes a paper, there is an edge between

them. A bipartite graph is transfered from a simple graph by adding a new type of vertex. Thus

it can be projected to a simple graph. Take Figure 1.1 (e) as an example, the co-authorship is

hidden in the bipartite graph. If two authors both write a paper, there is a cooperation relation

between them. Thus it can be projected to a simple graph with edges representing co-authorship.

Moreover, with the increasing of the number of vertices type, tri-partite or k-partite graph can be

also generated. The character of such k-partite graph is that edges only exist between different

types of vertices.

For such types of graph, finding out the relations of multiple types of vertices is very inter-

esting. Traditionally, clusters exist only on each type of vertices. Thus the relationship among

these clusters need to be explored. Due to the increasing diversity of obtained data, graph is

not confined to only one type of additional information. All the additional information can exist

simultaneously. For example, weighted attributed graph, weighted bipartite graph or even more

complex graph. Combine all these information to mine novel knowledge from such graph is

another challenge.

Overall, as the Figure 1.1 shows, data from the same field can be modeled as different types

of graph when adopting different information. Obviously, the more additional information is

contained, the more complex the graph data is. Mining the graph becomes more and more

difficult as the complexity of the graph increases. However, each type of graph has their own

characteristic. The knowledge discovered from them has different emphasis. Therefore, there

are many challenges to explore different types of graph as mentioned before. This thesis focuses

1.3 Information Theory for Graph Mining 9

on mining multiple types of graphs and tries to solve most of these challenges.

1.3 Information Theory for Graph Mining

Various algorithms are proposed to solve the problem of graph mining. Many of them suffer

from parameterization issue. For example they need to set the number of clusters or they need

to predetermine several thresholds. Usually the algorithms need to run several times to obtain

the best parameters. In addition, without domain expert it is hard to determine which result is

better. Information theory is one of the techniques that can be used to avoid this parameterization

problem. Many information criterion are proposed for model selection, which is also applicable

for graph mining. These information theoretic methods own the potential to explore patterns

(clusters, substructures and etc.) from the graph data without parameters.

Information theory and data mining are both branches of information science. Data mining

focuses on discovering useful information from massive and complex data, while information

theory lays emphasis on describing and expressing the data by quantification of its information.

The purpose of data mining is to mine useful knowledge from the data. However, what kind of

knowledge is useful? Some information theoretic concepts (like entropy, mutual information and

etc.) can be used to measure the usefulness. In Chapter 2 we will introduce them in more de-

tails. On the other aspect, lossless data compression is one important application of information

theory. It compresses the data by the regularity inside data, which can be used in data mining to

discover the rules and regularity as well. Minimum Description Length (MDL) principle [92] is

an information criteria that is based on lossless compression. It measures all type of information

by the length of binary string which can be obtained by encoding the information. We adopt

MDL as the core technique of the thesis, due to its ability to discovery the regularity inside data.

We will introduce more details of the technique in Chapter 2.

Several advantages enable us to adopt information theory to solve graph mining problem.

To be specific, information theoretic concepts can be used to measure similarity of link patterns

and substructures. Moreover, as graph data can be represented by an adjacency matrix containing

only ‘0’s and ‘1’s, patterns or rules can be obtained from the graph by compressing the adjacency

10 1. Introduction

matrix. With the increasing of the complexity of graph data, more regularities can be found

by compression, thereby obtaining more information from the data. Furthermore, Minimum

Description Length principle is able to select the best model. Once many patterns have been

detected, MDL can tell which ones are more informative. Overall, by adopting information

theory concept, we propose several algorithms to mine useful knowledge from multiple types of

graph data in this dissertation.

1.4 Thesis Contributions

The central idea of the thesis is mining knowledge from graph data by adopting information

theoretic technique, especially the Minimum Description Length principle (MDL). Firstly, the

thesis aims at proposing algorithms to fulfill multiple graph mining tasks. For instance, the

algorithm is able to achieving graph clustering, link prediction, substructure mining at the same

time. Secondly, the thesis aims at mining knowledge from different types of graphs. In the thesis,

we focus on mining simple graph, bipartite graph and attributed graph. Moreover, based on MDL

principle all the proposed algorithms are parameter-free. For different graph type, various coding

schemes are proposed to achieve different aims. The following are contributions of the proposed

algorithms.

1. A novel algorithm Info-spot is proposed to automatically detect interesting nodes in large

graphs. In Info-spot, interesting nodes are considered as a novel outlier notion which is

defined by compressing the link patterns of the nodes. And an intuitive similarity measure

is proposed to measure the difference between pair of link patterns. Guided by the MDL

principle, the algorithm can detect the interesting nodes automatically. Parts of the material

presented in this chapter have been published in [47].

2. A novel compression-based graph mining algorithm CXprime is proposed based on ex-

ploiting three-node primitives which are the smallest substructures that can express both

transitivity and hubness of a graph. A novel coding scheme based on three-node primitives

is proposed. Guided by the MDL principle, frequently appearing primitives are effectively

1.5 Thesis Organization 11

compressed. And the proposed algorithm is able to distinguish graphs, to partition graphs

and to predict missing links based on different substructures. Parts of the material present-

ed in this chapter have been published in [30].

3. A technique SCMiner integrating summarization, clustering and link prediction on bi-

partite graphs is proposed. The basic idea is to transform the original graph into a very

compact summary graph which is controlled by the MDL principle. The proposed algo-

rithm discovers the major clusters of both vertex types as well as the major connection

patterns between those clusters and even predict links between different type of vertex.

Parts of the material presented in this chapter have been published in [32].

4. A new method IROC is proposed to clustering attributed graphs with the objective to find

the reasonable overlapping communities and meaningful subspace of the attributes at the

same time based on an information theoretic technique. Parts of the material presented in

this chapter have been submitted in [31].

1.5 Thesis Organization

The remainders of the thesis are organized as follows: Chapter 2 further introduces the theoretical

background of the thesis. We describe basic knowledge of graph mining including graph repre-

sentation, graph properties and research status of graph mining tasks. We also briefly describe

basic knowledge of information theory, especially the Minimum Description Length principle

(MDL). Chapter 3 addresses interesting nodes detection problem. We introduce a MDL-based

algorithm aiming to detect interesting nodes from general large graph. Chapter 4 concentrates on

mining graph based on graph structure. We introduce a novel coding scheme based on compress-

ing three-node primitives. And then clusters with different cluster type based on structures can

be detected. Chapter 5 develops a integrating algorithm of bipartite graph which combine graph

compressing, graph clustering and link prediction. The chapter introduces a bipartite mining

algorithm based on MDL aiming to find clusters, hidden structures and missing links. Chapter 6

concentrates on clustering problems of graph with attributes. The chapter proposes a algorithm

12 1. Introduction

based on information theory to detect overlapping clusters together with the interesting subspace

of attributes. Finally, Chapter 7 concludes the thesis and states the further research directions.

Chapter 2

Theoretical Background

In this chapter, we introduce the background knowledge of both graph mining and information

theory in more details. First of all, we describe the basic knowledge of graph including graph

representation and some graph topological properties. Then we survey the existing algorithms for

the classical problems of graph mining, e.g. graph clustering, substructure mining, link predic-

tion and graph compression. In section 2.2, we further introduce the background knowledge of

information theory. We start with several information theoretic concepts [122], such as entropy

and mutual information. Then the lossless compressing technique Minimum Description Length

principle (MDL) is introduced. In the end of this chapter, we list some evaluation methods which

are adopted in the thesis for each graph mining tasks.

2.1 Basic Knowledge of Graph Theory

2.1.1 Graph Representation

Numerous of problems can be solved by using graph, due to its advantages of providing a differ-

ent point of view and making the problems much simpler. It is important to understand different

types of representation of graph data. In this part, we mainly consider the undirected graph. First

of all, the definition of graph is give as follow.

14 2. Theoretical Background

Definition 2.1 (Graph) A simple graph is defined as G = (V,E), with V representing a set of

vertices and E standing for all the edges which connect pairs of vertices.

Graph Visualization. When there are not so many vertices or edges, visualization is an effec-

tive way to represent the graph data, due to the clear displaying of the edge connections. For

example, Figure 2.1 (a) is a visualization of a simple graph. Intuitively, graph is visualized as

the combination of points and lines. The points represent the vertices and the lines represent the

edges. From the graph visualization, we can obtain which vertices are isolate, which vertices are

densely connected and which vertices form star structure or triangular structure. For example,

in Figure 2.1 (a), it is clearly shown that vertex B,C,D form a triangle structure. However, the

scale of the contemporary data is very large. Thus the visualization of big graph is mass and it is

not possible to obtain any useful information from it. Visualization is not appropriate to represent

graphs with thousands or even hundreds of vertices.

A

B

C D

E

A B C D E
A 0 1 0 1 1
B 1 0 1 1 0
C 0 1 0 1 1
D 1 1 1 0 0
E 1 0 1 0 0

Vertices Neighbors
A B,D,E
B A,C,D
C B,D,E
D A,B,C
E A,C

(a) Graph (b) Adjacency Matrix (c) Adjacency List

Figure 2.1: Graph Representation

Adjacency Matrix. In mathematics, adjacency matrix is a typical way to represent a graph.

For an undirected simple graph, the adjacency matrix is a symmetric binary matrix, as shown in

Figure 2.1 (b). The rows and columns represent all the vertices respectively and entries indicate

relations between pairs of vertices. To be specific, the entry displayed as ‘1’ means there is

an edge between the corresponding two vertices and ‘0’ means the two vertices do not have

connection. Therefore, adjacency matrix contains the connection information of each vertex.

2.1 Basic Knowledge of Graph Theory 15

Moreover, various types of graph data are represented as different types of adjacency matrices.

To be specific, for weighted graph, entries of the adjacency matrix are written as weights instead

of ‘1’s. Multi-relational graph needs multiple adjacency matrices to represent all the relations.

The row and the column of bipartite graph represent the different type of vertices separately. And

the number of rows and columns is not equal. Attributed graph need an extra matrix to represent

the attributes of the vertices.

Adjacency List. Additionally, adjacency list is another way to represent the graph. As shown

in the Figure 2.1 (c), adjacency list is an list with the length equals to the number of vertices. It

gives all the neighbors of each vertex. Comparing with the adjacency matrix, the adjacency list

is more suitable to sparse graph and is more space-saving.

2.1.2 Graph Topological Properties

The amount of vertices and edges decides the size and the density of the graph respectively. And

different connections lead to variations in graph topological structures. In the following, we will

introduce some basic global and local properties of the graph data which are common in mining

the graph data.

Connectivity. Connectivity is the basic characteristic of graph. Based on this characteristic, one

can get from one node to any other node by following a sequence of edges.

Degree. Degree is the concept with regard to the vertex. The degree of a vertex v is defined as the

number of edges connecting to the vertex v. Degree to a certain extent reflects the importance of

the vertex. The vertex with a large degree denotes that the vertex has relations with many other

vertices. And the vertex with 0 degree is an isolate vertex.

Path. Path is a edge sequence which is produced by traversing from one vertex to another vertex.

There are many possible paths between two vertices. The most important one is the shortest path

which is defined as the path between two vertices with the smallest length. The shortest path

between two vertices is unique. In general graph, the shortest path is the path with the smallest

number of edges, while in weighted graph the shortest path is the path with the smallest sum of

the weights. And the shortest path can be used to measure the distance between the two vertices.

16 2. Theoretical Background

Clustering Coefficient. Watts and Strogatz [117] mention and popularize the concept “cluster-

ing coefficient”. For each vertex, we calculate the local clustering coefficient which measures the

degree of a vertex that can form cluster with other vertices. It is calculated from Eq. (2.1), where

Ntriangles(vi) is the number of triangles formed by vertex vi and Ntriples(vi) is the number of

triples formed by vertex v. For the whole graph, we calculate the global clustering coefficient, as

shown in Eq. (2.2), which equals to the average of local clustering coefficient of all the vertices,

where |V | is the number of vertices.

C(vi) =
Ntriangles(vi)

Ntriples(vi)
(2.1)

C =
1

|V |

|V |∑
i=1

C(vi) (2.2)

Betweenness Centrality. Betweenness centrality [34] is an index measuring the importance of

the vertex that acts as a bridge in the graph. Betweenness centrality of a vertex is the ratio of the

number of the shortest paths from vertex vm to vertex vn through vertex v to the number of all

shortest paths from vm to vn which is shown in Eq. (2.3).

Betweeness(v) =
∑

vm 6=v 6=vn

Pathvmvn(v)

Pathvmvn
. (2.3)

2.1.3 Graph Clustering

Clustering is a typical technique for analyzing the data set, which aims to find groups of data

sharing similar concepts. In numerical data, distance-based clustering algorithm like K-means

[73] aims to find groups of data with smaller distances in the groups and the larger distances

among the groups. Density-based clustering algorithm like DBSCAN [29] aims to detect groups

of data which contain higher density in the group while lower density between the groups. In

graph data, what do graph clusters look like? Normally, as shown in Figure 2.2, the substruc-

ture with vertices densely connected is considered as a graph cluster. In the following, we will

introduce several typies of graph clustering which is related with the proposed algorithms.

2.1 Basic Knowledge of Graph Theory 17

(a) Graph Partitioning. (b) Overlapping Graph Clustering.

Figure 2.2: Examples of Typical Graph Clustering.

Graph partitioning

Graph partitioning, defined in Definition 2.2, is a technique that divides the vertices into several

components. And each vertex can only be assigned to one component.

Definition 2.2 (Graph Partitioning) Given a graph G = (V,E) with V representing all the

vertices and E standing for all the edges, graph partitioning divides vertices V into K com-

ponents {C1, C2, ..., CK} and fulfills the conditions that C1

⋃
C2

⋃
...
⋃
CK = V and ∀i 6=

j, Ci
⋂
Cj = ∅, i = {1, 2, ..., K}, j = {1, 2, ..., K}.

Normally, edges in each component are densely connected, while edges between each pair

of components are sparsely linked. This is similar with the clustering in numerical data. Thus

it is named as graph clustering. Figure 2.2(a) is a simple example of graph partitioning. The

graph is divided into two densely connected components by cutting the sparse edges. Therefore,

graph cuts are intuitive approaches for partitioning the graph. Normally, graph cuts are designed

for bisection which remove the edges between the two parts. In graph G = (V,E), graph cut

Cut(C1, C2) is defined as Eq. (2.4), where C1 and C2 are two graph partitioning components

of vertices V , vi and vj are vertices belonging to subset C1 and C2 separately, w(vi, vj) is the

weight between vertex vi and vj . Thus cut is the number of edges between two disjoint subsets

in the unweighted graph and is the sum of the weights of edges between two disjoint subsets in

the weighted graph. Many graph cuts are proposed to solve the graph partition problem. In the

18 2. Theoretical Background

following, we take two famous graph cuts: Minimum cut and Normalized cut as examples.

Cut(C1, C2) =
∑

vi∈C1,vj∈C2

w(vi, vj). (2.4)

Minimum cut [44], shown in Eq. (2.5), needs the number of edges or the sum of weights

between the component C1 and C2 to be minimum. Then the cut is extended to k-way cut to

fulfill the demand of multiple clusters. Minimum k-cut [43] is defined in Eq. (2.6). The cut

needs the sum of the number of edges or the sum of weights between every two components to

be minimum.

MinCut(C1, C2) = min
∑

vi∈C1,vj∈C2

w(vi, vj). (2.5)

KMinCut(C1, C2, ..., CK) = min
K−1∑
i=1

K∑
j=i+1

∑
vm∈Ci,vn∈Cj

w(vm, vn). (2.6)

Normalized cut [99] of two parts is defined as Eq. (2.7), where assoc(C1, V), shown in

Eq. (2.9), is the sum of weights between vertices in subset C1 and all the vertices in V , and

assoc(C2, V) is defined similarly. Comparing with minimum cut, normalized cut has the merit

of avoiding over small size of partitions. And it can be easily extended to a k-way normalized

cut as shown in Eq. (2.8).

NCut(C1, C2) =
Cut(C1, C2)

assoc(C1, V)
+
Cut(C1, C2)

assoc(C2, V)
. (2.7)

KNCut(C1, C2, ..., CK) =
K∑
i=1

Cut(Ci, V − Ci)
assoc(C1, V)

. (2.8)

assoc(C1, V) =
∑

vi∈C1,vj∈V

w(vi, vj). (2.9)

Moreover, Newman proposed the concept of modularity [82], which measures the ability of

the network divided into communities also named as clusters. The object function which shown

in Eq. (2.10), is generated based on the idea that the fraction of the edges in the clusters should

2.1 Basic Knowledge of Graph Theory 19

be larger than the expected faction in the random graph, where m =
∑N

i=1 deg(vi) is the total

number of edges,N is the number of vertices of the graph, A is the adjacency matrix of the graph

with Avi,vj = 1 standing for the connection between vi and vj , deg(vi) is the degree of vertex

vi, and δ(Cvi , Cvj) = 1 if vi and vj belong to the same cluster or δ(Cvi , Cvj) = 0. Higher Q

indicates that dense connection within clusters and sparse connection between clusters. In some

network paper, graph clustering is also named as community detection.

Q =
1

4m

N∑
i=1

N∑
j=1

(Avi,vj −
deg(vi)deg(vj)

2m
)δ(Cvi , Cvj). (2.10)

These graph cuts and modularity based methods detect clusters based on the structures. The

optimization of the graph cuts and modularity is NP-hard. Many methods are adopted to solve

this problem to achieve local optimal. For example, graph cuts are normally combined with

spectral partitioning methods [26, 24] using eigenvectors of the adjacency matrix to obtain the

optimal partition of the graph and the simulated annealing strategy is used to maximize the

modularity of a network [69]. Initially, these cuts are proposed for bisection. Although they are

able to be extended to detect multiple clusters, the number of clusters needs to be predefined.

Many classical graph partition algorithms are proposed during last decade. In the following,

we briefly introduce METIS and MCL which are adopted as comparison methods of our pro-

posed algorithm CXprime [30] in Chapter 4. METIS [56] is a framework containing multilevel

algorithms for graph partitioning. Multilevel graph partitioning algorithms [55, 49] mainly con-

tain three procedures: coarsening phase, partitioning phase and uncoarsening phase. During the

coarsening phase, graph G is transformed into a sequence of small graphs G1, G2, ..., Gm. Each

small graph contains fewer vertices, |VG| > |VG1| > ... > |VGm|. In this phase, several methods

can be used to achieve these small graphs. For example, they find a random matching and col-

lapse the matched vertices to form the vertex of the next level graph [14, 6] or form the vertex of

the next level graph by highly connected group of vertices [18]. Then the obtained small coarse

graphs are partitioned. Spectral bisection [88, 6], geometric bisection [76] and combinatorial

methods [35] are adopted to achieve this procedure. In the uncoarsening phase, the partition re-

sults are projected to the original graph to obtain the results. Kernighan-Lin (KL) partition [33]

20 2. Theoretical Background

is another classical method which is able to obtain good results. Compared with spectral graph

partitioning, multilevel graph partitioning possesses high efficiency, but it still needs to set the

number of cluster in advance.

Markov Clustering, abbreviated as MCL [112], is based on the idea that a random walk

starting from one node has a high probability to reach the next node in the same dense area. By

iteratively implementing expansion and inflation on transition probability matrix of the graph,

the MCL algorithm aims to encourage the random walk staying in the same dense area and

punish the random walk between different dense area. Thus until the transition probability matrix

convergence, graph clusters can be obtained. MCL do not need the number of clusters as the input

parameters, but it needs to set the inflation parameter which affects the number of cluster.

Overlapping Graph Clustering

In many real life graphs, connections among vertices are complicated. Some vertices have tight

connections with many clusters, thus assigning such vertices to one cluster as described in graph

partitioning will loss some link information. Therefore, we can detect overlapping graph clusters

instead of graph partitioning. Overlapping graph clustering is defined in Definition 2.3, which is

a technique that divides the vertices into several components allowing overlaps among clusters.

It means that vertices can be assigned to multiple clusters. In some social network examples,

people have multiple identities in the network, like friends, colleagues and classmates. This is an

intuitive example of overlapping phenomenon in the graph. Figure 2.2(b) shows an example of

overlapping graph clustering, in which two dense clusters with overlapping vertex are detected.

Definition 2.3 (Overlapping Graph Clustering) Given a graph G = (V,E) with V represent-

ing all the vertices and E standing for all the edges, overlapping graph clustering detects K

dense components {C1, C2, ..., CK} of vertex V and fulfills the conditions thatC1

⋃
C2

⋃
...
⋃
CK =

V and ∀i 6= j,∃Ci
⋂
Cj 6= ∅, i = {1, 2, ..., K}, j = {1, 2, ..., K}.

In recent years, many algorithms are proposed to detect overlapping clusters in the graph. Pal-

la and Imre [86] first reveal overlapping phenomena of complex networks in nature. They achieve

overlapping communities by seeking k-cliques which contain overlapping vertices. The survey

2.1 Basic Knowledge of Graph Theory 21

paper [118] mentions numerous algorithms for detecting overlapping communities. To mention a

few, Gregory proposes several algorithms for detecting overlapping communities [37, 38, 39, 40].

CONGA [37] detects overlapping communities by removing the edge or splitting the vertex with

the highest betweenness centrality value. CONGO [38] is a fast version of CONGA [37] by

calculating local betweenness centrality instead of global one. The algorithm proposed in [39]

is based on a label propagation technique, and the algorithm proposed in [40] is designed for

detecting fuzzy overlapping communities. Moreover, due to the fact that overlapping is a nature

property of graph data, more papers are published on this topic. Coscia et al. [21] proposes an

algorithm by extracting redundant subgraphs by defining graph operations. Label propagation al-

gorithm is performed on these subgraphs to obtain overlapping communities. Yang and Leskovec

[121] propose a scalable algorithm to detect overlapping communities of networks with millions

of nodes and edges. In Chapter 6, we propose a attributed graph clustering algorithm which is

able to achieve overlapping clusters detection.

Bipartite Graph Clustering

Graph becomes more complex with the development of information acquisition. Although bipar-

tite graph can be transferred into simple graph, there will be information loss during the process.

Moreover, we prefer acquiring the relationship between multiple type of vertices as well. In real

word, many data can be modeled as bipartite graphs in order to pursuit the better description

of the relationship between two type of objects, for example customs and items data, gene and

protein data. Therefore, bipartite graph clustering is defined in Definition 2.4, in which clusters

only exist on the same type of vertices.

Definition 2.4 (Bipartite Graph Clustering) Given a bipartite graph G = (V1, V2, E) with V1

and V2 representing two type of the vertics and E standing for edges between two types of ver-

tics, bipartite graph clustering divides V1 into K components {C11, C12, ..., C1K} and V2 into L

components {C21, C22, ..., C2L}, which fulfills the conditions that C11

⋃
C12

⋃
...
⋃
C1K = V1

and ∀i 6= j, C1i

⋂
C1j = ∅, i = {1, 2, ..., K}, j = {1, 2, ..., K}, C21

⋃
C22

⋃
...
⋃
C2L = V2 and

∀i 6= j, C2i

⋂
C2j = ∅, i = {1, 2, ..., L}, j = {1, 2, ..., L}.

22 2. Theoretical Background

When facing such data matrix, traditional algorithms will suffer from the high dimensional

problem. Bipartite graph clustering also named as bi-clustering or co-clustering which simulta-

neously clusters rows and columns of a data matrix is able to avoid the curse of dimensionality.

Meanwhile, it is able to analysis the relationship between rows and columns as well. In re-

cent years, co-clustering or bi-clustering has received lots of attention and many papers have

been published. First of all, Dhillon et al. have proposed many state-of-the-art co-clustering

algorithms and has applied these algorithm to many real life fields [23, 25, 20, 5]. Specifically,

they proposed a spectral algorithm for bipartite graph partition in [23]. Information-theoretic

Co-clustering [25] adopts mutual information to measure information loss. The best clustering

result owns the smallest information loss. Bregman divergences based co-clustering [5] aims to

achieve clustering of rows and columns by searching for a good matrix approximation. Bregman

divergences is adopted to measure the approximation error. Information-theoretic Co-clustering

and Bregman divergences based co-clustering both need to predetermine the number of cluster

for each type of nodes. Besides both of them are not confined to deal with binary matrix. Long

et al. [71, 70] formulate co-clustering as an optimization problem of matrix decomposition, but

they still need to set the number of clusters of rows and columns. In case of real world data, Cho

et al. [20] apply co-cluster to gene express data and Dhillon [23] use it to effectively process

documents and words data. Moreover, Cross-association [17] is a parameter-free co-clustering

method based on Minimum Description Length principle. Information-theoretic co-clustering

[25] and Cross-association [17] are used as the comparison methods of our proposed algorith-

m SCMiner [32], and details can be seen in Chapter 4. In addition, there are still many other

co-clustering algorithms, for example [96, 36].

Complex Graph Clustering

As social network topic is becoming a hot topic, the construction of graphs is not limited to single

type of vertices and edges. In such complex graph, clusters are defined as group of vertices or

edges sharing the same properties. For example, a simple publication data contains three types

of vertices (author, paper, venue) and two types of links (writing, publishing). Then the clusters

2.1 Basic Knowledge of Graph Theory 23

of such data can be constructed by authors, papers and venues which belong to the same research

field.

In recent years, many algorithms are designed to solve the complex graph clustering prob-

lem. Sun and Han define a Heterogeneous Information Network (HIN) [106] which abstracts the

real social network data containing nodes and links with different types. Then they propose al-

gorithms named Rankclu [107] and Netclus [108] which adopt the idea of integrating clustering

and ranking to detect clusters from Heterogeneous Information Network. Additionally, Sun et

al. [105] proposes a model-based method for clustering Heterogeneous Information Networks

containing incomplete attributes. Moreover, another type of complex network named as multiple

graph that contains the same set of vertices and heterogeneous edges relations also frequently

appears in literatures. The key procedure for clustering such type of graphs is integrating het-

erogeneous edge relations to detect clusters of vertices. For instance, Tang et al. [109] achieve

clusters by fusing multiple link information based on matrix factorization. For some more com-

plex social media data, Lin et al. [68] propose a novel hypergraph representation model named as

metagraph which can represent multi-relational links, multiple type of vertics and time-varying

relations.

2.1.4 Graph Structure Mining

Another important graph mining task relevant to the dissertation is graph structure mining. Dif-

ferent links lead to various graph topological structures. Thus structure mining is a meaningful

task in acquiring knowledge from graph data. In the following, we analyze the global graph

structure and local graph substructures respectively.

Topological Structure Mining

In network analysis, certain network data has a specific topology. For example, social network

has the feature that most of the nodes are connected by a small number of links. And this feature

is named as small world phenomenon. Wang and Chen [116] point out several types of typical

complex network models and their properties. Based on the basic graph properties mentioned

24 2. Theoretical Background

above, network can be categorized into different models. To be specific, ER random graph [28]

is the graph that each pair of vertices has equal probability p to be connected. Watts and Strogatz

[117] introduce the small-world network which has small average shortest path length and high

clustering coefficient. Due to the high clustering coefficient, cliques and near-cliques frequent-

ly appear in small-world networks. Many real-world networks show small-world phenomena,

such as friendship networks, road maps, food chains, electric power grids, metabolite processing

networks and networks of brain neurons. Scale-free network [4] has a power-law degree distri-

bution. Nodes with large degree named as hubs are normally be seen in such type of network.

Many real-world networks are scale-free network. For example, collaboration networks, world

wide web and Protein-protein interaction networks.

Substructure Mining

Substructure is the subset of a graph. Substructure mining aims to discover graph structures that

occur frequently or to detect the graph structures that are interesting. The Apriori-based algorith-

m AGM [52] efficiently mines the frequent substructures based on association rule. It generates

candidate substructures by level-wise search. FSG [64] is another Apriori-based algorithm that

uses sparse graph representation to store candidates in order to speed up computation. Yan and

Han [120] propose a pattern growth approach gSpan which adopts depth-first search to discover

frequent subgraph without considering candidates generation and false positive pruning. SUB-

DUE [50] is an graph-based knowledge discovery system based on Minimum Description Length

principle. It discovers frequent substructure by compressing the patterns and selects the one with

minimum bits. The above example algorithms all consider frequently appeared patterns in the

graph as interesting. Moreover, there are some other algorithms proposed for detecting interest-

ing structures. For instance, Oddball [2] is a technique to identify interesting near-cliques and

star-like structures by extracting features to represent the nodes of a graph in a low-dimensional

vector space. RolX [48] is an unsupervised learning algorithm for automatically discovering

structural roles of nodes by adopting feature extraction, feature grouping and model selection.

2.1 Basic Knowledge of Graph Theory 25

2.1.5 Link Prediction

Link prediction is a significant edge related task in graph mining. Link prediction is generally

classified into two types: one is predicting missing links in a static network, the other is pre-

dicting the links which will appear in the future. Link prediction techniques are widely applied

in real network. For example, social network websites like Facebook often recommend friends

or interesting topics to the users. In some biological networks like protein-protein interaction

networks, we are able to predict which pairs of proteins are most likely to have close relation

thus saving experimental cost.

In the view of the existing link prediction algorithms, these algorithms are divided into unsu-

pervised algorithms [66] and supervised algorithms [45, 57, 62, 67].

For the unsupervised algorithms, Liben-Nowell and Kleinberg [66] summarize some basic

link prediction scores. To be specific, we can give each pair of disconnected nodes a score, and

then sort these pairs of nodes in descending order based on the scores. The pair of nodes taking

the head place has the highest probability becoming an edge in the future. Following we will

introduce some classical measures.

Common Neighbors. Common neighbors [75], as shown in Eq. (2.11), is an intuitive method

which calculates the number of overlapping neighbors that node x and node y share, where Γ(x)

denotes the set of neighbors of node x.

ScoreCN = |Γ(x) ∩ Γ(y)|. (2.11)

Jaccard’s Coefficient. Jaccard’s Coefficient [93] is shown in Eq. (2.12), which is based on

common neighbors but has a value between 0 and 1.

ScoreJaccard =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

. (2.12)

Adamic/Adar. Adamic/Adar [1] measures the similarity of two node. Eq. (2.13) considers

common neighbors as features and assigns more weight to neighbors that are not shared with

26 2. Theoretical Background

many others.

ScoreAA =
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|
. (2.13)

Preferential Attachment. Preferential attachment [77] is introduced in network generation of

power law distributions. As a link prediction score as shown in Eq. (2.14), it holds the meaning

that nodes are preferring to connect with the node with the high degree.

ScorePA = |Γ(x)| · |Γ(y)|. (2.14)

Katz. Katz [58] is a shortest path based score measure, which is shown in Eq. (2.15), where l

is the length of the path, paths<l>x,y is the path between node x and node y with the length equals

to l, β is the factor which is adopted to penalize the contribution of longer paths. It can be also

adopted in weighted graph by considering the number of times of the path paths(x, y).

ScoreKatz =
∞∑
l=1

βl · |paths<l>x,y |. (2.15)

There are also many other scores, like PageRank [13], SimRank [53], which are also effective

in predicting the links.

Supervised link prediction approaches are treated as a binary classification problem. Various

node pair features like topological features or attributes similarities can be extracted. Various su-

pervised learning algorithms like decision tree, K-nearest neighbors or support vector machines

(SVM) can be used on the features to distinguish which node pairs will be connected in the fu-

ture. Treating link prediction as the classification suffers the class skewness problem due to the

very large size of possible links.

Besides, in recent years, there are many other algorithms proposed to solve the link predic-

tion problem. For example, Wang et al. [115] use a MRF based local probabilistic model and

Kashima and Abe [57] use a parameterized probabilistic model.

2.2 Basic Knowledge of Information Theory 27

2.1.6 Graph Compression

Graph data is normally large and massive, which leads graph mining facing new challenges. In-

tuitively, graph compression is an effective method for solving the graph storage problem. Boldi

and Vigna [10] propose a web graph compression scheme which is able to effectively store graph.

Motivated by [10], Chierichetti et al. [19] proposes a compression strategy for social network.

Moreover, graph compression is also an effective method to further understand the graph struc-

ture. Graph summary aims to group the similar nodes or edges in order to simplify the graph.

For example, Navlakha et al. [81] propose graph summarization algorithms by greedy merg-

ing the original graph to a summary graph and a correction matrix. Tian et al. [110] propose

a graph summarization algorithm by grouping nodes based on their attributes and relationships

which are selected by the user. Additionally, graph compression is a technique adopted to obtain

other knowledge. For example, SUBDUE [50] discovers frequent substructure by compressing

the patterns and selects the one with minimum bits. Cross-association [17] is a compression

based parameter-free co-clustering method that detects clusters of rows and columns alternate-

ly. Mueller et al. [80] propose an clustering algorithm based on weighted graph compression.

SLASHBURN [54] uses the power-law characteristic for compression and exploits the hubs and

the neighbors of hubs.

2.2 Basic Knowledge of Information Theory

2.2.1 Information Theoretic Concepts

First of all, let us start with the introduction of information theory. Briefly speaking, information

theory is a theory considering “information” as research object. What is information? As the

core concept, information is broadly expressed as the content and the form of the message, such

as the emails we have received, the sounds we have heard and the videos we have watched. But in

a narrow sense, information refers to statistic information which concerns more about the expres-

sion form than the content of the information. For example, information is expressed as signal

and is transferred from sender to receiver. Information theory is formed based on the narrow con-

28 2. Theoretical Background

cept by Claude E. Shannon. His famous paper “A Mathematical Theory of Communication” [97]

published in 1948 is considered as a cornerstone of information theory. At the beginning, infor-

mation theory is founded on communication system, then it is extended to mathematic, computer

science and electronic engineering. It emphasizes on researching communication system, data

transmission, data compression by probability theory and statistics.

Shannon points out that information is uncertain and he defines entropy, joint entropy, con-

ditional entropy and mutual information as important measures of information.

Entropy. First of all, we introduce entropy [51] which is adopted to quantify the uncertain-

ty of the information, which is defined by Eq. (2.16). In this equation, X represents a ran-

dom variable which contains n components {x1, x2, ..., xn} with the probabilities denoted as

{p(x1), p(x2), ..., p(xn)}. In the thesis, we select the base of the logarithm to 2, which shows that

the information is represented by bits. In other words, the description of information adopts a

string of ′0′s and ′1′s. High entropy indicates that the random variable is unpredictable because of

the balanced distribution of each component and the random variable dominated by some certain

components provides low entropy, having a high level of predictability.

H(X) = −
n∑
i=1

p(xi) · log2 p(xi). (2.16)

Joint Entropy. Joint entropy and conditional entropy is generated from basic entropy. Joint

entropy measures uncertainty of multiple variables. Eq. (2.17) shows the joint entropy of two

random variablesX and Y , {x1, x2, ..., xn} and {y1, y2, ..., yn} are their components respectively.

Due to joint entropy H(X, Y) measures uncertainty of X and Y , p(xi, yj) is the probability of

component xi and yi occurring together.

H(X, Y) = −
n∑
i=1

m∑
j=1

p(xi, yj) · log2 p(xi, yj). (2.17)

Conditional Entropy. The conditional entropy of X and Y is calculated in Eq. (2.18) and Eq.

(2.19). H(Y | X) is the entropy of Y under the condition of X , which measures uncertainty of

the random variable Y based on the condition that the random variable X is known. Likewise,

2.2 Basic Knowledge of Information Theory 29

H(X | Y) is the conditional entropy ofX . And Eq. (2.20) shows the relationship of joint entropy

and conditional entropy. When the entropy of random variable X or Y is known, we only need

to calculate the conditional entropy of the other unknown random variable Y or X and the joint

entropy of the X and Y can be obtained.

H(Y | X) = −
n∑
i=1

m∑
j=1

p(xi, yj) · log2

p(xi)

p(xi, yj)
. (2.18)

H(X | Y) = −
n∑
i=1

m∑
j=1

p(xi, yj) · log2

p(yi)

p(xi, yj)
. (2.19)

H(X, Y) = H(X | Y) +H(Y)

= H(Y | X) +H(X).
(2.20)

Mutual Information. Mutual Information measures how much information the two random

variables X and Y share, which is shown in Eq. (2.21). And mutual information can be also

calculated from joint entropy and conditional entropy, which is shown in Eq. (2.22).

I(X, Y) =
n∑
i=1

m∑
j=1

p(xi, yj) · log2

p(xi, yj)

p(xi)p(yj)
. (2.21)

I(X, Y) = H(X)−H(X | Y)

= H(Y)−H(Y | X)

= H(X) +H(Y)−H(X, Y)

= H(X, Y)−H(X | Y)−H(Y | X).

(2.22)

2.2.2 Minimum Description Length Principle

Data compression is the technique that uses less bits to transmit or store original data by specific

encoding mechanism. Data compression is based on the fact that data is biased. For example,

a data string “1000101011” is constructed by ten binary figures which is generated randomly.

There is no regularity can be found, thus it is hard to compress such unbiased data. The other

30 2. Theoretical Background

data string ‘1010101010’ is also a ten binary figure string which contains five times repetition of

‘10’. In such cases, we can compress the data by the regular pattern of five times ‘10’. These are

two simple extreme examples. Normally, data can be compressed by its regularities.

Coding methods are the key technique for data compression. Coding essentially maps orig-

inal data to finite binary string. For example, Huffman Coding is a lossless entropy encoding

method. It assigns symbols with variable-length code and the length of the code is determined

by the probabilities of the symbols. The symbol with high probability will be assigned with short

code and verse vice. That is to say, data compression by Huffman Coding saves bits by assigning

frequent symbols with shorter code. For example, there is a data string ‘aababca’, ‘a’ is the most

frequently appeared symbol and is assigned with the shortest code ‘0’; the symbol ‘b’ appears

two times and is represented with longer code ‘01’; the symbol ‘c’ only appears one time and is

assigned with the longest code ‘110’. The length of the code is decided by the frequency of the

symbol.

Data compression is categorized into lossless compression and lossy compression. As its

name implies, lossless compression is the technique which can reconstruct the original data ex-

actly from the compressed data, while lossy algorithms can only reconstruct an approximation of

the original data from the compressed data. In the thesis, we adopt Minimum Description Length

[92] (MDL) principle, a lossless compression method, as the key technique.

MDL is first proposed by Jorma Rissanen in 1978 [90], which follows the assumption that

the less coding length we adopt to describe the data, the more knowledge we can gain from it.

Formally, the quality of a model can be identified from Eq. (2.23), where L(M) denotes the

coding length for describing model M and its parameters, while L(D |M) represents the cost of

coding data D under model M . MDL balances the model and the data and aims to find the best

result.

L(M,D) = L(D |M) + L(M) (2.23)

MDL only considers the length of the codes and do not care about the content of the codes.

The key task of adopting MDL is how to design the coding scheme for the data. Normally, we

estimate the probability distribution P (xi) of the random variable X = {x1, x2, ..., xn}, then the

2.3 Evaluations in Graph Mining 31

coding length of X can be constructed as Eq. (2.24), where L(X) is the coding length of the

random variable.

L(X) = −
n∑
i=1

log2 P (xi). (2.24)

MDL is a method for model selection, prediction, parameter estimation, etc. For example,

clustering can be regarded as a model selection problem considering clustering assignments as

the model. According to finding trade-off between model and the data, the optimal clustering

results can be obtained. In this thesis, we proposed several algorithms based on MDL principle

to deal with graph mining problem. In these algorithms, we are able to detect clusters of the

graph, find unique structure or predict the links. With the aid of the MDL principle, we do not

need to set any parameters, e.g. the number of the clusters. We can also avoid the over-fitting

problem with too complex model.

2.3 Evaluations in Graph Mining

Many algorithms have been proposed to deal with various tasks of graph mining. In this section,

we will introduce the methods for evaluating the algorithms that we used in the thesis for graph

clustering and link prediction.

Purity. Graph clustering assigns each vertex with only one or multiple labels. Comparing with

the given standard labels, we are able to adopt the metrics which are described below to eval-

uate the clustering results. Set C = {C1, C2, ..., CK} is the clusters which are obtained by the

algorithms and L = {L1, L2, ..., LM} is the true labels of the data set. Then purity [126] of each

cluster can be calculated by Eq. (2.25), which measures the percentage of dominating elements.

The larger the purity is, the better the quality of the cluster is.

Purity(Ci) =
1

|Ci|
max
j
|Ci ∩ Lj|. (2.25)

NMI, AMI and AVI. Normalized mutual information (NMI) [103], adjusted mutual informa-

32 2. Theoretical Background

tion (AMI) [114]and Adjusted Variation of Information AVI [114] are information theoretic

based measure. Normalized mutual information (NMI) can be calculate from Eq. (2.26), where

I(X, Y) is mutual information which is shown in Eq. (2.21), H(X) and H(Y) are entropy of

random variables X and Y which can be calculated from Eq. (2.16). To be specific, suppose

that acquired cluster label C = {C1, C2, ..., CK} and true label L = {L1, L2, ..., LM} are two

random variables. Thus NMI can be calculated from Eq. (2.27), where N is the number of all

the objects, NCi
is the number of objects in cluster Ci, NLj

is the number of objects in the true

label class Lj and NCi,Lj
is the number of objects in both cluster Ci and true label class Lj .

NMI(X, Y) =
I(X, Y)√
H(X)H(Y)

. (2.26)

φNMI(C,L) =

∑K
1=1

∑M
j=1NCi,Lj

log(
N ·NCi,Lj

NCi
NLj

)√
(
∑K

i=1NCi
log

NCi

N
)(
∑M

j=1 NLj
log

NLj

N
)
. (2.27)

Similarly, adjusted mutual information (AMI) and adjusted variation of information (AVI)

are shown in Eq. (2.28) and Eq. (2.29) respectively, where E(I(X, Y)) is the expected value of

mutual information I(X, Y) between all possible pairs of clusters.

AMI(C,L) =
I(C,L)− E{I(C,L)}√
H(C)H(L)− E{I(C,L))}

. (2.28)

AV I(C,L) =
2I(C,L)− 2E{I(C,L)}

H(C) +H(L)− 2E{I(C,L))}
. (2.29)

All the NMI, AMI and AVI value are bounded in [0, 1], the higher the value is , the better the

clustering results are.

Precision, Recall and F-Measure. Precision [89] measures the accuracy of the detected clusters

and recall [89] measures whether all clusters are detected. Precision and recall can be calculated

from Eq. (2.30) and Eq. (2.31) separately. In the equations, TP is True Positive, FP is False

Positive and FN is False Negative. Comparing with clusters C and true labels L, True Positive is

the number of pairs of objects which appear in the same cluster in both clusters C and true labels

2.3 Evaluations in Graph Mining 33

L, False Positive is the number of pairs of objects which appear in the same cluster in clusters

C but in different class of true labels L, False Negative is the number of pairs of objects which

appear in the different cluster in both clusters C and true labels L.

Precision =
TP

TP + FP
. (2.30)

Recall =
TP

TP + FN
. (2.31)

F −Measure = (1 + β2)
Precision ·Recall

β2 · Precision+Recall
. (2.32)

F-Measure [89] is shown in Eq. (2.32) which combines precision and recall. And β is a

non-negative value weighting the precision and recall, which usually equals 0.5, 1 and 2.

Precision for Link Prediction. In the thesis, precision [72] is adopt to evaluate the result of link

prediction methods. A certain percentage of edges are selected as predicting edge PE and are

deleted from the graph. Algorithms are implemented on the new formed data and predicted edges

RE are acquired. Comparing with predicting edge PE and predicted edges RE, the precision

of link prediction can be calculated from Eq. (2.33).

PrecisionLP =
|PE ∩ |RE|
|PE|

. (2.33)

34 2. Theoretical Background

Chapter 3

Automatically Spotting Information-rich

Nodes in Graphs

In this thesis, we start with mining knowledge from the simple graph. We focus on a novel

graph mining task for detecting interesting nodes from a simple graph. What kind of nodes are

interesting in a graph? When we talk about nodes detection, the first impression is that the prob-

lem seems similar with the outlier detection in vector data. However, following the definition

of outlier in vector data, we will find isolated nodes which are not interesting in the graph. On

the other hand, interesting nodes can be judged by the background knowledge. For example,

given the job information, we can easily distinguish leader nodes and staff nodes. However, the

background knowledge is not always available. Normally, the graph only provides structural

information. Therefore, it is necessary to propose a method which is able to detect interesting

nodes based on the structural information. In this chapter, we propose an algorithm named as

Info-spot which detects interesting nodes from the perspective of link patterns. The algorithm

is proposed based on the information theoretic knowledge, especially the Minimum Description

Length (MDL) principle. Guided by MDL, nodes exhibiting similar link patterns are greedily

merged, then interesting nodes naturally emerge. Meanwhile, Info-spot is a fully automatic al-

gorithm which overcomes the parameters problem that most existing nodes detection approaches

suffer. Finally, the experiments demonstrate the benefits of our approach.

36 3. Automatically Spotting Information-rich Nodes in Graphs

The remainder of this chapter is organized as follows: In Section 3.1, it starts with an intro-

duction. Section 3.2 defines the information content of a node. Section 3.3 introduces the sim-

ilarity measure. Section 3.4 combines similarity measure with embedding. Section 3.5 presents

the algorithm Info-spot in detail. Section 3.6 describes the experiments. Section 3.7 discusses

related work and Section 3.8 gives the conclusion of this chapter.

Parts of the material presented in this chapter have been published in [47], where Jing Feng

was responsible for the development of the main concept, implemented the main algorithms and

wrote parts of the paper; Xiao He helped with the development of the main concept, performed

parts of experiments and wrote part of the paper; Claudia Plant supervised the project and revised

the whole paper.

“Xiao He, Jing Feng, Claudia Plant. Automatically Spotting Information-Rich N-

odes in Graphs. The IEEE ICDM 2011 Workshop on Data Mining in Networks

DaMNet: 941-948.”

3.1 Introduction

3.1.1 Motivation

In many applications including, e.g., social media, network traffic and protein interaction data,

the detection of outstanding and interesting data objects is the most important data mining goal.

Especially for vector data, the research area of outlier detection has therefore attracted much

attention and is very mature with multiple research papers, surveys and books, e.g., [59, 12, 9],

to mention a few. Although large graphs are prevalent in nature, consider, e.g., social and pub-

lication networks, road networks and biological pathways, only disproportional few approaches,

such as [2, 27, 84] focus on the detection of outstanding nodes in graphs. The traditional out-

lier notion for vector data cannot be straightforwardly extended to graph data but needs to be

completely redefined. For vector data, three basic approaches to outlier detection have been pro-

posed: parametric statistical methods, distance-based and density-based data mining techniques.

3.1 Introduction 37

All these approaches have in common that they search for data points which are far away from

the rest of the data set.

Translating this outlier notion directly to graph mining would mean to search for isolated

nodes. At first glance, this perhaps seems to be easy. However, most real-world graphs are very

sparse and characterized by a small-world organization. Although most nodes are connected to

very few other nodes, almost every pair of nodes is connected by a short path. It is therefore d-

ifficult to distinguish between outstanding and ordinary nodes based on isolatedness. Moreover,

consider the extreme case of a completely isolated node forming a singleton connected compo-

nent. Such a node would be rated as very outstanding but is not interesting at all for knowledge

discovery. The reason for this is evident from Hawkins’ fundamental definition [46]: An out-

standing observation can only be interpreted in the context of the other observations in the data

set. Since a singleton node is not connected to the rest of the graph, it does not represent any

interesting information for interpretation. Therefore, in contrast to vector data, isolatedness is

not a helpful property to detect outstanding nodes in a graph. Outlier detection on graphs re-

quires completely novel outlier notions. An interesting recent approach, Oddball [2] proposes

techniques for feature extraction to represent the nodes of a graph in a low-dimensional vector

space. Interesting near-cliques and star-like structures can be identified with standard outlier de-

tection techniques for vector data. Note that in Oddball outlying nodes are not isolated nodes but

rather central nodes in extraordinary subgraphs.

3.1.2 Contributions

In this chapter, we focus on automatically detecting interesting nodes in large graphs. To quantify

the interestingness of a node, we consider the information content of its link pattern from the

perspective of data compression. To illustrate the basic idea of information theoretic for the

detection of interesting node, let us take data transmission for example. We want to transfer

the information of a graph-structured data set via a communication channel from a sender to

a receiver. Normally, we need to transfer the full adjacency matrix, requiring communication

costs proportional to its entropy. However, most natural graphs can be much more effectively

38 3. Automatically Spotting Information-rich Nodes in Graphs

compressed since they contain regularities: many objects approximately follow some typical

link patterns. Only some very interesting nodes exhibit a special and unique link patterns which

cannot be effectively compressed with any of the ordinary link patterns.

Figure 3.1 illustrates an intuitive example: To transfer a graph data G, a naive way would be

to directly compress the adjacency matrix of G (the top path in Figure (3.1)), the coding costs

are 20806 bits in total. However, this graph exhibits strong regularities which could be used

to improve compression. In particular, there are two groups of vertices of size 100 (dark blue

nodes) and 49 (pink nodes) having exactly same link patterns. We thus group them together and

only transfer the adjacency matrix of a four-node graph GR and spend some additional bits to

store the group information (the bottom path in Figure (3.1)). This simple coding scheme only

requires about 168 bits in total, where the drastically reduced adjacency matrix requires about

14 bits and the cluster ID required around 154 bits. Finally, the light blue vertex with ID 3 and

red one with ID 4 can be easily labeled as outstanding compared with the other nodes, since they

have different link patterns.

1 100

2 49

3 1

4 1

GR

23

4

1

49

100

…

…

G
(20806 bits)

(167.98 bits)
+

Figure 3.1: An Example of Using Regularities to Compress Graph and Detect Outstanding Nodes

3.2 The Information Content of A Node 39

The major contributions of our approach can be summarized as follows:

• Information content as a novel outlier notion for graphs. The information content of

the link pattern is an intuitive and flexible way of quantifying the interestingness of a node.

This novel outlier notion allows detecting a wide range exceptional link patterns, including

e.g., centers of star-like structures and hubs.

• An intuitive similarity measure for comparing nodes. We formalize this idea to an

intuitive similarity measure quantifying the amount of different information in bits between

the link patterns of nodes.

• Algorithm Info-spot for fully automatic spotting interesting nodes. Based on the Min-

imum Description Length (MDL) principle [41], our novel algorithm Info-spot automati-

cally flags the most interesting nodes of a graph without requiring any input parameters.

3.2 The Information Content of A Node

3.2.1 Naive Coding Scheme

We consider an unweighted and undirected graph G with vertices V = {A,B,C...} denoted by

capital letters and edges E = {AB,AC, ...} labeled with the incident nodes, |E| denoted the

number of edges and |V | denoted the number of nodes.

The most direct and simple way to design a coding scheme to compress a graph G is to

encode its adjacency matrix A ∈ |V | ∗ |V |, with Ai,j = 1 if ij ∈ E. The coding cost of the

adjacency matrix of the graph G is lower bounded by its entropy which is provided by:

CC(G) = |V |2 ·H(G) (3.1)

whereH(G) = −(p1(G) · log2 p1(G)+p0(G) · log2 p0(G)), p1(G) and p0(G) are the probabilities

of 1 and 0 in the adjacency matrix of graph G. Although the naive coding scheme is very simple,

its effectiveness is far from the optimal compression rate. This is because of the underlying

40 3. Automatically Spotting Information-rich Nodes in Graphs

assumption that each cell of the adjacency matrix is independent from each other cell, which is

the case in a randomly generated graph. Most real-world graphs however, are not random but

have been generated by some distinct statistical processes which cause dependencies among the

link patterns of the vertices.

3.2.2 Information Content of A Node

In adjacency matrix, the link pattern of a vertex can be written in a binary vector, where ‘1’

indicates its connection and vice versa. This well captures the relationship between the vertex

and all the other vertices, which means that it contains all the information of a node in a graph.

Therefore, we define the information content of the link pattern to quantify the interestingness of

a node.

Definition 3.1 (Information Content of a Node) The link pattern of a node v is a vector Lv =

{l(1), l(2), · · · , l(i), · · · , l(|V |)} ∈ |V | × 1. l(i) = 1 if node v has edge with node i. Otherwise

l(i) = 0. We define the information content of a node as the amount of bits coding its link pattern:

I(v) = I(Lv) =

 |V | ·H(Lv) if 0 < p1 < 1

1 + log2 |V | else
(3.2)

where H(Lv) = −(p1(Lv) · log2 p1(Lv) + p0(Lv) · log2 p0(Lv)), where p1(Lv) and p0(Lv) are

the probabilities of ‘1’ and ‘0’ in the link pattern of node v. When p1(Lv) = 0 or p0(Lv) = 0,

which means that the vertex is isolated or it connects with all the other vertices, the entropy of

the vertex’s link pattern is 0. However we still need some bits to transfer the link pattern. As Eq.

(3.2) showed, 1 bit is used to code whether the vertex is isolated or connected to all the other

vertices, and log2 |V | is the bits to code the length of pattern.

3.3 Similarity Measure

In this section, we introduce an information-based similarity measure between the link patterns

of two vertices and exploit this similarity for effective graph compression. When encoding the

3.3 Similarity Measure 41

adjacency matrix of a graph, we can also consider calculating the information content of each

vertex separately and sum up over all vertices. With this vertex-centered view we can not only

quantify how many bits we need to encode that particular vertex and its link pattern, i.e. its

incident edges. In particular, we can also compare two vertices A and B by quantifying the

amount of non-redundant information between their link patterns. If A and B have very similar

link patterns, which means that they are connected to similar vertices, instead of encoding the

link patterns of A and B separately, we can improve the graph compression if we only encode A

with its information content and additionally specify a small amount of relational information to

represent B.

To calculate the relational information of two nodes, we first define a relation pattern of them,

then with the information content of the relation pattern we get the similarity.

Definition 3.2 (Relation Pattern Between Two Nodes) The link pattern of node A and node B

are LA and LB, the relation pattern between A and B is RAB, with

RAB(i) =

 1 if LA(i) = LB(i)

0 if LA(i) 6= LB(i)
(3.3)

Figure 3.2 is an example of the relation pattern of two nodes A and B.

LA 1 0 1 1 0

LB 1 1 0 1 0

RAB 1 0 0 1 1

Figure 3.2: Relation Pattern of Two Nodes

The relation pattern of two nodes can be quantified in amount of bits according to the infor-

mation content of a pattern defined in Eq. (3.2), similarly we define the bits of coding the relation

pattern of two nodes to be their similarity with

I(RAB) =

 |V | ·H(RAB) if 0 < p1 < 1

1 + log2 |V | else
(3.4)

42 3. Automatically Spotting Information-rich Nodes in Graphs

where H(RAB) is the entropy of the relation pattern. From this definition we can get an intuitive

similarity measure. The smaller the information content of relation pattern of two nodes is, the

more similar they are.

As mentioned before, we can improve graph compression using proposed relation pattern

and similarity. Take Figure 3.2 as an example, if we encode the link pattern of nodes A and B

separately to represent them, the coding cost is I(LA) + I(LB) ' 9.7 bits, but if we only use the

link pattern of node A and relation pattern of them for coding, the cost is I(LA) + I(RAB) ' 8.5

bits, which is smaller. Such strategy can help us to find the optimal coding of a graph, and further

get the interesting nodes.

3.4 Embedding

In this section, we combine the proposed similarity measure with metric embedding to verify

its effectiveness. The proposed matrix similarity can be regarded as a high dimensional data

(|V | × |V |) with |V | observation and |V | dimension. Therefore, we can directly use any mature

outlier detection method for vector data by mapping the similarity matrix to a lower dimen-

sionality. Multidimensional Scaling (MDS) [11] is an efficient and effective algorithm to find

a low-dimensional embedding of a similarity matrix. However, it is hard to decide how many

dimensions should we choose to map the similarity matrix onto. Closely related to MDL, the

Bayesian Information Criterion (BIC) [65] is a method to decide a suitable dimensionality for

embedding. BIC is defined as follows:

BIC =
∑
i<j

(dij − d̂ij) +m · n · log2
n(n− 1)

2
, (3.5)

where dij is the distance of any two entities in similarity matrix, d̂ij is distance of any two entities

in embedding; n is the dimensionality of the similarity matrix, in our case, it corresponds to the

number of vertices; m is the dimensionality of the embedding. We compute the BIC for each

value of m, which ranging from 1, 2, · · · , n and choose the minimum as suitable dimensionality

for embedding. The experiment results show the effectiveness of proposed similarity, which are

3.5 Algorithm Info-spot 43

depicted in Figure 3.6 in Section 3.6.

3.5 Algorithm Info-spot

In this section we first introduce a MDL-based coding scheme, then based on this coding scheme

we present Info-spot, a greedy algorithm which iteratively merges the two most similar vertices

based on the proposed similarity measurement until all vertices are merged together, and finally

outputs the graph representation with the minimum MDL. All nodes remaining isolated can be

easily flagged as interesting.

3.5.1 MDL-based Coding Scheme

The Minimum Description Length (MDL) principle has recently attracted much attention for

model selection for many data mining tasks including classification [113] and clustering [8, 7].

It is based on the following insight: Any regularity in the data can be used to compress it and the

more we are able to compress the data, the more we have learned about it [41]. Therefore, we

can get the best graph representation when we get the MDL representation of the graph.

2

1

5 4

3

Figure 3.3: An Example of Graph

As mentioned in previous section, we can represent a graph by compressing its adjacency

matrix, but if there exists one pair of vertices having similar link patterns, we can merge them

together and using the relation pattern of them and the adjacency matrix of remaining vertices

to represent the graph instead. The following equation defines the coding cost of a graph using

44 3. Automatically Spotting Information-rich Nodes in Graphs

such representation method:

CC(G) = CC(GR) + I(R) + 2 · log2 |V | (3.6)

where GR is the graph with remaining vertices, CC(GR) is the naive coding cost of GR, I(R)

is the coding cost of relation pattern between two merged vertices, 2 · log2 |V | is the bits to code

the ID of merged nodes.

1 2 3 4 5

1 1 1 1 0 0

2 1 1 1 1 0

3 1 1 1 1 0

4 0 1 1 1 1

5 0 0 0 1 1

2 3 4 5

2 1 1 1 0

3 1 1 1 0

4 1 1 1 1

5 0 0 1 1

R(1,2) 1 1 1 0 1

(a) (b)

Figure 3.4: MDL Coding Example

Figure 3.3 displays a simple graph which we use in the following. Figure 3.4 illustrates

the compression of this simple graph with proposed coding scheme. Figure 3.4 (a) shows the

adjacency matrix of the graph in Figure 3.3 and Figure 3.4 (b) displays the relation pattern of

two merged vertices and the adjacency matrix of remaining vertices. In Figure 3.4, both (a) and

(b) convey a model of graph representation, and the coding cost of each model can be calculated

using Eq. (3.6). By finding more similar nodes from the adjacency matrix of remaining vertices,

we obtain a set of models to represent the graph. Then we use the MDL principle to choose the

best one.

3.5 Algorithm Info-spot 45

3.5.2 The Greedy Merging Algorithm Info-spot

The intuition of the algorithm Info-spot is that if a pair of nodes have very similar link patterns,

we can use one vertex’s link pattern and the relation pattern between them to represent them.

As for any node pairs, we can merge them by removing the vertex with a higher entropy link

pattern so as to reduce the coding cost. The defined similarity measure between any node pair is

based on the relation pattern between them. Therefore, the more similar the link pattern of two

vertices is, the less bits are required to express the relation pattern of these node pair. Typically,

in each graph there are many pairs of nodes that can be merged to give a reduction in coding

cost. Info-spot iteratively find the most similar pairs in the remaining vertices and merge them

by removing the one with higher entropy until all vertices are merged, and meanwhile in each

iteration we record the better MDL representation and further get the optimal one.

Now we describe the Info-spot algorithm, which is shown in Algorithm 3.1. Specifically, it

can be divided into two phases: Initialization and Iterative merging. In the Initialization phase,

we first compute the similarity between all pairs of vertices via their relation pattern, then we set

the remaining vertices VR to be the whole vertices set VG and different pattern DP to be empty,

after that we compute the initial coding cost minCost with VR and DP , which is the entropy of

original adjacency matrix. During the Iterative merging phase, we first pick the pair (a, b) with

the minimum similarity in link pattern. Then we remove the vertex with higher entropy from VR

and add the relation pattern of (a, b) to DP . After that we recompute the coding cost with new

VR and DP , and record the smaller one compared with minCost. Then we merge another pair of

vertices again until all vertices are merged together. The following example illustrates the greedy

algorithm on a simple graph.

Figure 3.5 depicts the process of Info-spot on the example graph. After acquiring the similar-

ity between each node pair, we find the node pair (1, 2) is the most similar one, then they merged

and meanwhile the link pattern of node 1 is deleted from the adjacency matrix, so the five ver-

tices adjacency matrix is replaced by the four vertices 2, 3, 4, 5 adjacency matrix and the relation

pattern between node pair (1, 2), which is expressed as R(1, 2). The following process can be

deduced analogically until only one vertex 5 is left in the adjacency matrix. Finally, the graph

46 3. Automatically Spotting Information-rich Nodes in Graphs

Algorithm 3.1 Info-spot
Input: Graph G with all vertices VG, Different patterns DP , Remaining vertices VR
Output: Interesting Vertices: R

//Initialization:
1: Set VR = VG and DP = ∅;
2: for Each node pair (a, b) ∈ VG do
3: Compute the similarity via relation pattern R(a, b) by Eq. (3.4);
4: end for
5: Calculate the initial coding cost minCost = CC(VR, DP) by Eq. (3.6);

//Iterative Merging:
6: while VR 6= ∅ do
7: Choose the node pair (a, b) ∈ VR with the minimum similarity;
8: Choose the node v from node pair (a, b) with the larger entropy;
9: Remove node v from the VR;

10: Add R(a, b) to DP ;
11: Compute the new coding cost newCost = CC(VR, DP);
12: if newCost < minCost then
13: Set minCost = newCost, VRbest

= VR and DPbest
= DP ;

14: end if
15: for Each node c ∈ VR connected with v do
16: Recompute the similarity of node pair (c, r), ∀r ∈ VR;
17: end for
18: end while
19: Choose isolated nodes R = VRbest

;
20: return R;

3.6 Experiments 47

can be showed in the form of one vertex 5 adjacency matrix and 4 relation patterns. In each step,

we record the coding cost for each model, combined with adjacency matrix and relation patterns,

and finally choose the best model with MDL principle.

3.5.3 Runtime Complexity

The complexity of the Info-spot algorithm is O(|V |2 · dav + |V |). Where |V | is the number of

vertices, dav is the average degree of each vertex.

3.6 Experiments

To extensively study the performance of our algorithm, we conduct experiments on two excerpts

of DBLP dataset1 and one excerpt of Enron email dataset2 with Oddball [2]. We implement our

algorithm in Java, and the source code of Oddball is obtained from the author. All experiments

have been performed on a laptop with 2.0 GHZ CPU and 4.0 GB RAM.

To facilitate the evaluation and interpretation we focus on the Data Mining research field

when extracting experimental data sets from DBLP. Thus, we generate two collaboration graph

data sets from DBLP, one is the coauthor network of 5 famous scientists in Data Mining, the

other one is the coauthor network in Data Mining field. For Enron email dataset, we extract a

communication graph from three ex-CEO of Enron for further comparison.

3.6.1 Coauthor Network of 5 Famous Scientists

Comparison with Oddball. This data set is extracted from DBLP, the vertices are 5 famous

scientists (Christos Faloutsos, Jiawei Han, Philip S. Yu, Qiang Yang and Chris H. Q. Ding) and

their coauthors in data mining field, if any two of them have published papers together, there is an

edge between them, the data set contains 1297 vertices and 7420 edges. We spot interesting nodes

of this data set with Info-spot and compare them with the outliers detected by Oddball. Info-spot

1http://dblp.uni-trier.de/xml/
2http://www.cs.cmu.edu/∼enron/

48 3. Automatically Spotting Information-rich Nodes in Graphs

1 2 3 4 5

1 1 1 1 0 0

2 1 1 1 1 0

3 1 1 1 1 0

4 0 1 1 1 1

5 0 0 0 1 1

2 3 4 5
2 1 1 1 0
3 1 1 1 0
4 1 1 1 1

5 0 0 1 1

R(1,2) 1 1 1 0 1

5
5 1

R(1,2) 1 1 1 0 1
R(2,3) 1 1 1 1
R(3,4) 1 1 0
R(4,5) 0 0

+

+

...

Figure 3.5: The Process of Compression

3.6 Experiments 49

automatically outputs 14 interesting nodes and we rank them by their information contents. For

comparison, we pick the top 14 ranked outliers that Oddball outputs. Table 3.1 summarizes the

results highlighting the names of 5 scientists chosen to generate the graph in bold.

It can be clearly seen from the table that Oddball can only detect 4 famous scientist which

we chose to generate the graph, it can not find Chris H. Q. Ding. However Info-spot can detect

all 5 famous scientists, and all of them are ranked in a higher position than that by Oddball.

Furthermore, Info-spot can automatically select 14 outliers without any prior information, in the

other hand Oddball only give a rank list, users have to choose a threshold to cut off. Additionally,

Oddball detected some guys who are not famous, like Gene Spafford and Jim Massaro who are

in the top and third of rank list of Oddball. Oddball treats them as an outliers mainly because

they fit the assumption that the number of nodes and the number of edges of a Egonet follow

a power law, however ignores the information content: Gene Spafford and Jim Massaro only

publish 4 and 1 papers, respectively, which provide little information to users. In the other side,

Info-spot provides information-rich nodes, like Jian Pei whose information content is even more

than Chris H. Q. Ding whom we choose to generate the dataset. We get academic statistic for

Jian Pei from http://www.arnetminer.org, the H-index of Jian Pei is 39, being ranked

the top-31th scientist in data mining and the citation of him is 10691 being ranked the top 30th

in same area, which shows that Jian Pei is a very famous and influential scientist in the field of

data mining.

Visualization. To emphasize the effectiveness and strength of the information-based similari-

ty measure, we use Multidimensional Scaling technique to map the similarity matrix to lower

dimensions for visualization. The best representation dimensions are chosen by Bayesian In-

formation Criterion which was introduced in Section 3.4. The best dimensions to represent the

similarity matrix of 5 scientist dataset are 4, Figure 3.6 depicts the plot in each two mapping

dimensions of the similarity matrix of 5 scientists dataset. We provide some examples detected

by Info-spot in the figure. This experiment clearly shows that in the embedding the interesting

nodes which contain much more information are far from the ordinary nodes. Thus, they can

also be detected by established feature space outlier detection techniques e.g. LOF [12].

http://www.arnetminer.org

50 3. Automatically Spotting Information-rich Nodes in Graphs

-0.8 -0.6 -0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4

0.6

Dimension 1

D
im

en
si

on
 2

Qiang Yang

Chris H. Q. Ding
Jian Pei

Zheng Chen

Christos Faloutsos

Jiawei Han

Philip S. Yu

-0.8 -0.6 -0.4 -0.2 0 0.2
-0.4

-0.2

0

0.2

0.4

0.6

Dimension 1
D

im
en

si
on

 3 Qiang Yang

ChengXiang Zhai

Chris H. Q. Ding

Philip S. Yu

Jian Pei

Xifeng Yan

Christos Faloutsos

Jiawei Han

-0.8 -0.6 -0.4 -0.2 0 0.2
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Dimension 1

D
im

en
si

on
 4

Qiang Yang

Chris H. Q. Ding

Jian Pei

Philip S. Yu

ChengXiang Zhai

Christos FaloutsosJiawei Han

-0.4 -0.2 0 0.2 0.4 0.6
-0.4

-0.2

0

0.2

0.4

0.6

Dimension 2

D
im

en
si

on
 3

ChengXiang Zhai

Christos Faloutsos

Jiawei Han

Zheng Chen

Qiang Yang

Philip S. Yu

-0.4 -0.2 0 0.2 0.4 0.6
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Dimension 2

D
im

en
st

io
n

4

Christos Faloutsos

Jiawei Han

Zheng Chen

Philip S. Yu

ChengXiang Zhai Qiang Yang

-0.4 -0.2 0 0.2 0.4 0.6
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Dimension 3

D
im

en
si

on
 4

Jiawei Han

ChengXiang Zhai

Qiang Yang

Philip S. Yu

Christos Faloutsos

Figure 3.6: Mapping Similarity Matrix of 5 Scientists Data Set to 4 Dimension and Plot in Each
Two Pairs (Most interesting nodes are highlighted with their name).

3.6 Experiments 51

Table 3.1: Results of Info-spot and Oddball on 5 Famous Scientists Dataset

Rank Info-spot Oddball
1 Jiawei Han Gene Spafford
2 Philip S. Yu Jiawei Han
3 Christos Faloutsos Jim Massaro
4 Qiang Yang Philip S. Yu
5 Jian Pei Alain Bensoussan
6 Chris H. Q. Ding Qiang Yang
7 Jeffrey Xu Yu Nathan Berg
8 Zheng Chen Christos Faloutsos
9 Haixun Wang Joel Sachs

10 ChengXiang Zhai Alex Y. M. Chan
11 Xifeng Yan Ravi S. Sandhu
12 Bing Liu Shari Roseman
13 Wei Fan Shouhuai Xu
14 HongJiang Zhang Su-Jeong Ko

3.6.2 Data Mining Scientists Collaboration

This data mining scientists collaboration dataset is extracted from the DBLP, we choose the

authors who published at least one paper in KDD or ICDM to be the vertices of graph, if two

authors have collaboration in any conference or journal, there is an edge between them. This

dataset consists of 6416 nodes and 26457 edges.

Proposed Info-spot outputs 16 interesting nodes finally, Table 3.2 provides the top 16 out-

standing nodes detected by Info-spot and Oddball, highlighted in bold are all scientists that are

identified by both algorithms, for Oddball we pick the top 16 in the rank list. From the table

we can clearly show that very famous scientists in data mining have been selected by both algo-

rithms, like Jiawei Han, Philip S. Yu, Christos Faloutsos and so on, however some other famous

scientists like Jeffery Xu Yu, Tao Li and Heikki Mannila are missed by Oddball.

3.6.3 Email Communication Network of 3 ex-CEO from Enron

This email communication graph data is extracted from Enron email network, the nodes are

three ex-CEO’s email address of company Enron(Jeffery Skilling, John Lavorato and Kenneth

52 3. Automatically Spotting Information-rich Nodes in Graphs

Table 3.2: Results of Info-spot and Oddball on Data Mining Dataset

Rank proposed Oddball
1 Jiawei Han Pelin Angin
2 Philip S. Yu Jiawei Han
3 Christos Faloutsos Philip S. Yu
4 Qiang Yang Yan Chen
5 Jian Pei Chen Xi
6 Wei-Ying Ma Qiang Yang
7 Li Zhang Christos Faloutsos
8 Wei Wang John M. Rosenberg
9 Jeffrey Xu Yu Jian Pei

10 Xindong Wu Wensi Xi
11 Bing Liu Arun K. Majumdar
12 Tao Li Yi Liu
13 Zheng Chen Wei-Ying Ma
14 Heikki Mannila Benyu Zhang
15 Ke Wang Zheng Chen
16 Rakesh Agrawal Horia-Nicolai L. Teodorescu

Lay) and their colleagues’ which has communicated with them. If one person sent an email to

the other one, there is an edge between them. The dataset contains 4177 nodes and 19281 edges.

Proposed Info-spot automatically outputs 18 interesting nodes finally, for Oddball we pick the

top 18 in the rank list. Table 3.3 provides the top 18 outstanding nodes detected by Info-spot and

Oddball, in which the postfix ’@enron.com’ is omitted. All email addresses that are identified by

both algorithms are highlighted in bold, the email addresses of 3 ex-CEO that we used to extract

the graph are with asterisk. From the table we can clearly see that some interesting nodes can be

detected by both algorithms, but surprisingly Oddball can not find 3 ex-CEO’s email addresses,

which we used to generate the graph. Info-spot can find them and some other interesting nodes

that Oddball missed, like ’lavorato’ is another email of CEO John Lavorato, and ’louise.kitchen’

is the ex-president of Enron online department.

3.7 Related Work and Discussion 53

Table 3.3: Results of Info-spot and Oddball on Email Communication Dataset

Rank Info-spot Oddball
1 kenneth.lay* bob.ambrocik
2 jeff.skilling* rodolfo.acevedo
3 bob.ambrocik bodyshop
4 john.lavorato* steve.woods
5 rosalee.fleming veronica.espinoza
6 sherri.sera jeff.royed
7 veronica.espinoza amelia.alder
8 technology.enron forster
9 lavorato technology.enron

10 bodyshop enron.expertfinder
11 billy.lemmons jordan
12 joannie.williamson mbkuntz
13 amelia.alder zipper
14 cliff.baxter henry.safety
15 louise.kitchen lawrence.ciscon
16 karen.denne leigh.edwards
17 zipper jim.fallon
18 outlook.team whalen.kevin

3.7 Related Work and Discussion

Outlier detection is one of the most important data mining task. For vector data, many mature

algorithms have been proposed to detect outstanding objects. These methods belong to three

categories: parametric statistical methods, distance-based and density-based techniques. Statis-

tical parametric methods assume that all objects follow some underlying distributions except the

outliers [46]. Distance-based methods define an outlier as it is d distance far away from the other

n points [59]. Density-based methods are derived from density-based clustering, and it detects

outliers which do not fit well into its neighborhood density, e.g. LOF [12], LOCI [87], CoCo [9].

All these approaches have in common that they search for data points which are far away from

the rest of data set. However, in terms of graph data, the notion outlier should be redefined.

The structure of the graph data is various and more challenging for outlier detection. In graph

data, the definition of outlier is vitally interrelated with its link structure. Besides in different ap-

plication field, owning to the addition of attribute, the definition of outlier is even more versatile.

54 3. Automatically Spotting Information-rich Nodes in Graphs

Therefore, it is impossible to transfer the notion and methods of vector data directly on graph

data.

As well as Info-spot, some proposed outlier detection algorithms for graph data are based

on MDL principle. Eberle and Holder [27] and Nobel and Cook [84] consider specific unusual

substructure which is missing or attaching from the normal substructure as anomalous in graph,

both of their anomalies detection algorithm based on the SUBDUE which is a algorithm for

finding repetitive pattern in graph. Chakrabarti [15] detect anomalous edge by measuring the

cost of removal of this edge by MDL. In contrast with them, Info-spot explicitly focus on nodes

but not subgraphs or edges, which is totally different.

Some other methods focus on outstanding nodes detection as well, such as Lin and Chalupsky

[22] proposed an algorithm in discovering unusual interestingly linked entities in multi-relational

data. Moonesinghe and Tan [78] use Markov chain model to detect the outliers in graph and

compute the outlier score. For the bipartite graphs, according to compute the neighborhood

information for each node by random walk, Sun et al. [104] identify outstanding nodes. Recently,

an interesting approach was proposed by Akoglu et al. [2]. They consider the link pattern of node

and its neighbors which is in the form of near-cliques and near-star as interesting. Four features

are extracted to represent the nodes of a graph in a low-dimensional vector space. Interesting

near-cliques and star-like structures can be identified with standard outlier detection techniques

for vector data. However, the feature extraction technique will lose information by transforming

the graph data to vector data. Compared with these methods, we give a new definition of outlier

in graph and propose Info-spot, which automatically flags the most interesting nodes of a graph

without requiring any input parameters.

3.8 Chapter Conclusion

In this chapter, we focused on automatically detecting the most interesting nodes in a large

graph. We addressed this challenge from the information-theoretic perspective of data com-

pression which has attractive advantages:

We consider the link pattern of each node as the only source of information for knowledge

3.8 Chapter Conclusion 55

discovery. This information is directly available in the adjacency matrix of each graph and our

approach does not require any further assumptions, models or input parameters. The description

length or information content in bits of a link pattern is an intuitive indicator for the interest-

ingness of a node. However, to comprehensively assess the interestingness of a node, we need

consider its information content in the context of the other nodes.

Therefore, we proposed Info-spot, an efficient greedy algorithm for automatically spotting all

interesting nodes. Info-spot iteratively merges those pairs of nodes having the most similar link

patterns. Controlled by the objective of data compression, the merging process continues until

only nodes with an exceptional information-rich link pattern remain isolated. In comparison to

most existing approaches for outlier detection in graphs, Info-spot has two major benefits: Our

approach automatically flags outstanding nodes without requiring any parameters, assumptions

or thresholds. Furthermore, by an information-theoretic view on the link pattern combined with

the greedy merging algorithm, Info-spot naturally and flexibly defines what is an interesting node

in that particular graph data set under consideration. In ongoing and future work, we want to

focus on a comprehensive information-theoretic framework for graph summarization, clustering

and outlier detection.

56 3. Automatically Spotting Information-rich Nodes in Graphs

Chapter 4

Compression-based Graph Mining

Exploiting Structure Primitives

In this chapter, we continue discussing about knowledge discovery in the simple graph. Instead

of nodes, we focus on studying structures of a simple graph. Graph is a structural data, thus

analyzing structures is significant in graph mining. One goal of this chapter is to achieve new

kinds of clusters from graph. As illustrated in Chapter 2, traditional graph mining tasks, espe-

cially with regard to graph partitioning, focus on discovering dense patterns from graph data.

However, most graph data generated from the real world data are very sparse or some parts of

them are sparse. It is difficult to detect dense patterns in such graphs. Therefore, in this chapter

we analyze the graph from the viewpoint of structures and try to discover novel type of clus-

ters. The other goal is to handle multiple graph mining tasks simultaneously. We are able to

detect novel clusters, distinguish graphs and predict links in one algorithm. A novel algorithm

CXprime (Compression-based eXploiting Primitives) is proposed. The core part of CXprime is

the proposed novel coding schemes by using the three-nodes substructures. With the new coding

schemes, we are able to form both triangle- and star-like structures. Based on the Minimum

Description Length (MDL) Principle, graph is effectively compressed by using the three-nodes

substructures. Meanwhile, we can distinguish a graph by its structure, e.g. triangle structures

or star structures. In addition, novel star structure clusters can be detected in a graph, which

58 4. Compression-based Graph Mining Exploiting Structure Primitives

can not be found from classical methods. Additionally a novel structure based unsupervised link

prediction method is proposed. Guided by MDL principle, the algorithm fulfills all the graph

mining tasks without any input parameters.

The remainder of this chapter is organized as follows: Section 4.1 introduces the motivations

and contributions of the work in this chapter. Section 4.2 describes the novel coding scheme in

more detail. Section 4.3 presents the proposed algorithm. Section 4.4 shows the experiments and

evaluations. Section 4.5 discusses related work and Section 4.6 concludes the chapter.

Parts of the material presented in this chapter have been published in [30], where Jing Feng

was responsible for the development of the main concept, implemented the main algorithms and

wrote the largest parts of the paper; Xiao He helped with the development of the main concept,

performed parts of experiments and wrote part of the paper; Nina Hubig wrote part of the paper

and revised the whole paper; Christian Böhm and Claudia Plant supervised the project and made

contributions to the building of coding scheme and revised the whole paper. The co-authors also

contributed to the conceptual development and paper writing.

“Jing Feng, Xiao He, Nina Hubig, Christian Böhm, Claudia Plant. Compression-

Based Graph Mining Exploiting Structure Primitives. The IEEE International Con-

ference on Data Mining (ICDM) 2013: 181-190.”

4.1 Introduction

4.1.1 Motivation

Real world data from various application domains, such as social networks, bioinformatics and

neuronal networks can be modeled as graphs. Specific topological structures like triangles and

stars represent meaningful characteristic relationships among subsets of nodes. Specifically, in

[94] the authors introduced a transitivity attribute which is calculated from the fraction of trian-

gles in all node triplets. As an indispensable condition for small-world networks, high transi-

tivity implies more triangles in a graph. Moreover, the authors in [54] characterize graphs with

a power-law degree distribution, which is a significant feature of scale-free networks, by a very

4.1 Introduction 59

low degree of most vertices combined with a high degree of only very few vertices. Therefore,

hubness plays a pivot role in a graph which is created in star style. Obviously, triangles and

stars are the two basic regular substructures which appear in graphs most frequently. The trian-

gle embodies the transitivity of a graph and the star shows the hubness of a graph. Moreover,

graphs containing more triangles are showing different structures and characteristics to graphs

that contain more stars. It is very interesting to know which substructure is popular in a graph.

Firstly, the popular substructure reflects the structure feature of the whole graph. Secondly, based

on the frequent appearance of a substructure, the graph can be compressed under Minimum De-

scription Length (MDL) principle [92]. Thirdly, the structure information is very helpful for link

prediction.

JohnSam

Figure 4.1: Two Differently Structured Sub-graphs.

However, there are some graphs that possess both high transitivity and hubness in different

parts of the whole graph. Take the toy graph which is shown in Figure 4.1 as an example. The

graph displays the friendship relationship between Sam and John. Supposing that Sam prefers

to make friends with local people, and all his local friends are also friends with each other;

while John’s friends scatters in various countries, so that some of them do not know each other.

Therefore, the circle of friends of Sam performs a clique with a large amount of triangles while

John is the hub of his circle of friends which is displaying a star. The authors of [85] point out

that transitivity increases with the strength of the corresponding community. Traditionally, many

algorithms are designed to detect communities which pursue the compactness of inner vertices

and sparseness of intra vertices, including spectral clustering [99], Min-Max cuts [26] and others.

60 4. Compression-based Graph Mining Exploiting Structure Primitives

However, as shown in Figure 4.1, it is meaningful to distinguish among the star-like cluster as

John’s circle of friends and the clique-like cluster of Sam’s friends.

4.1.2 Contributions

In this chapter, we propose a novel compression-based graph mining algorithm named CXprime

(Compression-based eXploiting Primitives). The algorithm is based on exploiting three-node

primitives which are the smallest substructures and express both transitivity and hubness of a

graph. Unlike complex substructures, three-node primitives are simple and easy to count. Any

graph no matter how complex it is can be considered as a combination of three-node primitives.

Moreover, we exploit the differences in the relative frequency of three-node primitives for graph

compression. Based on the idea of MDL, frequently appearing primitives are effectively com-

pressed in short bitstrings and rarely appearing primitives represented by longer bitstring. Due to

the fact that three-node primitives are appropriate for representing both triangular and star sub-

structures, CXprime is designed to distinguish and partition graphs with different substructures.

The main contributions of CXprime are summarized as follows:

• Discovery of graph structure: CXprime automatically discovers the basic structure type

of a graph. Relating data mining to data compression, the core of CXprime is a coding

scheme based on three-node primitives allowing to model both triangular and star struc-

tures. Emphasizing the characteristics of a triangle graph and star graph separately, CX-

prime comprises a Triangle Coding Scheme and a Star Coding Scheme. By applying these

two coding schemes to an unknown graph we can determine its structure type either as

star-like or triangle-like.

• Graph partitioning based on structures: Based on the Triangle Coding Scheme and

Star Coding Scheme which is proposed by CXprime, the graph can be partitioned into

subgraphs with star or triangular structures. Furthermore, the number of clusters can be

selected automatically since CXprime is based on the idea of Minimum Description Length

principle.

4.2 Graph Compression using Structure Primitives 61

• Link prediction based on structures: CXprime allows us to detect the structure type of

a graph. We exploit this information to design a novel unsupervised link prediction score.

Experiments demonstrate that this structure-based score outperforms existing techniques

which impressively demonstrates that structure information is very useful for graph min-

ing.

4.2 Graph Compression using Structure Primitives

Suppose we want to transfer a graphG over a communication channel from a sender to a receiver.

We consider an unweighted and undirected graph G with |V | nodes in this chapter. The graph is

provided by its adjacency matrix A with entries Ai,j specifying whether there is an edge among

the nodes i and j. To transferG we need to compress each entry in its adjacency matrix. If we do

not have any knowledge on the structure ofG, the coding costs are provided by the entropy of the

adjacency matrix. Since G is an undirected graph, A is symmetric and we only need to encode

the upper or lower half of the matrix without the diagonal (representing self-links which are never

or always set by convention). Regardless of the type of graph and its characteristics, which can

be e.g. scale-free, small-world, Erdos-Renyi, clustered, dense or sparse, we can represent every

graph by a bit string of length corresponding to the entropy of its adjacency matrixA. To encode

a single entry Ai,j , we need an average of H(A) bits, where H(A) denotes the entropy and is

provided by:

−(p(e) · log2(p(e)) + p(ne) · log2(p(ne))),

where p(e) stands for the probability to observe an edge in G, corresponding to the percentage of

1s in A, and p(ne) analogously. Thus the total coding costs are provided by: |V | · (|V | − 1)/2 ·

H(A), where |V | is the number of vertices.

If G contains regularities in the form of frequent structure primitives like triangular or star

structures, we can compress it more effectively than its entropy. Note that our primary focus

is not on compacting the data for transmission over a communication channel but on mining

the truly relevant patterns in the data in an unsupervised way. However, there is a direct re-

62 4. Compression-based Graph Mining Exploiting Structure Primitives

lationship between data compression and knowledge discovery: The better a set of patterns fit

to the data, the better is the compression, i.e. the greater are the savings in coding costs over

the entropy which serves as a baseline. In the following section, we elaborate concrete coding

schemes including structure primitives which are characteristic for major types of real world

graphs, including small-world and scale-free.

4.2.1 Basic Coding Paradigm

Three-node primitives (substructure with three nodes) are the smallest substructures which can

embody both connectivity and transitivity of a complex graph. Figure 4.2 enumerates all possible

link patterns among three nodes in an undirected graph. In a random graph, each edge exists with

the same likelihood and does not depend on the existence of other edges. Therefore, a random

graph requires coding costs corresponding to its entropy and cannot be represented more effi-

ciently. If a graph is characterized by transitivity or star-like structures, the existence likelihood

of an edge depends on the existence of other edges. In a graph with many star-like hubs, if e.g.

node B is already connected to node A (cf. Figure 4.2 (c)), then node C is also connected to

A with a high likelihood (cf. Figure 4.2 (g)). In a highly transitive graph, when we know that

there are two edges among tree nodes (cf. Figure 4.2 (g)), also the third edge closing the triangle

(cf. Figure 4.2 (h)) exists with a high likelihood. In other words, the probability of observing

the third edge BC (cf. Figure 4.2 (h)) is very high under the condition that we already observed

a potential triangle formed by two edges. We can exploit these typical variations in conditional

probabilities to effectively compress structured graphs as follows (see Figure 4.3):

Fixed Processing Order for Coding and De-Coding. First, the sender and the receiver agree

on some fixed order for encoding and de-coding the adjacency matrix A, which can be column-

wise, row-wise or diagonal-wise. For an undirected graph, the code is a bitstring composed of

|V | · (|V |−1)/2 codewords. By the fixed coding and de-coding order, the receiver always knows

which codeword corresponds to which entry Ai,j without any ambiguity or information loss. To

encode the graph in Figure 4.3(a), without loss of generality, we select a diagonal-wise order of

processing. The diagonal colored in black in Figure 4.3(b) does not need to be transferred, since

4.2 Graph Compression using Structure Primitives 63

(d)

A

B C

A

B C

A

B C

A

B C

(a)

(e)

(c) (b)

A

B C

A

B C

A

B C

A

B C

(f) (g) (h)

Figure 4.2: All Possible Connections of Three-node Primitives

it represents self-connections which are set by convention. To encode the first off-diagonal, we

cannot use any conditional probabilities since each entry corresponds to a single edge among two

different nodes and we have no information on three-node primitives.

Case Distinctions based on Conditional Probabilities. Starting from the second off-diagonal,

we can exploit conditional probabilities together with case distinctions depending on the infor-

mation we have already seen before in the processing order. In particular, we define three con-

ditional probabilities which can be obtained from counting the relative frequency of three-node

primitives (cf. Figure 4.2), e.g. Na is the frequency of case (a) :

Definition 4.1 (Basic Conditional Probabilities) Basic conditional probabilities contain No Edge,

Potential Star and Potential Triangle:

• No Edge: We have not seen any edges in three-node primitives so far.

p(e|No Edge) = Nbcd

Na+Nbcd

• Potential Star: We have already seen one edge. If another link were added next, we would

get a star primitive, therefore we call this primitive with only one edge potential star.

64 4. Compression-based Graph Mining Exploiting Structure Primitives

A

B

C

D H

G

E

F

A: B, C, D, E
B: A, C, E, F
C: B, A, E
D: A
E: F, C, G, B, A
F: E, G, B
G: F, E
H: ‐

(a) Graph (b) Adjacency Matrix (c) Adjacency Lists

Figure 4.3: Example for Coding and De-coding. (a) Graph; black edges: already coded; red
edge: current edge; grey edges: not yet processed; (b) Adjacency matrix: filled entries: already
coded in diagonal-wise order of processing; red: current entry; (c) Current stage of adjacency
lists, see Section 4.2.1.

p(e|Potential Star) =
Nefg

Nbcd+Nefg

• Potential Triangle: We already observed two edges. If another link were added next, we

would get a triangle primitive, therefore we call this primitive with two edges potential

triangle.

p(e|Potential Triangle) = Nh

Nh+Nefg

Where Nbcd = (Nb + Nc + Nd)/3 and Nefg = (Ne + Nf + Ng)/3, cf. Figure 4.2. For every

condition σ ∈ {No Edge, Potential Star, Potential Triangle}, the probability that no edge exists

is provided by p(ne|Condition σ) = 1 − p(e|Condition σ). The entropy of each condition is

provided by:

H(σ) = −(p(e|σ) · log2 p(e|σ) + p(ne|σ) · log2 p(ne|σ)). (4.1)

where e means there is an edge and no edge for ne.

When encoding a particular entry in the adjacency matrix, we can find all previously seen

three-node primitives by inspecting the nodes in the corresponding row and column. In our

example (cf. Figure 4.3), we are currently coding the third off-diagonal and now want to encode

the red entry corresponding to the edge CG in row 3 and column 7. We already have information

4.2 Graph Compression using Structure Primitives 65

about the nodes D, E, and F. We know that D is not connected to C nor G from the entries (3,

4) and (4, 7). We also know that E is connected to C and G ((3, 5) and (5,7)). Finally, we

know that F is connected to G but not to C ((6,7) and (3,6)). We observed all three conditions

above in the previously seen data. Which one should we use to encode the current entry? Since

we aim at compressing the data as much as possible we always select that condition which is

expected to give us the shortest codeword. This is the condition having the lowest entropy. We

could also see our three conditions as alternative classifiers predicting the current entry. If we

have the choice among several classifiers, i.e. if multiple conditions apply, it makes sense to

select the classifier which is most certain about the current case. For our example graph we

have p(e|Potential Triangle) = 0.72, p(e|Potential Star) = 0.35 and p(e|No Edge) = 0.68.

Thus, we select the condition Potential Triangle, since it allows us to encode the current entry

with 0.86 bits in average, while Potential Star would require 0.93 bits and No Edge 0.9 bits.

The current entry is an edge, so we use the codeword representing an edge under the condition

Potential Triangle to encode it. This coding scheme can be decoded without information loss

since for coding and decoding sender and receiver perform the same case distinction based on

the same data.

Parameter Costs. To decode the bitstring, the sender needs the codebook consisting of the

conditional probabilities required to perform the case distinction and the code table saying which

bitstring represents an edge or no edge in every case. Following [91], these parameter costs can

be approximated by Eq. (4.2):

CCparam = 0.5 · num · log2

|V | · (|V | − 1)

2
, (4.2)

where |V | is the number of nodes in the graph and num denotes the number of parameters, which

is three in our case since we consider three different conditional probabilities.

Efficient Implementation with Adjacency Lists. For efficient coding and de-coding the sender

and receiver use adjacency lists. Every time a new entry is processed, it is inserted into the

adjacency lists of both corresponding nodes. Figure 4.3(c) displays a snapshot of the adjacency

lists before processing CG. In order to collect the applicable cases for encoding or decoding CG,

66 4. Compression-based Graph Mining Exploiting Structure Primitives

instead of looking into the corresponding row and column of the adjacency matrix, we scan the

adjacency lists of nodes C and G. In particular, we start with the list of G from the beginning and

with that of C from the end. In the first step, we retrieve F as the first node in the list of G and E

as the last node in the list of C. We know that F is adjacent to G but not to E, which means that

the condition Potential Star is applicable. Having processed F, we move one step forwards in

the list of G and detect the matching node E, from which we can deduce that Potential Triangle

also is applicable. Having processed E, we can move one step in both lists, which means that

we come to the end of the list of G and obtain B in the list of C. Due to the processing order,

information on three-node primitives formed with node B is not yet available, therefore we can

stop as soon as we detect a node coming before C. But we know that we already have information

on D. Therefore, we detect that condition No Edge is also applicable.

4.2.2 Extended Coding Paradigm

The basic coding paradigm only considers the primitives with three nodes, which is the simplest

substructure in a graph. During the diagonal-wise coding process, we can see less previous

information in the beginning and more at the end. Therefore if primitives with more nodes can be

used, we could compress the graph more effectively and get more knowledge from it. However,

counting probabilities of primitives with more nodes would require high computational costs.

We choose some primitives with more nodes to extend the basic coding paradigm as Figure

4.4 shows. These primitives are frequent in real-world graphs, like dense communities or hub

nodes and their neighbors.

Definition 4.2 (Higher-order Conditional Probabilities) Higher-order conditional probabili-

ties contain Multiple Triangles and Strong Star:

• Multiple Triangles: There are multiple points connecting both B and C, which means

previously we can see multiple dual-connected edges. As shown in Figure 4.4 (a) and (b);

• Strong Star: There are multiple points connectingB or C, which means previously we can

see multiple single-connected edges. As shown in Figure 4.4 (c) and (d).

4.2 Graph Compression using Structure Primitives 67

Suppose the high-order conditional are represented as Condition σ′ ∈ {Multiple Triangles,

Strong Star}. The probabilities of existence an edge e under the condition σ′ are provided by:

p(e|k · Condition σ′) =

∑|E|
i=1 Ckmi∑|E|

i=1 Ckmi
+
∑|NE|

j=1 Cknj

, (4.3)

Where |E| is the number of edges in a graph G, and |NE| is the number of pairs of nodes

without connection. mi with {i = 1, 2, ..., E} is frequencies of Condition σ′ for the connected

entry, and nj with {j = 1, 2, ..., NE} is frequencies of Condition σ′ for the unconnected entry.

C is combination symbol. k is the actual frequency we can see for each entry.

A2

. . .

A1

B C

Ak

A2

. . .

A1

B C

Ak

A2

. . .

A1

B C

Ak

A2

. . .

A1

B C

Ak

(a) (b) (c) (d)

Figure 4.4: Multiple Primitives.

No extra effort is required to obtain these higher-order conditional probabilities, since they

are calculated without counting the number of edges (again), but are created by calculating the

combination of pair of nodes that have the same basic primitives, e.g. two linked nodes share

n neighbors then they have Ck
n triangles. We use Eq. (4.3) to calculate the statistic for multiple

triangles and strong stars. In our experiments of both synthetic and real data sets, the probabilities

in Eq. (4.3) with different k become stable when k increases. Therefore, we only compute the

probabilities when k ≤ 4.

To be able to automatically detect the structure type of a graph we now introduce a Star

Coding Scheme and a Triangle Coding Scheme.

68 4. Compression-based Graph Mining Exploiting Structure Primitives

Definition 4.3 (Star and Triangle Coding Scheme) The Star Coding Scheme employs for cod-

ing the following set S of conditional probabilities S := {No Edge, Potential Triangle, Potential

Star, Strong Star} while the Triangle Coding Scheme works with a different set T := {No Edge,

Potential Star, Potential Triangle, Multiple Triangles} as specified in the basic and higher-

order conditional probabilities, cf. Definitions 4.1 and 4.2. Upon encoding or decoding each

entry, the sender or receiver always select that conditional probability of S and T having the

lowest entropy respectively. The overall coding cost CCS for the Star Coding Scheme is provided

by:

CCS =
∑
e

L(e|S)
minH(S)

+
∑
ne

L(ne|S)
minH(S)

+CCparam (4.4)

whereL(e|S) = − log2 p(e|S) is the coding length of a connected entry, L(ne|S) = − log2 p(ne|S)

is the coding length of a unconnected entry, CCparam represents the parameter costs as speci-

fied in Eq. (4.2). However, we now have 3 + k − 1 parameters to consider. Three of them are

basic probabilities, while k − 1 of them are higher order probabilities except for corresponding

basic three-node primitive. The coding cost CCT of the Triangle Coding Scheme is determined

analogously applying the corresponding set T .

Both coding schemes contain all basic conditional probabilities since we need to be able to

represent any possible link pattern among three-node primitives with both schemes. The higher-

order probabilities emphasize and reward star and triangle structures by assigning very short

bitstrings to them. The coding and decoding process with these two extended coding schemes

works as explained in Section 4.2.1. Also here, to encode the first diagonal of A, we use the en-

tropy provided by the general edge existence probability, which is omitted in the above definition

for clarity of presentation.

4.3 Algorithm CXprime

In this section, we present our algorithm CXprime to mine useful information considering the un-

derlying structure primitives from graphs. The core part of CXprime are the two coding schemes,

Triangle and Star Coding Scheme, which are proposed in the previous section. CXprime is able

4.3 Algorithm CXprime 69

to distinguish graphs with high transitivity from graphs with a high amount of hubness by com-

paring the coding cost of both coding schemes. Apart from distinguishing the graph structures,

we combine the coding scheme with K-means for graph partitioning and propose a new link

prediction technique exploiting graph structure information.

4.3.1 Graph Partitioning

Considering the complexity of a graph structure, it can be partly in a high transitivity state and

partly consisting of many hubs. Traditionally, dense communities with high transitivity are

formed by several triangular structures. However, communities with hub are playing a pivot

role in graphs as well. Combining the two proposed coding schemes regarding the different

structures in a clustering process we introduce a novel idea for graph clustering: partitioning by

structure. The K-means like clustering of CXprime is guided by the proposed coding schemes,

which partitions graphs into parts based on their respective structural properties that compress the

whole graph best. To avoid overfitting, we follow the principle of Minimum Description Length

and require that not only the data but also the structure primitives considered in the codebook

need to be encoded.

Based on MDL, we extend the proposed Triangle and Star Coding Scheme to be used in clus-

tering. More specifically, the MDL principle is applied to compress a set of candidate clustering

models, where in our case different models correspond to different partitions. We use our Trian-

gle and Star Coding Scheme to compress the clusters to test whether the subgraph of an original

graph contains triangular or star structures. The coding cost for graph G under the clustering

model M with K clusters {C1, C2, ..., CK} is provided by :

L(G|M) =
K∑
i=1

(min(CCS(Ci), CCT (Ci))) + CCB (4.5)

where CCS represents the coding cost of the star coding scheme, CCT is the coding cost of

the triangle coding scheme and CCB indicates the costs describing the edges between different

graph clusters, for which simple entropy coding is used.

70 4. Compression-based Graph Mining Exploiting Structure Primitives

To avoid overfitting, MDL not only includes the cost for coding the data with the model

L(G|M) but also the cost L(M) for the model. We need to specify the clustering assignment

and conditional probabilities of the Triangle or Star Coding Schemes for each cluster.

L(M) =
K∑
i=1

|Ci| log2(
|V |
|Ci|

) +
K∑
i=1

CCparam(Ci) (4.6)

where the first term represents the coding cost for the clustering assignment and the second term

represents parameters cost.

Finally, the total coding cost for the whole data set with the clustering model M can be

obtained by:

L(G,M) = L(M) + L(G|M) (4.7)

The MDL based clustering algorithm is depicted in Algorithm 4.1. During initialization,

we choose K nodes with the longest shortest path between each other as cluster centers. Then

neighbors of the center nodes are directly assigned to corresponding clusters. If remaining nodes

are neighbors of nodes in a cluster, they will be assigned to this cluster as well. Finally, all nodes

are roughly assigned toK clusters and we calculate the star coding cost CCS and triangle coding

cost CCT of these clusters, then choose the minimum value as initial coding cost. In the iteration

phase, each node is moved to all the other clusters to test whether it reduces the coding cost. If

the new coding cost is decreased, the new graph clusters will be kept. Otherwise, the nodes will

be moved back to their former cluster. The iteration terminates when the clustering labels do not

change. Due to the fact that CXprime is a MDL-based algorithm, the number of clusters K can

be chosen automatically by searching the minimum coding cost without using any parameter.

4.3.2 Link Prediction

In highly transitive graphs as dense communities, triangular substructures appear the most fre-

quently. It implies that if two nodes are involved in more Potential Triangle with other nodes,

there will be a higher probability that the two nodes will be linked. On the other hand, star

substructures are the most common patterns appearing in a graph with several high degree hubs.

4.3 Algorithm CXprime 71

Algorithm 4.1 Graph Partitioning
Input: Graph G
Output: Graph Clusters Gc = C1, C2, ..., CK

1: Select K nodes as cluster centers, and assign nodes to K clusters;
2: Calculate coding cost CCold by Eq. (4.7);
3: while Converge do
4: Reassign nodes to other clusters;
5: Recalculate coding cost by Eq. (4.7);
6: if CCnew > CCold then
7: Move nodes back;
8: end if
9: end while

10: return Gc.

Thus if two nodes are involved in more Potential Star with other nodes, there is a higher prob-

ability that the two nodes will be connected in a star-like graph. Benefiting from structures of

graph detected by CXprime, we propose a new unsupervised link prediction method. Specifical-

ly, we combine the two situations and give a new prediction score which is shown as:

SCXprime(e) =
CCT

CCT + CCS
· fT (e) +

CCS
CCT + CCS

· fS(e), (4.8)

where CCT and CCS are the coding cost of Triangle Coding Scheme and Star Coding Scheme

respectively, e is the edge that will be predicted, fT is the frequency of Potential Triangle after

normalization and fS is the number of Potential Star after normalization. These frequencies can

be used for link prediction after we give weights to them based on the graph type. Coding costs

of a given graph on both triangle and star type are adopted to generate weights. If CCT > CCS ,

then the graph contains more triangular structures than star structures, and the frequency of

triangle fT will be assigned bigger weight. If CCT < CCS , star structures dominate the graph,

thus we give fS a bigger weight.

Runtime complexity. The runtime complexity of CXprime to compress a graph G with

|V | nodes and |E| edges involves: calculating the statistics of structure primitives and coding the

adjacency matrix. Gathering the statistics with the adjacency list we need to go through each pair

of vertices O(|V | · (|V | − 1)/2) and compare their neighbors O(2|E|/|V |), where |E|/|V | is the

average number of edges for each vertex. The asymptotic complexity for this task hence reduce

72 4. Compression-based Graph Mining Exploiting Structure Primitives

to O(|V | · |E|). Similarly, the complexity of the coding part is O(|V |3). For graph partitioning,

we use an efficient K-means-style approach which is linear in |V | and usually converges very

fast.

4.4 Experimental Evaluation

4.4.1 Discovering the Graph Structure

With the two different coding schemes for stars and triangles, CXprime is able to identify whether

the graph is formed by star structures or by triangular structures. It holds that the coding scheme

that shows the minimal coding cost for a given graph indicates which structure appearing more

frequently in it. We evaluated the two coding schemes of the algorithm on both synthetic data

sets and real data sets, the real data sets are coming from sports and media industry. To prove

the efficiency of the compression, the acquired coding cost is compared with the entropy of the

graph.

Synthetic Data Sets. We generate two types of graphs which clearly show the differences be-

tween star and triangular structures. One type is mainly constructed by star-like structure prim-

itives that we call it star graph. The other graph is mainly composed of triangular structure

primitives which is named triangle graph. The number of nodes in both cases is fixed to 100.

Specifically, we generate a star-like graph with three hubs, based on which three single star

structures with equally same number of nodes are formed. Under the condition of keeping the

original star-like structure, noise edges are added to generated graph. The percentage of noise

increases from 0.05 to 0.25. Obviously, a clique contains numerous triangular structures. We

generate triangle graph based on one clique structure. Similarly, in order to keep the original

triangular structure, we remove edges from the generated graph with the percentage of removed

edges increasing from 0.05 to 0.25.

As shown in the bar charts of Figure 4.5(a) and 4.5(b), our two coding schemes of CXprime

are evaluated on each generated star graph and triangle graph with the percentage of disturb-

ing edges increasing from 0.05 to 0.25 separately. While the entropy of the graph serves as a

4.4 Experimental Evaluation 73

baseline. Figure 4.5(a) illustrates that the Star Coding Scheme has a lower coding cost than the

Triangle Coding Scheme in star graph, which demonstrates that CXprime successfully detect-

s that star structure frequently appears in all cases. Analogously, in Figure4.5(b) the Triangle

Coding Scheme has a lower coding cost in the triangle graph, which proves that the frequent

appearance structure is triangular structure.

1000

1200

1400

1600

1800

2000

2200

2400

0.05 0.1 0.15 0.2 0.25

Co
di
ng

 C
os
t

Noise

Entropy

Star

Triangle

(a) Star Graph.

1000

1500

2000

2500

3000

3500

4000

0.05 0.1 0.15 0.2 0.25

Co
di
ng

 C
os
t

Noise

Entropy

Star

Triangle

(b) Triangle Graph.

Figure 4.5: Coding Scheme Evaluation on Synthetic Data.

Real Data Sets1 Our first real-world data set called “Zachary’s karate club” [123] is a social

network with 34 nodes which demonstrates the relationship between members of a karate sports

club at a US university in the 1970s. The other real world data set “Les Misérables” [60] is a

network with 77 nodes indicating characters in Victor Hugo’s famous novel of the same name.

The edges are representing the connection between any pair of characters which appear in the

same chapter of the book. Both data sets are obtained from the UCI Network Data Repository.

Table 4.1 shows the coding costs of “Zachary’s karate club” and “Les Misérables” which calcu-

lated by entropy, Star Coding Scheme and Triangle Coding Scheme, respectively. In the case of

“Zachary’s karate club” the Star Coding Scheme obtains the minimum coding cost, which im-

plies that this graph is more star-like. In order to further evaluate results of distinguishing graph

substructures, we visualize “Zachary’s karate club” data in Figure 4.6(a). Seen from the figure,
1http://networkdata.ics.uci.edu/index.php

74 4. Compression-based Graph Mining Exploiting Structure Primitives

there are two striking hubs inside the graph. In terms of “Les Misérables”, comparing with oth-

er coding schemes, the Triangle Coding Scheme yields the smallest value, which indicates that

there are more triangle structures than star structures in the graph. Moreover, Figure 4.6(b) shows

that there are a large amount of obvious triangular structures in the “Les Misérables” network.

Table 4.1: Distinguishing Graph Structure on Real Data Sets

Entropy Star Triangle

Zachary’s karate club 330.9 325.6 331.3
Les Miserables 1251.4 986.6 895.1

-4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

4

5

6

7

(a) Structure of Zachary’s karate club (Star-
like).

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

(b) Structure of Les Miserables (Triangle-like).

Figure 4.6: Coding Scheme Evaluation on Real-World Data.

4.4.2 Graph Partitioning

In this section, we compare CXprime with classical graph partitioning algorithms, such as Metis

[56] and Markov Clustering (abbreviated as MCL) [112]. Besides, we compare CXprime with

Cross-association (abbreviated as CA) [17], which is also a compression-based graph clus-

tering algorithm. Metis and MCL require input parameters. For MCL, we used the default

parametrization. CXprime and CA automatically find clusters without any parameter due to their

information-theoretic approaches.

4.4 Experimental Evaluation 75

Synthetic Data Sets. We generate two synthetic data sets with different structural clusters,

and evaluate the graph partitioning performance of CXprime and the comparison methods. We

generate each type of data set 10 times using a different random number generator and output

the average results.

The first synthetic data set Syn1 is composed of two star clusters and one clique cluster (100

nodes each) with sketch map shown in Figure 4.7(a). The star cluster is generated with one hub

connecting all the other nodes, besides 20 edges are added to it as noise. The clique cluster

is created by making a full connected graph first and then 20 edges are removed from it. The

edges between each pair of two clusters are randomly selected to connect them, which is why

we altered their number from 10 to 100 to evaluate their affects on graph partitioning. Since we

know the class label of each node as ground truth, the Normalized Mutual Information (NMI)

[114] is used to evaluate the clustering results, and NMI scales between 0 and 1, where 1 means

a perfect clustering and 0 means no agreement at all among class and cluster labels. Figure

4.7(b) shows curves of NMI values when implementing CXprime and comparison algorithms

on Syn1 with different number of between edges. Benefiting from finding the structure of the

star cluster, CXprime clearly performs better than the other methods with a NMI above 0.9 even

when there are 100 edges between each pair of two clusters. Figure 4.8(a) depicts the coding

costs of detected clusters in Star Coding Scheme and Triangle Coding Scheme. As expected,

Star Coding Scheme gives less bits for two star-like clusters, while Triangle Coding Scheme

gives less bits for the clique-like cluster. Metis performs good when there are less edges (below

30) between two clusters, however its performance severely degrades when there are more edges

in between (below 0.3 when there are 100 between edges). MCL cannot find correct clusters

with a NMI about 0.5 for all the cases. CA fails to detect correct clusters with a NMI no bigger

than 0.3, because there is no dense region in a star cluster. Interestingly, CA gets better results

when there are more edges in between, which shows that CA can not find sparse clusters.

The second synthetic data set Syn2 is composed of three star clusters and each star contains

100 nodes, the sketch map is shown in Figure 4.9(a). Similarly, 20 edges are added to each star

cluster as noise in order to keep the star structure. Each pair of star clusters is connected with

randomly selected edges with their number ranging from 10 to 100. The clustering results of

76 4. Compression-based Graph Mining Exploiting Structure Primitives

Clique

Star 1 Star 2

(a) Sketch Figure

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80 90 100

N
M
I

Between Edges

Metis MCL CA CXprime

(b) Partitioning Results

Figure 4.7: Syn1 with Two Stars and One Clique.

50

100

150

200

250

300

350

Star1 Star2 Clique1

Co
di
ng

 C
os
t

Star Triangle

(a) Syn1

50

100

150

200

250

300

350

400

Star1 Star2 Star3

Co
di
ng

 C
os
t

Star Triangle

(b) Syn2

Figure 4.8: Coding Cost of Clusters.

4.4 Experimental Evaluation 77

Syn2 which are evaluated by NMI are depicted as curve graph in Figure 4.9(b). Seen from the

figure, CXprime clearly performs better than the other methods with a NMI above 0.9 even when

there are 100 edges between each pair of two clusters. Figure 4.8(b) depicts the coding costs of

detected clusters in Star Coding Scheme and Triangle Coding Scheme, in which the Star Coding

Scheme compress all three star-like clusters with less bits. Metis and MCL perform good when

there are less edges between clusters, however their performances severely degrades when there

are more edges in between. CA cannot detect any clusters in this data set, because CA can not

find star-like structures.

Star 1 Star 2

Star 3

(a) Sketch Figure

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100

N
M
I

Between Edges

Metis MCL CA CXprime

(b) Partitioning Results

Figure 4.9: Syn2 with Three Stars.

In summary, the results of CXprime are clearly superior than those of the comparison partners

on all synthetic data. This demonstrates that CXprime is suitable to detect clusters according to

their structure type.

Real Data Sets. Two real data sets are used to evaluate the performance of CXprime on graph

partitioning, “Zachary’s karate club” graph and a subgraph of the DBLP co-authorship graph.

“Zachary’s karate club” graph is small and therefore we can asses its structure by directly

78 4. Compression-based Graph Mining Exploiting Structure Primitives

drawing it by splitting hub nodes as shown in Figure 4.6(a), which helps us to interpret the par-

titioning results. CXprime and Cross-association automatically detect two clusters, MCL finds

two clusters under the default parameter setting as well. Therefore, we set the cluster number to

2 for Metis. Since class labels are unavailable, we visualize the graph for evaluation. The graph

partitioning results are depicted in Figure 4.10, in which different symbols stand for different

cluster labels. Seen from Figure 4.10(a), two clusters are detected by CXprime, the one labeled

with red triangle is sparser and the one labeled with blue square is denser. Metis and MCL

perform well on this data set (Figure 4.10(b) and 4.10(c)), but still have several points grouped

differently. However, note that the results of Metis and MCL only consist of the clustering with-

out giving any information on the cluster content. CXprime is the only method providing us not

only the clustering but also the interesting information that the content of one clusters is domi-

nated with star structure and the other one contains more triangle due to the dense connection.

Cross-association completely fails to detect clusters in such data set as Figure 4.10(d) shows,

because there is no very dense region in this graph.

The DBLP2 network contains information on which researchers are publishing together and

how each research group evolves over time. It has the advantage that we can interpret the results

relatively easy based on our personal knowledge and on the knowledge provided open source by

DBLP even though the data is unlabeled. We generated our test data set by taking all co-authors

of three well-known international professors, namely “Jiawei Han”, “Christos Faloutsos” and

“Hans-Peter Kriegel” as nodes and expect the professors to be the nodes with the highest degree

(hubs). The co-authors and professors are connected if any two of them cooperated on a paper

together. The data set consists of 1014 vertices with 5828 edges between them. In the following

we will refer to the three clusters that we expect our comparison methods to find as “han-group”,

“faloutsos-group” and “kriegel-group”. Therefore, we set the number of cluster to 3 in Metis,

MCL was working with its default parameter and CXprime and CA are both parameter-free

algorithms.

The extracted DBLP subgraph does not connect densely, thus CA is not able to find any

meaningful clusters. Metis finds three cluster, but one of the clusters contains two hubs “Chris-

2http://dblp.uni-trier.de/

4.4 Experimental Evaluation 79

-4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

4

5

6

7

(a) CXprime. -4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

4

5

6

7

(b) Metis.

-4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

4

5

6

7

(c) MCL. -4 -2 0 2 4 6 8
-3

-2

-1

0

1

2

3

4

5

6

7

(d) Cross Association.

Figure 4.10: Graph Partitioning of Zachary’s karate club Data.

80 4. Compression-based Graph Mining Exploiting Structure Primitives

tos Faloutsos” and “Hans-Peter Kriegel”, which considerably deviates from the ground truth. The

result of MCL and CXprime is similar, all three professors are as expected in different clusters,

and in the overall look the quality of both results are good. In detail, they differ in the han-group

in 26 people, in the faloutsos-group in 27 people and in the kriegel-group only 8 people. Some

examples are shown in Table 4.2. Among these different peoples both methods are not totally

correct and most of the differences exist between han-group and faloutsos-group. For exam-

ple, Hui Zhang and Padhraic Smyth who were falsely put into han-group by MCL. Specifically,

Checking from DBLP website, Hui zhang has published two papers with Prof. Faloutsos but

has no collaboration with Prof. Han. And Padhraic Smyth also has only collaborated with Prof.

Faloutsos. Moreover, Wei-Ying Ma has published one paper with Prof. Kriegel, but is falsely put

into han-group by MCL. However, both Senqiang Zhou and John Paul Sondag have published

one paper with Prof. Han respectively. But they are falsely grouped into faloutsos-group by

CXprime. Therefore, we consider the quality of the results of MCL and CXprime for this dataset

as approximately equal.

Table 4.2: Example of Differing People in MCL and CXprime

MCL CXprime

Hui Zhang han-group faloutsos-group
Padhraic Smyth han-group faloutsos-group
Wei-Ying Ma han-group kriegel-group

Senqiang Zhou han-group faloutsos-group
John Paul Sondag han-group faloutsos-group

However, CXprime is the only method detecting the structure of these three clusters. Here,

we expect PhDs working at university with the professor to publish in more of a clique structure

and external as well as cooperation partners as more of a star one. Also, this evolves over time.

CXprime provides the content information of these three clusters that han-group is the biggest

group and is more triangle-like. The kriegel-group as the smallest cluster is denser and therefore

is formed as triangle-like. And the faloutsos-group is referred to as a more star-like motif, which

may caused by containing external students.

Compression Rates. The basic idea of MDL is that the more you compress the data the more you

4.4 Experimental Evaluation 81

learn from it. Therefore, it is non-trivial to compare CXprime with compression-based methods

in terms of compression rates. We compare the compression rates between these methods: our

Star Coding Scheme and Triangle coding scheme, our CXprime partition algorithm, and two

existing compression-based graph mining algorithms SLASHBURN[54] and Cross-association

(CA), and entropy is given as a base line. The results for both synthetic (Syn1 and Syn2 with 10

edges between each pair of clusters) and real datasets are depicted in Table 4.3, which are shown

in bits. As only half of the adjacency matrix is considered in this chapter, the compression rates

of SLASHBURN and CA are also calculated from the half of the matrix. And the number in

bracket are the sizes of blocks for SLASHBURN, we try different settings and output the best

compression rate. It is clear that CXprime outperforms the other methods by achieving higher

compression rates in both synthetic and real data sets.

Table 4.3: Compression Rates (Bits)

Entropy Star Triangle Cxprime SLASHBURN CA

Syn1 23215 12906 4345 1397.28 4056.6(20) 2230.5
Syn2 3114 1926.8 1930.5 1390.9 2399.1(20) 1695.5

Karate 330.9 325.6 331.3 297.1 306.6(11) 317
DBLP 46027 44743 39249 35297 38538(50) 38485

4.4.3 Link Prediction

Considering the structures which can be distinguished by CXprime, an unsupervised link pre-

diction score is proposed. In this chapter, we compare our proposed score with other unsuper-

vised link prediction scores, Common Neighbors (CN), Preference Attachment (PA) and Katz

(β = 0.005). All scores are experimented on both synthetic and real data sets. In order to e-

valuate the efficiency of our scores, we randomly sample 30% of edges as predicting edges S

and deleted them from the original graph. In the resulting graph, we calculate the link-prediction

scores of every pair of unconnected nodes and sort them descending. The first |S| edges of each

score are selected separately as a predicted result which is expressed as P . After comparing

the predicting edges S with predicted edges P , we use the precision |S
⋂
P |/|S| to evaluate the

82 4. Compression-based Graph Mining Exploiting Structure Primitives

results. All results are the average values of 10 times running the algorithms.

Synthetic Data Sets. We implement the link prediction scores on both triangle graph and star

graph which are generated in the same way like the synthetic data sets in section 4.4.1. The pre-

cisions of four unsupervised link prediction scores of the triangle graph and star graph with per-

centage of noise edges ranging from 0.05 to 0.25 are shown in Figure 4.11(a) and Figure4.11(b)

separately. Clearly, Figure 4.11(a) shows that CXprime possesses more or less higher precision

in a triangle graph than the other three scores in each cases. Moreover, seen from Figure4.11(b),

CXprime occupies the highest position of the four scores in first four cases of star graph. Espe-

cially when the noise density is small, the advantage of CXprime is more remarkable.

40%

50%

60%

70%

80%

90%

0.05 0.1 0.15 0.2 0.25

Pr
ec
is
io
n

Noise

CN PA Katz CXprime

(a) Triangle Graph.

5%

10%

15%

20%

25%

30%

0.05 0.1 0.15 0.2 0.25

Pr
ec
is
io
n

Noise

CN PA Katz CXprime

(b) Star Graph.

Figure 4.11: Precision of Synthetic Data Sets.

Real Data Sets.3 “Zachary’s karate club” and “Copperfield Word Adjacencies”[83] are adopted

in this part. “Copperfield Word Adjacencies” is the network with 112 nodes and 425 edges which

represent common adjective and noun adjacencies for the novel“David Copperfield” by Charles

Dickens. The link prediction precision of each score is displayed in Table4.4 which shows that

our proposed score of CXprime outperforms the other three scores of the given comparison
3http://networkdata.ics.uci.edu/index.php

4.5 Related Work and Discussion 83

methods on these two real data sets.

Table 4.4: Precision of Real Data Sets (%)

CN Katz PA CXprime

Zachary’s karate club 16.9 15.6 16.5 26.1
Copperfield Word Adjacencies 11.1 16.5 11.5 16.7

4.5 Related Work and Discussion

We briefly survey related work on four relevant topics addressed by CXPrime: graph structure

and pattern mining, compression-based graph mining, graph partitioning and link prediction.

4.5.1 Graph Structure and Pattern Mining

Research on the structure of complex networks has already gained significant attention. Most real

world graphs follow power-law degree distributions, which can distinguish between an actual

real-world graph and any artificial one [16]. In a power-law graph, most vertices have a very low

degree, while few ones have extremely high degrees (we call this pattern a star). The existence of

these hubs makes the community detection in these real-world graphs very difficult, because most

existing graph clustering techniques focus on densely connected communities (triangle-types).

On the other hand, there are many frequent subgraph mining or motif detection algorithms, [120,

98] to mention a few, which aim to find recurrent and statistically significant sub-graphs. Our

technique CXprime combines these two approaches and exploits structure primitives to discover

the graph structure itself.

4.5.2 Compression-based Graph Mining

Due to the increasing scale of graph data, there are many algorithms proposed for efficiently

compressing an graph, e.g.[10, 19] to mention a few. However, the compression aspect is not the

major focus in this chapter, but knowledge discovery from an information-theoretic background.

84 4. Compression-based Graph Mining Exploiting Structure Primitives

SUBDUE [50] and Cross-association [17] are two famous algorithms also relying on the Min-

imum Description Length principle to identify patterns in a graph. SUBDUE uses a heuristic

search guided by MDL to find specific patterns minimizing the description length of the entire

graph. Other than CXprime, SUBDUE is not able to find the global general structure of a graph.

Cross-association is another co-clustering method, which can be applied for unipartite graphs as

well, processing a binary matrix and seeking clusters of rows and columns. Then the matrix is

divided into homogeneous rectangles which are representing the underlying structure of the data.

Cross-association can only find dense triangle communities and is therefore not suited for many

sparse real graphs, while CXprime is explicitly designed for such types of graphs. Another, more

recent work called SLASHBURN [54] was proposed for graph compression exploiting the hubs

and the neighbors of hubs. SLASHBURN uses the power-law characteristic for compression,

and can only exploit dense communities.

4.5.3 Graph Partitioning

There are plenty of works on graph clustering or graph partitioning, including spectral clustering

[99], Min-Max-Cut algorithms[26], Metis [56], Markov Clustering [112] for unipartite graphs,

co-clustering [25], Cross-association [17] and SCMiner [32] for bipartite ones. All these methods

aim to find regions with more intra edges than inter edges, in which densely connected subgraph

communities can be found. However, none of them considers interesting sparse patterns like

stars, which are prevalent in real-world graphs. Therefore, these approaches fail in detecting star-

like communities, while the proposed CXprime can distinguish between star-like and triangle-

like sub-structures.

4.5.4 Link prediction

Inferring whether two disconnected nodes will be linked in the future, based on available graph

information is the task of link prediction in graph mining. Liben-Nowell and Kleinberg [66]

summarize some unsupervised link prediction approaches for social networks. For example,

common neighbour, preferential attachment [75], Katz [58] and others. Specifically, preferential

4.6 Chapter Conclusion 85

attachment is based on the idea that two nodes with higher degrees have a higher probability to be

connected. Katz defines a score that sums up the number of all paths between two nodes where

short paths are weighted stronger. Obviously, common neighbour and Katz are more effective in

triangle graphs, while preferential attachment works better in star-like graphs. However, none of

the previous methods consider the underlying graph structure information which is important for

link prediction. To the best of our knowledge, CXprime is the first method that is using structure

information to improve the quality of link prediction.

4.6 Chapter Conclusion

In this chapter, we introduced CXprime, an multi-functional algorithm for mining graphs based

on structure primitives. The two key ideas of CXPrime are to model the transitivity and the

hubness of a graph using three-node primitives and to exploit the relative frequency of these

structure primitives for data compression and knowledge discovery. We demonstrate that the

combination of these two ideas is very useful for (1) automatically detecting the structure type

of a graph as star-like/scale-free or clique-like/small-world, (2) clustering the graph into homo-

geneously structured sub-graphs and (3) accurate link prediction. Our experiments demonstrate

that the knowledge about the structure type is very interesting for interpreting graphs and that

our novel structure-based cluster notion is a valuable complement to traditional graph clustering

methods searching for dense sub-networks only. Regarding link-prediction, we outperform ex-

isting methods especially on star-like graphs which demonstrates that the knowledge about the

structure type is indeed very useful for graph mining.

86 4. Compression-based Graph Mining Exploiting Structure Primitives

Chapter 5

Summarization-based Mining Bipartite

Graphs

In this chapter, our research target is transferred from the simple graph to bipartite graph. Bipar-

tite graph is suitable to model the relation between two classes of objects, such as customs and

items, people and companies. In terms of clustering, many algorithms named as co-clustering

or bi-clustering are proposed to detect clusters from such two relational data. However, most

of them focus on finding out clusters of each class of objects simultaneously but ignore analyz-

ing the relationship between the clusters. In this chapter, we model such data sets as bipartite

graph. From the perspective of structure, we not only obtain clusters of each class of objects

but also achieve other graph mining tasks at the same time, such as graph summarization, dis-

covery of the hidden structure and link prediction. We propose an algorithm named as SCMiner

(Summarization-Compression Miner). The core idea of the algorithm is compressing a large bi-

partite graph to a highly compact representation. And the progress is achieved by merging nodes

with same link pattern after adding or removing links based on some strategies. Guided by the

Minimum Description Length principle, our technique is able to achieve good clustering result,

to discover the relation between the clusters and to predict the missing or suspicious links. And

all the tasks can be achieved automatically and do not rely on any input parameters which are

difficult to estimate. Comparing with the state-of-the-art techniques, experiments on synthetic

88 5. Summarization-based Mining Bipartite Graphs

and real data demonstrate the advantages of SCMiner.

The remainder of this chapter is organized as follows: Section 5.1 introduces the motivations

and contributions. Section 5.2 gives the model formulation and coding scheme. Section 5.3

presents the algorithm in more detail. Section 5.4 contains an extensive experimental evaluation.

Section 5.5 discusses related work and Section 5.6 gives the conclusion of this chapter.

Parts of the material presented in this chapter have been published in [32], where Jing Feng

was responsible for the development of the main concept and wrote the largest parts of the paper,

Xiao He also contributed to concept development and implementation; Claudia Plant supervised

the project and made contributions to the building of coding scheme; Bettina Konte performed

part of experiments; Christian Böhm revised the whole paper; The co-authors also contributed to

the conceptual development and paper writing.

“Jing Feng, Xiao He, Bettina Konte, Christian Böhm and Claudia Plant. Summarization-

based Mining Bipartite Graphs. The 18th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining 2012: 1249-1257.”

5.1 Introduction

5.1.1 Motivation

Relational or graph-structured data are prevalent in nature, science and economics. Many aspects

of real life can be well represented as a bipartite graph which has two types of vertices and edges

representing the connections between them. Consider for example newsgroups where one type

of vertices represents persons and the other type of vertices represent groups. An edge between

a person and a group means that he or she is member of this group. Or consider the interaction

between drugs and proteins: An edge between a particular substance and a protein means that

the corresponding protein is responding to the drug. Such bipartite graphs are stored as large

adjacency matrices often having millions of vertices and edges. Effective and efficient data

mining methods are essential for answering high-level domain specific questions like: which

5.1 Introduction 89

users are potentially interested to join a newsgroup? Or, which combination of substances is

most effective against a certain disease?

Therefore, in recent years the research topic of mining bipartite graphs has attracted much

attention, with a large volume of research papers, e.g. [17, 23, 36, 66, 67, 81] to mention a

few. To extract knowledge from a large bipartite graph, existing techniques apply one of the

following two basic strategies: (1) Clustering, as shown in Figure 5.1 (a). These approaches

reduce the complexity by partitioning the large input graph into smaller groups of similar vertices

which can be inspected and interpreted by the user. In particular, approaches to co-clustering

like [17, 23] cluster both types of vertices, i.e. the rows and the columns of the adjacency

matrix simultaneously guided by the idea that the clustering of rows and columns can profit

from another. The output of co-clustering is a set of row-clusters and a set of column clusters.

(2) Summarization , as shown in Figure 5.1 (b). These approaches reduce the complexity not

by grouping but by a global abstraction. The output of summarization techniques like [81] is a

bipartite graph which is much smaller than the original input graph. Ideally, it distills the major

characteristics from the input data and is small enough to be accessible for the user. (3) Link

prediction, , as shown in Figure 5.1 (c). These approaches like [67] study the question whether

there should be an edge between two currently disconnected vertices. Link prediction is closely

related to summarization and clustering since a technique for link prediction must capture at

least the local structure of the graph to provide reasonable predictions. Also clustering and

summarization are closely related since during the process of abstraction, both approaches must

identify the relevant major characteristics of the graph.

5.1.2 Contributions

In this chapter, we therefore propose a bipartite graph mining technique named as SCMiner. As

shown in Figure 5.1, SCMiner is the algorithm that integrating the tasks of graph clustering,

graph summarization and link prediction on bipartite graphs. The name SCMiner stands for

Summarization Compression Miner and the principle of data compression also known as the

Minimum Description Length Principle (MDL) [92] is the basis of our technique. The basic

90 5. Summarization-based Mining Bipartite Graphs

idea is to transform the original graph into a very compact summary graph. During the process

of transformation which is controlled by the MDL principle, our technique discovers the major

clusters of both vertex types as well as the major connection patterns between those clusters. The

result of SCMiner comprises a compressed graph, the row- and column-clusters and their link

patterns. The major contributions of our approach can be summarized as follows:

• Clustering plus hidden structure mining. Like state-of-the-art co-clustering methods,

SCMiner accurately identifies the row- and column clusters of bipartite graphs and even

outperforms them on some data sets. As a key feature of our approach, the result does not

only consist of two sets of clusters. SCMiner also reveals the relationships between the

clusters which are essential for interpretation.

• Accurate link prediction. SCMiner accurately predicts missing or future links and re-

moves noise edges.

• Unsupervised graph mining all in one. SCMiner integrates summarization, clustering

and link prediction and thus comprehensively supports unsupervised graph mining.

• Results validated by data compression. Data compression is an intuitive optimization

goal with many benefits: By natural balancing goodness of fit and model complexity,

overfitting is avoided. The results are thus simple and interpretable. Moreover, supported

by the MDL principle SCMiner does not rely on any difficult to estimate input parameters.

5.2 Compressing a Bipartite Graph

In this section, we first present a simple example to introduce the terminology of graph sum-

marization. Then an MDL based coding schema is derived to find the best summarization of a

bipartite graph. At last, we propose a strategy to discover hidden relations between vertices of

different type.

Notation and Example. Figure 5.2 depicts a simple example for graph summarization of a

bipartite graph. G = (V1, V2, E) is an unweighted bipartite graph where V1 = {V11, ..., V16}

5.2 Compressing a Bipartite Graph 91

SCMiner

(a) Co‐Clustering:

(b) Graph Summarization:

(c) Link Prediction:

Figure 5.1: Tasks of SCMiner.

92 5. Summarization-based Mining Bipartite Graphs

and V2 = {V21, ..., V26} denote two types of vertices and E denotes the edges between them.

The summarization of graph G consists of two bipartite graphs, a summary graph GS and an

additional graph GA. The summary graph GS = (S1, S2, E
′) is an aggregated graph and is com-

posed of four super nodes S11 = {V11, V12, V13}, S12 = {V14, V15, V16}, S21 = {V21, V22, V23},

S22 = {V24, V25, V26}, and super edges E ′. The super nodes themselves are composed of vertices

exhibiting the exact same link pattern. They indicate the local cluster structure of each type of

vertices, whereas the super edges represent the global relations between local clusters. The addi-

tional graph GA = (V1, V2, E
′′) contains normal nodes and correction edges which are required

to reconstruct the bipartite graph G. The + or − symbols above the edges indicate whether it

is required to add or remove them from GS to recreate G. The correction edges describe the

revealed hidden relations between different types of vertices.

S22S12

S21S11

…

…

…

…V11 V21

=

+

V12 V22

V13 V23

V14

V15

V16

V24

V25

V26

V23

V25V11

V13

GS

GA

－

＋

V11

V13

V14

V16

V21

V23

V24

V26

G

Figure 5.2: Summarization and Compression.

5.2.1 Coding Scheme

A bipartite graph can be represented by thousands of summarizations, however, the challenge

is to find out the one that best represents the data and reflects the hidden structure behind the

surface data. The Minimum Description Length (MDL) principle is an intuitive choice for model

5.2 Compressing a Bipartite Graph 93

selection [92]. It follows the assumption that the more we are able to compress the data, the

more we have learned about its underlying patterns. Formally, the goodness of the model can be

stated as shown in Eq.(5.1), where L(M) denotes the cost for coding the model parameters and

L(D|M) represents the cost of describing the data D under the model M . As the model has to

be coded with the data and too complex models result in high compression cost, MDL naturally

avoids overfitting.

L(M,D) = L(D|M) + L(M). (5.1)

Inspired by the MDL principle, we propose a coding scheme to choose the best graph summa-

rization. The most direct and simple way to represent a bipartite graph G = (V1, V2, E) is to

compress its adjacency matrix A ∈ |V1| × |V2|, with Ai,j = 1 if (V1i, V2j) ∈ E. The coding cost

of the adjacency matrix A is lower bounded by its entropy.

As mentioned above, the summarization of a bipartite graph G is composed of two bipartite

graphs, the summary graph GS and the additional graph GA. Instead of transferring G from a

sender to a receiver, we can transfer GS , GA and the group information of super nodes in GS . In

addition, there is no need to send the symbol information of edges in GA, since this information

can be obtained by comparing GA and GS . If the symbol of an edge in GA is +, this edge is not

present in GS , and vice versa, if the symbol is −, GS contains the edge. The following equation

defines the coding cost of a summarization of the graph.

Definition 5.1 (Coding Cost of a Graph.)

CC(G) = CC(GS) + CC(GA) + CC(group), (5.2)

CC(group) =

NT∑
i=1

Ni∑
j=1

|Sij|log2
|Vi|
|Sij|

, (5.3)

where CC(GS) and CC(GA) denote the coding cost of summary graph GS and the additional

graph GA. The third term is the cost of coding the group information, where NT is the number

of node types, Ni is the number of super nodes in type i, |Sij| is the number of members in super

94 5. Summarization-based Mining Bipartite Graphs

node Sij, |Vi| is the number of original nodes in type i.

L(D|M) = CC(GS) is the description of the data under the model M with coding cost L(M) =

CC(GA) + CC(group). The optimization goal of our algorithm SCMiner is to find the best

model or summarization that minimizes Eq.(5.2).

5.2.2 Hidden Relations Between Vertices

The data we record in real life applications does often only approximately represent the ground

truth due to inconsistencies and measurement errors. For example, the same user often joins

newsgroups under different nicknames and email addresses. Or a protein might show a strong

response to a substance simply due to a measurement error. Thus real world graphs are often

spoiled by erroneous connections on the one hand and are also missing important links on the

other hand.

Take a close look at the graph G in Figure 5.2, obviously we have the feeling that edge

(V13, V23) is probably missing, and edge (V11, V25) maybe presents an artifact of noise. Therefore,

if we add edge (V13, V23) toG and remove edge (V11, V25) fromG, we can form four super nodes,

whose members exhibit the exact same connection patterns. These connections probably reflect

the true relationships. Based on these observations, we propose the following strategy to discover

the hidden relations between vertices.

Figure 5.3 describes our strategy for merging nodes, suppose all the nodes are super nodes.

The nodes in Group 1 share a similar link pattern and could therefore be merged into a super

node. Nodes in Group 2 and Group 3 are both hop two neighbors of node S2k, specifically nodes

in Group 2 are common neighbors of nodes in Group 1 and nodes in Group 3 are not. To form

a new super node of nodes in Group 1 their link pattern should be exactly the same. However,

the link pattern of node S1p in Group 1 is similar to those of the other nodes, but not the same.

Concretely, S1p has an extra link with S2k that the other nodes lack. As we can see from Figure

5.3, two methods can be adopted to make nodes in Group 1 exhibiting the same link pattern:

we could either remove edge (S1p, S2k) or add edges (S11, S2k), (S12, S2k), ..., (S1p−1, S2k). The

question is, how to distinguish whether edges should be removed or added?

5.2 Compressing a Bipartite Graph 95

Group2

Group1

S21

S2k-1

S2kS1p

S1p-1

Group1: Nodes to be merged

Group2: Hop 2 neighbors of S2k and common neighbor of Group1

Group3: Hop 2 neighbors of S2k but not common neighbor of Group1

Group4: Neighbors of S2k

Group4 Group3

S2k+1

S2mS1n

S1p+1

… …

… …

: The edge to be deleted

: The edge to be added

S11

Figure 5.3: The Strategy Used for Merging Nodes

Algorithm 5.1 ModifyEdge
Input: Group nodes group, GS , GA

Output: GS , GA, hop2Sim

//Modify edges of group to make their link same:
1: alln = Neighbor(group);
2: cn = CommonNeighbor(group);
3: for Each node S ∈ alln and S /∈ cn do
4: Using Eq.(5.4) and Eq.(5.5) to add or remove edge;
5: Add or remove edges in GS;
6: Add additional edges to GA;
7: end for
8: Update hop2Sim for each S ∈ alln and S /∈ cn;
9: return GS , GA, hop2Sim;

96 5. Summarization-based Mining Bipartite Graphs

We can decide if we add or remove edges by calculating some cost function. We define

the cost as the number of edges we add or delete, which is highly related to the MDL costs of

Eq.(5.2), in order to make the link patterns of merging nodes equal. Specifically, as shown in

Figure 5.3, there are p nodes in Group 1 S11, S12, ..., S1p, among which S1p exhibits a similar but

not exact same link pattern as the other nodes. Therefore, the cost of removing edge (S1p, S2k)

is 1 and the cost of adding edges (S11, S2k), (S12, S2k), ..., (S1p−1, S2k) is p − 1. Obviously, the

former method should be selected because of the lower cost. The pseudocode of modifying the

edges of a merging group is shown in Algorithm 5.1. At first we combine neighbors and common

neighbors of nodes in merging groups, then we need to modify the edges of those nodes which

are neighbors but not common neighbors of the merging group to make the link pattern of all

group members exactly the same. Suppose the merging group contains S11, S12, ..., S1p and S2k

is one of their neighbors but not a common neighbor. The cost of removing and adding edges

can be calculated by Eq.(5.4) and Eq.(5.5). The cost of a super edge is calculated as |S1i| · |S2k|,

where |.| is the number of normal nodes contained in a super node. However, in some cases the

costs for removing might be the same as for adding edges. If so, we use the similarity proposed

in the next section to decide which action to take. Naturally, if S2k is more similar to the nodes of

Group 2 compared to those of Group 3, we add edges for merging, while otherwise we remove

edges.

Costremove =

p∑
i=1

|S1i| · |S2k| if S1i links to S2k

0 otherwise.
(5.4)

Costadd =

p∑
i=1

0 if S1i links to S2k

|S1i| · |S2k| otherwise.
(5.5)

5.3 Algorithm SCMiner

In this section, we propose our algorithm SCMiner to find the best summarization of a bipartite

graph. It can be proven that finding the global optimal summarization is NP-hard, therefore

SCMiner follows a heuristic approach to search the local optima.

5.3 Algorithm SCMiner 97

5.3.1 Basic Idea

The idea behind the algorithm SCMiner is that nodes with similar link patterns can be merged to

groups, if the similarity between each pair of nodes in the group is bigger than some threshold th.

By adding and removing edges as proposed in Section 5.2 we accomplish that all group nodes

share the exact same link pattern and so can form a super node. SCMiner iteratively merges

groups of nodes or super nodes whose similarities are bigger than th. The initial threshold is

1 and th is reduced stepwise by ε when no pair of nodes can be merged. In each iteration we

calculate the new summarization coding cost. Then the MDL principle is used to choose the best

summarization. The algorithm terminates when th reaches 0.

5.3.2 Finding Super Node Candidates

To find suitable candidate groups of nodes where merging might pay-off, we introduce the no-

tion of hop two similarity. Suppose two super nodes S1i and S1j have n common neighbors

{S21...S2n} and m neighbors {S2(n+1)...S2(n+m)} that are connected to only one of the two super

nodes. Intuitively, if the two nodes have more common neighbors than neighbors only linking to

one node, they are more similar in link pattern, then different. We can define their similarity as

Definition 5.2 (Hop Two Similarity.)

sim(S1i, S1j) =

∑n
k=1 |S2k|∑n+m
k=1 |S2k|

(5.6)

where |S2i| is the number of normal nodes contained in super node S2i. This similarity measure

ranges from 0 to 1.

As described above, we only need to calculate the similarity between two nodes if they share at

least one common neighbor and therefore are hop two neighbors of each other. In the following

we call the similarity between a node and all its hop two neighbors its hop two similarity.

98 5. Summarization-based Mining Bipartite Graphs

Algorithm 5.2 SCMiner
Input: Bipartite graph G = (V,E), Reduce step ε
Output: Summary Graph GS , Addition Graph GA

//Initialization:
1: GS = G, GA = (V, ∅);
2: Compute mincc using Eq.(5.2) with GS and GA;
3: bestGS = GS , bestGA = GA;
4: Compute hop2Sim for each S ∈ GS using Eq.(5.6);

//Searching for best Summarization:
5: while th > 0 do
6: for each node S ∈ GS do
7: Get SN with S ′ ∈ SN and hop2Sim(S, S ′) > th;
8: end for
9: Combine SN and get non-overlapped groups allgroup;

10: for each group ∈ allgroup do
11: ModifyEdge(group,GS, GA);
12: Merge nodes of GS with same link pattern;
13: Compute cc using Eq.(5.2) with GS and GA;
14: Record bestGS , bestGA, and mincc if cc < mincc;
15: end for
16: if allgroup == ∅ then
17: th = th− ε;
18: else
19: th = 1.0;
20: end if
21: end while
22: return bestGS , bestGA;

5.3 Algorithm SCMiner 99

5.3.3 Algorithm

Now we describe our algorithm SCMiner, the pseudocode is provided in algorithm 5.2. The

input parameters of SCMiner are the bipartite graph G = (V,E), where V = (V1, V2) and E

are the edges between V1 and V2, and stepsize ε for reducing th. The output of SCMiner is

the summarization of G, including the summary graph GS = (S,ES) composed of super nodes

S = (S1, S2) and the additional graph GA = (V,E ′) composed of single nodes V = (V1, V2),

which has the minimum coding cost regarding the proposed coding scheme. In the initialization

phase, we first set the summary graph GS to the input graph G, which means that all single

nodes are treated as super nodes containing only one normal node, and set the additional graph

GA empty. Then we initialize the coding costmincc using Eq.(5.2) withGS andGA. Afterwards

we compute the similarities between each node and its hop two neighbors of same node type. In

the searching phase, when th > 0, we do the following steps: First we search for groups of

nodes that have at least one hop two neighbor with similarity larger than th and then we merge

every group we found. When there is no more group of nodes that can be merged, we decrease

the threshold th by ε. In the merging phase, we use the proposed method shown in algorithm

5.1 to modify the edges of the merging group that are present in GS to get nodes with exact

same link structure. Subsequently we add the corresponding additional edges to GA and update

the hop two similarity for affected nodes, which are neighbors of merging group nodes but not

their common neighbors. During the merging phase, nodes with similar link patterns are merged,

which decreases the data cost and increases the model cost, while the total cost is reduced in most

cases. After each merging step, we calculate the coding cost using Eq.(5.2) with current GS and

GA and the best summarization with minimum coding cost is stored in bestGS and bestGA.

Finally, we output bestGS and bestGA with coding cost.

5.3.4 Properties

We adjust the parameter ε using the MDL principle. Extensive experiments on synthetic and

real data showed that a suitable range for ε is around 0.01 to 0.1. Therefore we try out every

setting with a step size of 0.01 and let MDL select the best result. The runtime complexity for

100 5. Summarization-based Mining Bipartite Graphs

the computation of the similarity between each vertex v and its hop two neighbors isO(|V | ·d3
av),

where |V | is the number of vertices and dav is the average degree of each vertex. During each

merging step in SCMiner, we only compute the similarities between some affected vertices and

their two hop neighbors. Therefore the runtime complexity is roughly O(d4
av). The number

of merging steps, affected by the reduction stepsize ε, is N in average. So the whole runtime

complexity is O(|V | · d4
av).

5.4 Experiments

This section provides empirical evidence to show the effectiveness of SCMiner on synthetic

and real data. In particular, we evaluate SCMiner three aspects: First, we compare SCMiner

with state-of-the-art co-clustering algorithms in terms of quality of the clusters detected on each

type of nodes. Secondly, we evaluate the hidden structure, i.e. the relationships between both

types of nodes found by SCMiner. Finally, we compare SCMiner with some state-of-the-art link

prediction methods to evaluate the validity of hidden relationships discovered by SCMiner.

5.4.1 Data Sets

The generated synthetic bipartite graphs with different parameters are shown in Table 5.1. Both

V1 and V2 contain the same number of clusters, and each cluster has 100 nodes. The matrix T

shows the ground truth links between clusters of different type, where Tpq can take the values 1

or 0, which means the pth cluster of V1 and the qth cluster of V2 are fully connected or separated.

The matrix S introduces link parameters to matrix T , where Spq denotes the percentage of links

generated between the pth cluster of V1 and the qth cluster of V2. In other words, if link parame-

ters are introduced based on 0, noisy links are added to the ground truth graph. If link parameters

are introduced based on 1, links are removed from the ground truth graph, where the percentage

is 1 minus the link parameters.

Three real data sets are evaluated in our experiments. World cities1 data consists of the dis-

1http://www.lboro.ac.uk/gawc/datasets/da6.html

5.4 Experiments 101

Table 5.1: Synthetic Bipartite Graphs

Data Set S T

BP1
(

0.8 0.2
0.1 0.9

) (
1 0
0 1

)
BP2

 0.9 0.8 0.1
0.1 0.9 0.8
0.1 0.2 0.9

 1 1 0
0 1 1
0 0 1

BP3

0.8 0.7 0.2 0.8
0.9 0.3 0.8 0.2
0.3 0.8 0.2 0.7
0.9 0.8 0.7 0.2

1 1 0 1
1 0 1 0
0 1 0 1
1 1 1 0

tribution of offices from 46 global advanced producer service firms over 55 world cities. Global

firms are defined as firms owning offices in at least 15 different cities. Service values for a firm in

a city are given as 3,2,1 and 0. We binarize the data set such that positive service values become

1 and then generate the bipartite graph. The advanced producer service firms can be categorized

into 4 clusters: accountancy firms, advertising firms, banking and finance firms and law firms.

MovieLens2 data was collected through the MovieLens web site during the seven-month

period from September 19th, 1997 to April 22nd, 1998 by the GroupLens Research Project at

the University of Minnesota. It consists of 100,000 ratings (1-5) from 943 users on 1682 movies.

We preprocess the data by removing movies which are rated by less than 100 users and users that

rated less than 100 movies. Therefore, we got a bipartite graph of 361 users and 334 movies.

Then we binarize the preprocessed data set such that 3-5 entries become 1 and others become 0.

Jester3 is a joke rating data set. The original data set contains over 1.7 million continuous

ratings (-10.00 to +10.00, +10.00 best) of 150 jokes from 63974 users collected between April

2006 to May 2009. We remove 22 jokes which are never rated or rated by less than 0.01 of users,

and randomly pick 1000 users who rate all the picked jokes. Then we binarize the data set such

that 5-10 entries become 1 and others become 0. The ground truth is generated for evaluating

link prediction, such that the non-negative entries become 1 and the negative entries become 0.

2http://www.grouplens.org/node/12
3http://eigentaste.berkeley.edu/dataset/

102 5. Summarization-based Mining Bipartite Graphs

Table 5.2: Clustering Performance on Synthetic Data.

BP1 BP2 BP3
SCMiner 1 1 0.9949

CA 0.6683 0.7897 0.8750
ITCC 1 1 0.8750

GS 0.2568 0.4069 0.5493

5.4.2 Clustering Quality

Firstly, we evaluate the quality of clusters detected by SCMiner. SCMiner can be used as a

parameter-free bipartite graph partition method and therefore we choose the approaches Cross-

association (CA) [17] and Information-theoretic Co-clustering (ITCC) [25] as comparison meth-

ods. In addition, we compare SCMiner to the graph summarization technique (GS) of [81]. The

algorithms SCMiner, CA and GS are both parameter-free, ITCC requires the number of clusters

in rows and columns. The algorithm GS does not output a clustering, however, the summarized

nodes can also be regarded as clusters. We therefore create a cluster for each summarized node

of the algorithm. For synthetic data we set the number of clusters of ITCC to the true number of

the data set. We use the Normalized Mutual Information (NMI) [114] to measure the clustering

performance. The value of NMI ranges between 0 and 1. The higher the value the better the

clustering. We further report the Adjusted Mutual Information (AMI) and Adjusted Variation

Information (AVI) scores proposed in [114].

Synthetic Data. Table 5.2 depicts the clustering performance comparison on synthetic data sets

evaluated by NMI, which shows that SCMine yields better results than CA, ITCC and GS. For

BP1 and BP2 both ITCC and SCMiner give perfect results, however ITCC needs the true number

of clusters as input parameter, whereas SCMiner determines the number of clusters automatically

without user input. CA outputs worse NMI results, because it splits the clusters into some smaller

ones. Worst NMI results yields GS, this is mainly because GS is designed for summarization but

not for clustering. Table 5.2 reports only NMI but the other scores are similar.

For SCMiner we try out several ε and choose the best results with the minimum MDL. Figure

5.4 shows the clustering results for all synthetic data sets with different ε and one can see that

5.4 Experiments 103

the results are quite stable on a wide range of ε. We also test the relationship between NMI and

MDL, for space limitation we only mark several MDL values for synthetic data BP3 in Figure

5.4. The coding costs are 127102 bits when ε = 0.01 and NMI = 0.89, and it costs 123723 bits

when ε = 0.07 and NMI = 0.99, which proofs that smaller MDL values lead to better NMI

results.

MDL=127102

MDL=125010

MDL=123723

0,85

0,9

0,95

1

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1

N
M

I

e

BP1
BP2
BP3

Figure 5.4: Results for Various ε.

World Cities Data. The World cities real data set contains cluster labels of global firms and

thus we can use NMI to evaluate clustering quality of this type of nodes. We run SCMiner,

CA, ITCC and GS on this data set. SCMiner, CA and GS are all parameter-free methods (the

chosen ε of SCMiner for cities is 0.01). We set the true number of clusters of global firms and

4 as the number of clusters of world cities as input parameter for ITCC. The NMI results for

global firms are depicted in Table 5.3 and the table shows that SCMiner clearly outperforms CA,

ITCC and GS in all clustering quality scores. The evaluation of cities type clusters is much more

difficult, since the cluster labels are not provided along with the data set. Looking in detail at the

cluster contents, SCMiner finds 3 clusters and a separated city Washington, DC. The first cluster

contains 13 cities, including Atlanta, Boston, Dallas, Munich, Montreal etc. and all these cities

104 5. Summarization-based Mining Bipartite Graphs

are strong in economics. In detail, all 5 accountancy firms have services in these cities, and there

are 3 advertising, 5 banking and 2 law companies in average owning offices in these 13 cities.

The second cluster contains 17 cities, including Toronto, Paris, London, New York, and Beijing.

All these cities are metropolis in the world. Moreover most of these cities are capital of their

country. In terms of service, all 5 accountancy firms have services in these cities, and there are

9 advertising, 11 banking and 7 law companies in average having offices in these 17 cities. The

third cluster contains 24 cities, including Amsterdam, Barcelona, Seoul, Shanghai etc., which are

all kind of financial cities. In terms of service, all 5 accountancy firms have services in these cities

as well, and there are 7 advertising, 8 banking and 2 law companies in average having offices in

these 24 cities. The cluster analysis shows that SCMiner outputs reasonable clusters regarding

the cities type nodes. To sum up, the cities can be categorized into 3 types, capital metropolis,

financial cities and economic cities. Capital metropolis are the economic, financial and politic

center of a country, therefore all kinds of companies have offices in these cities. Financial cities

offer a lot of banking and advertising company services, but lack law services, because they

are not politically oriented. Some local manufactories are located in economic cities, whereas

advertising, banking and law companies are not. Washington, DC is quite different compared to

the other cities, since it is a politic, but not a financial city and therefore owns lots of law firms’

offices but fewer advertising and banking firms’ offices. Thus it is reasonable that this city is

separated in its own cluster.

Table 5.3: Results on World Cities Data.

NMI AMI AVI
SCMiner 0.4345 0.3807 0.3824

CA 0.3109 0.2447 0.2604
ITCC 0.2522 0.1845 0.1891

GS 0.2515 0.0467 0.0683

Movielens Data. MovieLens data set does not provide cluster labels, however, it provides movie

categories and personal information of users that can be used to analyze the cluster contents.

We separately perform SCMiner, CA, ITCC and GS on this data set, SCMiner, CA and GS

are both parameter-free (the chosen ε of SCMiner for MovieLens is 0.05). CA outputs 9 user

5.4 Experiments 105

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P

Clusters

SCMiner

ITCC

CA

Figure 5.5: Cluster Purity on Movielens Data.

clusters and 8 movie clusters. In addition some isolated nodes and small clusters with less than

5 instances are found. SCMiner gives 10 user clusters and 15 movie clusters, whereas all the

clusters found by GS are single nodes or just contain a few nodes (< 5). To be fair, we set the

number of user and movie clusters to 10 and 15 for ITCC, which corresponds to the number of

clusters found by SCMiner. In this data set, movies are classified into 19 genres, such as action,

adventure, animation, etc, and a movie can be categorized into several genres at once. According

to the basic concept of clustering that objects in the same cluster are similar, we define purity

P to evaluate the movie clusters. By counting genres of movies, we can acquire the genre that

dominates the cluster and let this genre be the cluster representative. The purity of a cluster is

defined as the percentage of movies belonging to the most represented genre. We calculate the

purity P for each movie cluster detected by SCMiner, CA and ITCC, and sort them by p value,

which is shown in Figure 5.5. The figure shows that SCMiner outputs more pure movie clusters

than the two comparison methods.

In terms of user clusters, it is difficult to compare the results. Analyzing the content of user

clusters detected by SCMiner, reveals that some clusters contain old users, some are composed

of young users, some groups contain only males, while others own mainly women. This reflects

106 5. Summarization-based Mining Bipartite Graphs

that SCMiner outputs meaningful user clusters.

5.4.3 Hidden Structure

R
ow

 C
lu

st
er

s

Column Clusters
20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

R
ow

 C
lu

st
er

s

Column Clusters
50 100 150 200 250 300

50

100

150

200

250

300

R
ow

 C
lu

st
er

s

Column Clusters
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

C11 C21

C12 C22

C11

C12

C13

C21

C22

C23

C11 C21

C12 C22

C13 C23

C14 C24

Figure 5.6: Hidden Structure Detected by SCMiner and CA. From Left to Right: Data Set BP1,
BP2, BP3.

For bipartite graph data, we do only want to analyze the clusters in each type, but we also want

to evaluate the relationship between clusters of different types. Besides our SCMiner algorithm,

CA is the only comparison method providing information about these relationships (in the form

of a re-arranged adjacency matrix) to users.

Synthetic Data. Figure 5.6 depicts the hidden structure detected by SCMiner and CA, the top

row shows the re-arranged adjacency matrix of data output by CA, the bottom row depicts the

hidden structure found by SCMiner, where squares and circles denote the two different types of

clusters. For BP1 and BP2 SCMiner gives perfect results and for BP3 just one node is categorized

incorrectly, as cluster C12 contains 99 nodes and clusterC14 contains 101 nodes, but the whole

structure is correct, whereas the cross association output by CA for BP3 is incorrect and it is

really hard to tell the relationship between the second row and fourth column cluster. In summary,

5.4 Experiments 107

R
ow

 C
lu

st
er

s

Column Clusters
5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

50

55

C C

F AB

E LB

W L

Figure 5.7: Hidden Structure of Cities Detected by CA (left) and SCMiner (right). For SCMiner
results, Square C represents a cluster consisting of capitals, Square F financial cities, Square E
economic cities and Square W is the isolated city Washington, DC. On the other side, the cluster
represented by Circle C mainly contains accountancy firms, Circle AB advertising and banking
companies, Circle LB banking and law firms, and Circle L law firms.

R
ow

 C
lu

st
er

s

Column Clusters
50 100 150 200 250 300

50

100

150

200

250

300

350

O1 FM

O2 CD

YW CR

YM1 AA

YM2 AS

Figure 5.8: Hidden Structure of MovieLens Detected by CA (left) and SCMiner (right). For
SCMiner results, Square O1 and O2 denote clusters containing old users, Square YW represents
a cluster of young women, and Square YM1 and YM2 young man. On the other side, the
cluster represented by Circle FM represents high scored movies, Circle CD comedy and drama,
Circle CR action, romance and comedy. Circles AA and AS represent adventure, action, thriller
movies and action, sci-fi, thriller movies, respectively.

108 5. Summarization-based Mining Bipartite Graphs

the visualization of Cross-associations is only clear and interpretable for data having a relatively

easy structure.

World Cities Data. Figure 5.7 depicts the hidden structure of World cities data set detected

by SCMiner and CA. The left shows the re-arranged adjacency matrix of data output by CA.

It is hard to identify the relationship between two types of nodes from the matrix itself. The

right depicts the hidden structure found by SCMiner, the squares represent the cities clusters and

circles denote clusters of companies. The figure shows that capital metropolis have connections

to all kind of firms, financial cities do not have law companies services, most service in economic

cities are from accountancy companies, and Washington, DC owns lots of law companies but

fewer banking and advertising firms. From the figure, the major structure of the complex network

becomes obvious at first glance. The result of SCMiner is a highly compact bipartite graph, a data

representation which is easy to understand for the user. In contrast, the re-arranged adjacency

matrix is still quite noisy and it is very difficult to infer the structure from this representation.

Movielens Data. Figure 5.8 depicts the hidden structure of MovieLens data set detected by

SCMiner and CA, the left shows the re-arranged adjacency matrix of data output by CA, which

is hard to understand, the right depicts the hidden structure found by SCMiner which is much

easier to analyze. For clarity we only show the relation between the 5 biggest clusters in each

type. Squares and circles represent the user and movies cluster. Cluster O1 and O2 contain user

groups that are older than the average regarding the whole data set, and their male-to-female

ratio is just about whole data set average. Square YW represents a user group with a much

larger female ratio compared to the average, and the users are younger than the average as well.

Square YM1 and YM2 denote clusters with groups of users containing almost all young man.

On the other side, circle FM represents a cluster of famous movies, containing Schindler’s List,

Shawshank Redemption, and Seven etc. that all have high rating scores in IMDB, which shows

that all groups of users like it. This fact is embodied in the revealed hidden structure, since

this cluster has connections to all user groups. Circle CD is mainly consisting of movies from

comedy and drama category, so it makes sense that older people like it. The movies in circle

CR are mostly from action, romance and comedy genre, so young women and young men like

5.4 Experiments 109

it. Circle AA and AS represent adventure action thriller movies and action sci-fi thriller movies

respectively, therefore young man like them. The above analysis shows that the hidden structure

found by SCMiner is reasonable.

5.4.4 Link Prediction Accuracy

Table 5.4: Link Prediction Performances.

Algorithm
BP1 BP2 BP3 Jester

Precision Recall Precision Recall Precision Recall Precision Recall
PA 0.084 0.084 0.436 0.436 0.442 0.443 0.406 0.369

Katz 0.984 0.984 0.943 0.943 0.547 0.548 0.406 0.369
GS 0.965 1 0.981 1 0.994 0.973 0.356 0.05

SCMiner 1 1 1 1 0.997 1 0.431 0.389

SCMiner outputs the summarization of the input graph that yields the minimum coding cost.

The summarization itself consists of a summary graph and an additional graph, where the ”-”

edges in the additional graph denote missing links which should be added to the original graph,

and ”+” edges might be noisy links which should be removed from the original graph. Since it

is hard to determine whether a ”-” edge represents noise, we only use link prediction to evaluate

whether a ”+” edge is a missing link.

The link prediction problem has been studied on graphs by several approaches which can

be divided into two categories, supervised, e.g. [67, 45] and unsupervised methods, e.g. [66].

Since SCMiner is unsupervised, we only compare our results to unsupervised approaches. There

are two types of unsupervised methods: based on node neighbors and based on paths between

nodes. However, some of these methods, like common neighbor, are not suitable for link predic-

tion on bipartite graph data and therefore we choose two methods, preferential attachment (PA)

[75] and Katz [58], that are suitable for bipartite graphs. We use precision and recall to evaluate

the accuracy. SCMiner automatically outputs K predicted edges and for reasons of fairness we

choose the top K predictions of the ranking list of PA and Katz to compare the precision and

recall of the prediction results. We also compare our approach to Graph Summarization (GS),

since the algorithm changes the edges of the original graph as well. Table 5.4 shows the link pre-

110 5. Summarization-based Mining Bipartite Graphs

diction comparison on our synthetic data sets as well as on the real data set Jester. All the results

are averaged over runs on 10 randomly generated or the selected data sets. SCMiner predicts

the missing links of BP1 and BP2 completely and those of BP3 nearly completely correct and

therefore yields better results on all synthetic data sets than all comparison methods. Moreover it

outperforms the other approaches on the Jester data set. Interestingly, GS performs better on the

synthetic data sets than on Jester. The reason might be that the Jester data set is sparser than the

synthetic data sets, and therefore GS reaches a local minimum very fast, which results in fewer

predicted edges.

5.5 Related Work and Discussion

During past decades, many algorithms were proposed for graph clustering, graph compression,

graph summarization and link prediction.

5.5.1 Co-clustering

Bi-clustering or co-clustering is a creative approach which simultaneously clusters rows and

columns of a data matrix. It avoids the problems caused by sparseness and high-dimensionality

that traditional one way clustering algorithms suffer from. There are some state-of-the-art co-

clustering algorithms, such as Information-theoretic Co-clustering [25], Cross-association [17]

etc. Specifically, Information theoretic Co-clustering [25] simultaneously maps row elements

to row clusters and column elements to column clusters, mutual information of each clustering

state is calculated and compared to the initial state. Thus, the optimal co-clustering result is

obtained when the mutual information loss is minimal. However, the drawback of the method is

that the number of both row and column clusters must be predetermined. Cross-association [17]

is a MDL-based parameter-free co-clustering method that processes a binary matrix and seeks

clusters of rows and columns alternately. Then the matrix is divided into homogeneous rectan-

gles which represent underlying structure of the data. However, compared with our algorithm,

it only addresses the clustering problem. Moreover, Long et al. [71] proposed a framework

5.5 Related Work and Discussion 111

for co-clustering named block value decomposition (BVD), which formulates co-clustering as

an optimization problem of matrix decomposition. Similarly, in [70], Long et al. reconstruct

a bipartite graph based on some hidden nodes and thus an optimal co-clustering result is ob-

tained from the new bipartite graph which mostly approximates the origin graph. However,

these two algorithms both need the number of clusters as input parameter. Besides, Dhillon [23]

proposed a spectral algorithm for bipartite graph partition. Shan and Banerjee [96] proposed

a Bayesian co-clustering model and considered co-clustering as a generative mixture modeling

problem. George and Merugu proposed a co-clustering algorithm based on the collaborative

filtering framework [36]. In terms of real life data sets, [20] applied co-clustering on gene ex-

pression data and [23] effectively processed documents and words data.

5.5.2 Graph Compression and Summarization

In real life, it is common that a graph consists of tens of thousands nodes and complex linkages.

Graph compression and graph summarization [81, 110, 124] are effective ways to simplify the

original large graph and to extract useful information. Many algorithms are based on SUBDUE

[50], which is a classical graph compression system. It makes use of the MDL Principle to find

a subgraph suitable for compression. Bayesian Model Merging (BMM) [101, 102] also is a kind

of compression method which is based on Bayesian formula. The best compressed model can be

achieved by maximizing the posterior probability. Navlakha et al. [81] represented a graph by a

summary graph and a correction matrix, and summarization is implemented by greedy merging

and randomized algorithms. MDL is used to find the local optimum. However, the algorithm

is designed for compressing only and performs poorly in clustering or link prediction. In [110],

according to group nodes based on their attributes and relationships, which are selected by the

user, Tian et al. propose a graph summarization algorithm.

5.5.3 Link Prediction

Predicting whether two disconnected nodes will be connected in the future, based on available

network information is known as the challenge of link prediction. Liben-Nowell and Kleinberg

112 5. Summarization-based Mining Bipartite Graphs

[66] summarize some unsupervised link prediction approaches for social networks. For example,

common neighbor, Jaccard’s coefficient, preferential attachment [75], Katz [58] etc. Specifically,

preferential attachment is based on the idea that two nodes with higher degree have higher prob-

ability to be connected. Katz [58] defines a score that sums up the number of all paths between

two nodes where short paths are weighted stronger. By ranking these scores, the probability of

whether two disconnected nodes will be linked in the future can be acquired. However, when

dealing with bipartite graphs, Kunegis et al. [63] stated that scores based on common neighbor

are not suitable, because two connected nodes do not have any common neighbors in a bipar-

tite graph. But scores like preferential attachment and Katz, which are used in this chapter as

comparison methods are reasonable.

5.6 Chapter Conclusion

In this chapter, we propose SCMiner a technique for mining knowledge from bipartite graph

which integrates graph summarization, bipartite graph clustering, link prediction and hidden

structure mining. Based on the sound optimization goal of data compression, our algorithm finds

a compact summary representation of a large graph. In addition, while compressing the graph

SCMiner detects the truly relevant clusters of both node types and their hidden relationships.

Thus, SCMiner is a framework comprehensively supporting the major tasks in unsupervised

graph mining. Our experiments have demonstrated that SCMiner outperforms specialized state-

of-the-art techniques for co-clustering and link prediction. In ongoing and future work we want

to extend this idea to support multi-partite graphs as well as graphs with different edge types.

Chapter 6

Detection of Overlapping Communities in

Attributed Graphs

As the information contained in the data is becoming more complex, the complexity of the graph

generated from the data is increasing. In this chapter, we focus on mining knowledge from the

attributed graph with both structural and attribute information. To be specific, the structural in-

formation conveys the relationship between each pair of objects, and the attribute information

expresses features of each object. Therefore, the results of mining attributed graph are decid-

ed by both aspect of information. In this chapter we propose an algorithm called IROC (for

Information-theoretic non-Redundant Overlapping Clustering). IROC improves the clustering

results from many aspects. Firstly, IROC aims at discovering overlapping clusters which means

nodes as well as attributes are allowed to be assigned to multiple different clusters. Moreover,

the overlapping clusters detected by IROC avoid the redundancy issue. After executing IROC,

besides the non-redundant overlapping clusters we can also obtain the attribute subspace of each

cluster which expresses the common meaning of the cluster. In addition, IROC is proposed based

on Minimum Description Length principle, thus it does not require any input parameters.

The remainder of this chapter is organized as follows: Section 6.1 gives the introduction.

Section 6.2 describes the coding scheme. Section 6.3 presents the algorithm in detail. Section

6.4 contains an extensive experimental evaluation. Section 6.5 discusses related work and Section

114 6. Detection of Overlapping Communities in Attributed Graphs

6.6 gives the conclusion of this chapter.

Parts of the material presented in this chapter have been submitted to [31], where Jing Feng

was mostly responsible for the development of the main concept, implemented the main algo-

rithms and wrote the largest parts of the paper; Nina Hubig wrote parts of the paper and revised

the whole paper; Xiao He performed part of experiments; Claudia Plant supervised the project

and revised the whole paper; The co-authors also contributed to the conceptual development and

paper writing.

“Jing Feng, Nina Hubig, Xiao He, Claudia Plant. Detection of Overlapping Com-

munities in Attributed Graphs. Submitted for publication.”

6.1 Introduction

6.1.1 Motivation

Social networks, gene and/or protein interaction networks as well as nearly all common types

of networks in real-world applications are not only sharing a large amount of information de-

pending on the relationship between the vertices, but also contributing information regarding

the characteristics of these vertices. These characteristics are modeled as attributes of a vertex.

Thus we are referring to a graph containing extra information in its nodes as an attributed graph.

These attributed graphs connect two aspects of information: First, the structural “who knows

whom” given by the graph itself as for example in friendship relationships of applications like

Facebook. Second, the attributes per node or person showing (in the case of Facebook) personal

information like hobbies, what they are working, where they are living etc. Combining both

aspects of information gives the chance to answer questions like “what this friendship circle has

in common?” or “what do most people in my work environment like and what joins them togeth-

er?”. Questions like this can be answered to some extend by just clustering attributed graphs, as

existing algorithms propose in [128, 119, 127].

But we are not only clustering attributed graphs but are also applying an overlapping concept

to both informational aspects to the graph structure and to the attribute space. What do we mean

6.1 Introduction 115

Attributes per Person:
‐ University
‐ Company
‐ Hobbies
‐Workgroup
‐ Job

John
Adam

University: UCLA
Company : IBM
Hobbies: Basketball
Workgroup: Marketing
Job: Advertising Planning

University: UCLA
Company : P&G
Hobbies: Dance
Workgroup: Marketing
Job: Advertising Planning

University: NYU
Company : IBM
Hobbies: Basketball
Workgroup: Marketing
Job: Project Promotion

Eva

Figure 6.1: Motivational Example of a Social Friendship Network.

by overlapping and what do we gain out of the attributed graph if we are already able to group

both informational aspects by just partitioning the attributed graph?

Consider the example given in Figure 6.1, it outlines the meaning of “overlapping” in com-

bination with an attributed graph. The figure shows the friendship circles in a social network of

a person called “Adam”. His two friendship circles are visualized in two rectangles behind the

graph structure: the top left stands for his friends from school and the bottom right indicates his

circle of colleagues. The overlapping of both circles is shadowed. Every person (node) includes

attributes on their university, their working place and department, what hobbies they have and

what job position they are in. You could also think of these attributes as more of a list, containing

several items and differing in detail. For example, Adam graduated from UCLA, works at IBM,

likes playing basketball, works in the marketing department and is mainly in charge of planning

advertisements. Now, how would an attributed graph partitioner most likely divide this structure

if no overlap is allowed? A distinct possibility is to assign Adam to either the school friends or

the colleagues circle, because Adam can form a nearly full clique with both circles. This would

result in a very high quality for clustering for one cluster while the other would lose some infor-

116 6. Detection of Overlapping Communities in Attributed Graphs

mation (Adam). In this frequent case, partitioning must sacrifice the quality of this one cluster.

Obviously, overlapping clustering, like assigning Adam to both circles, provides more meaning-

ful structural information. Lets take a look at the two named nodes John and Eva that share some

overlap in their attributes with Adam. John is a working partner of Adam, and shares the same

hobby, workgroup and of course company with him. Also Eva graduated from the same univer-

sity, shares the same workgroup and is working in a similar job like Adam, just in a different

company. Therefore, Adam shares similar attributes with his work circle where John is, while he

shares other attributes with his school circle where Eva is. Apparently Adam should be assigned

to both circles from the attribute information side as well. All in all this small example already

shows the realistic significance when overlapping is integrated in structure and attribute space.

However, in an extreme example, overlapping can appear as the whole smaller cluster is included

in a bigger cluster. Such overlapping will cause information redundancy, which basically means

that the smaller cluster includes no further interesting information. In this chapter, the proposed

method aims to detect overlapping clusters and meanwhile avoid information redundancy.

6.1.2 Contributions

Therefore, we contribute a new method of clustering attributed graphs with the objective to find

the reasonable overlapping communities and meaningful subspace of the attributes at the same

time based on an information theoretical technique. The advantages of the proposed algorithm

are in short:

• Discovery of overlapping communities: Our method discovers not only single dense

groups of friends but also their connections to other groups. Node structures can have

several group memberships and be efficiently evaluated.

• Finding coherent attribute subspaces: We think that some information is hidden in at-

tribute subspaces that can be obtained to express the meaning of the cluster. Overlapping

is also allowed among attribute subspaces.

• No Redundancy: Based on the Minimum Description Length (MDL) principle [92], our

6.2 Compressing an Attributed Graph 117

approach balances quality and redundancy in both graph structure and attribute space.

Specifically, a node is only assigned to several graph clusters and an attribute is only part

of multiple subspaces if this pays-off in terms of data compression. Thereby, only the truly

relevant overlap useful to compress the data is reported as a result of our algorithm.

• Automation: Our information theoretic based algorithm relieves the user from the task of

finding parameters to run the method on every specific data. The non-redundant overlap-

ping clusters and coherent attribute subspace can be detected automatically.

6.2 Compressing an Attributed Graph

To understand our coding scheme it is foremost important to outline what needs to be compressed

in an attributed graph. From start, an attributed graph is an extension from a general graph by

involving attributed information to each vertex. Therefore, two types of matrices are needed to

model both structural connections in the graph and the attribute space of each node. Same as the

general graph, the structure is mapped into an adjacency matrix, while the attributes of each ver-

tex can be modeled as a matrix with rows denoting vertices and columns representing attributes.

We name this matrix the attribute matrix. So far, an attributed graph is represented by an adjacen-

cy matrix and an attribute matrix that need to be compressed for efficiency and automation. For

simplicity in this chapter, we focus on undirected unweighed graphs with categorical attributes.

6.2.1 Notations

Before we start with the coding scheme, this section describes the notation and used throughout

the chapter.

Definition 6.1 (Attributed Graph) An attributed graph is defined as G = (V,E,Λ), where

V = {v1, v2, ..., v|V |} contains |V | vertices, E = {(vi, vj), 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V |, i 6= j}

are edges, Λ = {λ1, λ2, ..., λT} are T attributes of each vertex. Θ = {θ1, θ2, ..., θT} represents

domains of Λ. And θk is all possible values of attribute λk, where k ∈ {1, 2, ..., T}.

118 6. Detection of Overlapping Communities in Attributed Graphs

Besides,A is the adjacency matrix withAi,j = 1 if (vi, vj) ∈ E and F is the attribute matrix

with Fi,k denoting the categorical value of the ith vertex in the kth attribute. An attribute graph

is represented as G = (A,F) as well.

In this chapter, we aim at mining knowledge from the attributed graph by detecting non-

redundant overlapping clusters. As attributed graphs possess both structural and attribute infor-

mation, the cluster of such type of data covers both information, which is defined in Definition

6.2. A cluster C is a subset of an attributed graph G. Specifically, the cluster needs to be densely

connected and contains a subgroup of attributes to describe the meaning of the cluster.

Definition 6.2 (Cluster in an Attributed Graph) A cluster is defined as C = (V ′, E ′,Λ′) that

is a subset of the attributed graph G, where V ′ ⊆ V , E ′ ⊆ E, Λ′ ⊆ Λ. V ′ = {v′1, v′2, ..., v′|V ′|} is

a subset of V that includes |V ′| densely connected vertices and Λ′ = {λ′1, λ′2, ..., λ′S} is a subset

of Λ that contains S attributes with coherent categories, where S ≤ T .

AC ⊂ A is the subset adjacency matrix of the cluster C that only contains the vertices in C.

And FC ⊂ F is the subset attribute matrix of the cluster C. Similarly, a cluster in an attributed

graph can be represented as C = (AC ,FC) as well.

Besides the own structure of clusters, there are some edges connecting these clusters that are

not included inside the clustering. Similarly to the edge structure, many attributes from the full-

dimensional subspace are not assigned to any cluster. We define these areas as the non-cluster

area of an attributed graph in Definition 6.3, which consists of the elements lying outside any

cluster in both structure and attribute space.

Definition 6.3 (Non-Cluster Area in an Attributed Graph) The non-cluster area of an attribut-

ed graphGmodeled byK clusters {C1, C2, ..., CK} is defined as U = UA
⋃
UF , where UA is the

non-cluster area in the adjacency matrixA and UF is the non-cluster area in the attribute matrix

F . UA = A \A′, where A′ = AC1 ∪AC2 ... ∪ACK
is the combination of all structural elements

appearing in {C1, C2, ..., CK} and UF = Uλ1 ∪ Uλ2 ... ∪ UλT , where Uλk with k ∈ {1, 2, ..., T}

are entries of F in attribute λk which are not included in {C1, C2, ..., CK}.

6.2 Compressing an Attributed Graph 119

6.2.2 Coding Scheme

The coding scheme is the core part of our approach and is divided into three parts: first the basic

ways of how compression is used in information theory for graphs, and then how the specific

data costs for an attributed graph are calculated as well as how a specific data structure like that

can be modeled.

As a lossless compression, Minimum Description Length (MDL) [92] principle follows the

assumption that the less coding length we adopt to describe the data, the more knowledge we

can gain from it. Formally, the quality of a model can be identified from Eq.(6.1), where L(M)

denotes the coding length for describing modelM and its parameters, whileL(D |M) represents

the cost of coding data D under model M .

L(M,D) = L(D |M) + L(M) (6.1)

In our cases, D is the attributed graph G. The length of the data under the model L(D | M)

can be described as the coding cost of clusters and non-cluster area in the attributed graph G.

The length of the model L(M) is the coding length of assignment of both vertices and attributes

and the coding cost of parameters. In the following, we elaborate the data description and the

model costs that are necessary to compress an attributed graph in detail.

Data Description Cost L(D |M)

Suppose K clusters {C1, C2, ..., CK} are discovered from an attributed graph G. Under the

clustering model, the attributed graph can be described as K clusters {C1, C2, ..., CK} and a

non-cluster area U . Therefore the data description cost L(D |M) is equivalent to all costs of all

clusters plus the non cluster area, as shown in Eq.(6.2). In the following, we will describe the

data description cost in specific.

L(D |M) =
K∑
i=1

CC(Ci) + CC(U) (6.2)

120 6. Detection of Overlapping Communities in Attributed Graphs

Coding cost of a cluster CC(Ci): A cluster Ci can be represented by the subset adjacency

matrix ACi
and the subset attribute matrix FCi

. Then the coding cost of the cluster Ci is the sum

of the structural coding cost CCA(Ci) and the attribute coding cost CCF(Ci), as shown in Eq.

(6.3).

CC(Ci) = CCA(Ci) + CCF(Ci) (6.3)

In structural aspect, cluster Ci is composed of densely connected vertices which equals to

high probability ‘1’ in subset adjacency matrix ACi
. The average coding cost of the entries in

matrix ACi
is lower bounded by its entropy. Because we consider G as an undirected graph, we

only need to encode the entries of the upper triangular matrix. Therefore, the coding cost of the

structural information of the cluster Ci is described in Eq. (6.4), where p1(Ci) and p0(Ci) stand

for the probability of ‘1’ and ‘0’ in the subset adjacency matrix ACi
respectively. And nCi

refers

to the number of entries in upper triangular matrix of ACi
.

CCA(Ci) = −nCi
· (p1(Ci) · log2 p1(Ci) + p0(Ci) · log2 p0(Ci)) (6.4)

In attribute aspect, the subspace of the cluster Ci is described as a subset attribute matrix FCi

withe the size NCi
×S. S attributes are chosen from T attributes to represent the meaning of the

NCi
densely connected vertices. Thus each attribute in subspace need to be generally identical.

How to encode the subset attribute matrix FCi
? Figure 6.2 depicts a codebook which is adopted

to encode the attribute information of cluster Ci. As shown in the figure, attributes of a vertex

in cluster Ci can be represented as a category string with the length equals to the subspace. The

codebook shows R groups of category strings of cluster Ci and vertices in each group contain

identical categories. The probabilities of each group are given as pg1, pg2, ..., pgR. Additionally,

we use log2 nθk bits to encode each category string, and nθk is the number of categories in at-

tribute k included in subspace S. Then the coding cost of the attribute information of cluster Ci

6.2 Compressing an Attributed Graph 121

can be calculated by Eq. (6.5).

CCF(Ci) = −R ·
R∑
r=1

pgr · log2 pgr +R ·
S∑
k=1

log2 nθk (6.5)

a a … a pg1

a a … b pg2

… …

a b … c pgR

Subspace Λ’

Group 1 :

Group 2 :

Group R :
…

Figure 6.2: The Codebook of an Attribute Matrix

Coding cost of the non-cluster area CC(U): The non-cluster area consists of the elements in

the adjacency matrix A and the attribute matrix F that are not contained in K clusters, which

are represented as UA and UF respectively. Similarly, the coding cost of the non-cluster area

CC(U) is the sum of the structural coding cost CC(UA) and the attributed coding cost CC(UF),

as shown in Eq. (6.6).

CC(U) = CC(UA) + CC(UF) (6.6)

We consider all elements of the structural non-cluster area UA entirely and code them with a

fixed coding order. The coding cost of the non-cluster area of the structural aspect CC(UA) can

be encoded as shown Eq. (6.7). Here, p1(UA) is the number of edges in UA and p0(UA) is the

number of non-edges in UA. Due to the symmetry property of the matrix, nUA equals to half of

122 6. Detection of Overlapping Communities in Attributed Graphs

the elements in UA.

CC(UA) = −nUA · (p1(UA) · log2 p1(UA) + p0(UA) · log2 p0(UA)). (6.7)

In the non-cluster area of attribute aspect UF , we encode the remaining categories of every

attribute in Λ one by one. The coding cost CC(UF) is calculated by Eq. (6.8), where Nλk is the

number of categories of attribute λk that are not assigned to any clusters, and pθj is the probability

of an category θj in the remaining elements of each attribute.

CC(UF) = −
T∑
k=1

θj∑
j=1

Nλk · pθj · log2 pθj . (6.8)

Model Cost L(M)

For encoding the model cost L(M) of the attributed graph, each cluster will be compressed in

three aspects: the assignments of each vertex, the assignments of each attribute and the parame-

ters of the clusters. Therefore, the model cost can be calculated by Eq. (6.9).

L(M) =
K∑
i=1

(CCIDV (Ci) + CCIDF (Ci)) + CCpara. (6.9)

Coding cost of vertices assignment CCIDV (Ci): As overlapping is allowed in our proposed

algorithm, a vertex can be assigned to multiple clusters. For each cluster, we adopt an assignment

list LV with the length of |V | to label the existence of the vertices, which is shown in Figure 6.3.

When the vertex belongs to the cluster, the corresponding value in the list is set to 1, otherwise is

set to 0. Therefore, the coding cost of the vertices assignment for a cluster CCIDV (Ci) is lower

bounded by its entropy as shown in Eq. (6.10), where p1(LV) and p0(LV) denote the probability

of ‘1’ and ‘0’ in the assignment list LV of cluster Ci respectively.

CCIDV (Ci) = −|V | · (p1(LV) · log2 p1(LV) + p0(LV) · log2 p0(LV)). (6.10)

Coding cost of attributes assignments CCIDF (Ci): In our proposed algorithm, the corre-

6.2 Compressing an Attributed Graph 123

2

3 4

1

5

6

9 8

7

1 2 3 4 5 6 7 8 9

1 1 1 1 1 0 0 0 0

Cluster 1 Cluster 2

0 0 0 0 1 1 1 1 1

Cluster 1 :

Assignment List:

Cluster 2:

Figure 6.3: The Assignment List of Vertices

sponding attribute subspace of each cluster is also detected. There is overlapping among these

attribute subspaces as well. Here we also adopt an assignment list LΛ with the length of T to

represent that attributes are contained in a subspace or not. The coding cost of the attribute as-

signment of a cluster Ci can be calculate by Eq. (6.11), where p1(LΛ) and p0(LΛ) denote the

probability of ‘1’ and ‘0’ in the assignment list LV of cluster Ci respectively..

CCIDF (Ci) = −T · (p1(LΛ) · log2 p1(LΛ) + p0(LΛ) · log2 p0(LΛ)). (6.11)

Coding cost of parameters: To ensure that the receiver acquires the complete information, all

parameters need to be encoded to keep the compression lossless. The cost of these parameters

can be calculated by Eq.(6.12), where np is the number of parameter and nE is the number of

entries. In the following, we will introduce the parameters we need to coding in the proposed

algorithm.

CCpara = 0.5 · np · log2 nE. (6.12)

Firstly, we need to encode the probability of ‘1’ and ‘0’ in each clusterCi and the non-cluster area

124 6. Detection of Overlapping Communities in Attributed Graphs

U . For each cluster Ci, np = 1 and nE equals to the half the number of the entries of the subset

adjacency matrix ACi
. Secondly, we encode the probabilities of the R groups in the codebook.

Here np = R− 1 and nE equal to the number of categories of the codebook. Thirdly, we encode

the probabilities of all categories in each attribute in the non-cluster area of the attribute matrix.

For each attribute k, np = θj−1 and nE equals to the size of the remaining categories of attribute

k. Finally, we encode the probabilities of the assignment lists as parameters as well. For each

assignment list, np = 1 and nE equals to the size of the list.

6.3 Algorithm IROC

In this section, we propose the algorithm IROC to heuristically efficiently detect overlapping

clusters in attributed graphs. The initialization phase and the refinement phase are the two key

steps in IROC. The initialization phase is again divided into two subroutines for a) creating

graph substructures and b) finding their coherent attribute subspace. The refinement phase takes

the responsibility of improving the quality of initial clusters by a) removing redundant parts of

the cluster and b) reassigning vertices between two clusters.

6.3.1 Initialization

Creating Graph Substructures: First of all, we create some small subgraphs. Each of them

is simply composed of a vertex and all its neighbors. This is an intuitive way to obtain all

these small subgraphs. Therefore, |V | subgraphs SS = {ss1, ss2, ..., ss|V |} with overlapping are

extracted from an attributed graph G, where |V | is the number of vertices. These |V | subgraphs

are overlapping with each other, but some of the overlapping parts are reduplicate which produce

over much redundancy information. In order to eliminate such over much redundancies, we

select Ks subgraphs as initial rough clusters based on the MDL principle automatically. And

the Algorithm 6.1 shows the procedure of selecting the Ks clusters C = {C1, C2, ..., CKs} from

the |V | subgraphs. The subgraph added to clusters C which reduces the total coding cost most

will be selected. To be specific, we consider |V | subgraphs as rough clusters. And we suppose

6.3 Algorithm IROC 125

that there is no cluster in the attributed graph G in the beginning, C = ∅. Then we add each

rough subgraph SS to clusters C and calculate the coding cost by Eq. (6.1) separately. After

that we select the subgraph with the minimum coding cost as the first cluster. We keep the

selected cluster in clusters C. Analogously, in the remaining |V | − 1 candidates subgraphs, we

try to add each candidate as the second cluster and choose the one with the minimum coding

cost repetitively. This process stops until all vertices are processed, so that Ks initial clusters are

chosen automatically.

Finding a Coherent Attribute Subspace: After obtaining Ks rough clusters, we also need to

find out the attribute subspace of each rough clusters. Algorithm 6.2 demonstrates the progress of

searching an attribute subspace Λ′ = {λ′1, λ′2, ..., λ′S} of a cluster Ci based on the MDL principle,

where S is the size of the subspace. Every vertex of a rough cluster possesses a category in each

attribute. For each cluster, we calculate the entropy of each attribute to measure the purity of

the categories in the attribute. Entropy in this case refers to the consistence of categories of an

attribute. The lower the value is, the higher the consistency of the attribute will be. Thus we

order the attributes in ascending order based on their entropies. If some attributes possess the

same value, they are formed into groups and considered as one candidate. Thus the candidates of

attributes are Λo = {Λo
1,Λ

o
2, ...,Λ

o
Tg
}. Based on the prerequisite that the subspace of the cluster

is initialized with an empty set, Λ′ = ∅, we add the ordered attribute candidates to the subspace

one by one, and meanwhile calculate the coding cost of the whole graph G by Eq. (6.1). Then

we select the attribute subspace Λ′ of a cluster Ci with the minimum coding cost. In the same

way, the attribute subspace of other Ks − 1 clusters are chosen.

6.3.2 Refinement

Removing Redundancy: After the initialization step, we receive Ks small attributed clusters

which contain redundant information. These redundancies serve to generate and find the overlap-

ping in the beginning but are later unwelcome. Therefore our heuristic bottom up algorithm needs

to merge these small initial rough clusters to remove redundancies. We define an information-

theoretic based similarity which measures the degree of the redundancy between every pair of

126 6. Detection of Overlapping Communities in Attributed Graphs

Algorithm 6.1 Creating Subgraphs
Input: Attributed Graph G with |V | Vertices and T Attributes
Output: Ks Rough Clusters: C = {C1, C2, ..., CKs}

1: Construct |V | subgraphs SS = {ss1, ss2, ..., ss|V |} as initial |V | clusters;
2: C ← ∅;
3: while All vertices are selected do
4: for All substructures in SS do
5: Calculate coding cost of ssi

⋃
C, ssi ∈ SS;

6: end for
7: Select ssm with minimum coding cost, ssm

⋃
C;

8: Remove ssm from SS;
9: end while

10: return Ks Rough Clusters: C = {C1, C2, ..., CKs}.

Algorithm 6.2 Finding Subspace
Input: A Cluster Ci with |V ′| Vertices and T Attributes
Output: Subspace Λ′ = {λ′1, λ′2, ..., λ′S}

1: Λ′ ← ∅;
2: for i from 1 to T do
3: Calculate entropy of each attribute λi;
4: end for
5: Group attributes with same entropy and arrange attributes in ascending order Λo =
{Λo

1,Λ
o
2, ...,Λ

o
Tg
};

6: for i from 1 to Tg do
7: Λo

i

⋃
Λ′, Λo

i ∈ Λo;
8: Calculate coding cost CC of all clusters;
9: if CC increases then

10: break;
11: end if
12: end for
13: return Subspace Λ′ = {λ′1, λ′2, ..., λ′S}.

6.3 Algorithm IROC 127

clusters. Due to the fact that both structural and attribute information are present, we measure

the similarity of two clusters as shown in Eq. (6.13):

Sim(Ci, Cj) = H(OA) +H(OF). (6.13)

where H(·) is entropy, OA and OF are the structural and attribute overlapping part of cluster Ci

and Cj respectively. This quality function tackles the chief problem of merging two clusters:

the amount of overlaps in structural and attribute information. How can two clusters be merged

without creating new redundancy if they are overlapping in both structure and attribute spaces?

On the structural aspect, entropy pays off in the denser overlapping area. Also the smaller the

entropy is, the denser the overlapping part of the cluster will be. Thus the smaller entropy of

structural overlapping part leads us to detect dense clusters. In contrast on the attribute side,

entropy measures the purity of categories in the overlapping area of the attributes. This ensures

that the cluster is provided with same categories in the attributes. The smaller the entropy is, the

higher the similarity of the attributes in the overlapping part will be. Thus the smaller entropy

of attribute overlapping part leads us to detect clusters with coherent meaning. Therefore, the

defined similarity balances the entropy of the two aspects, which guides us to merge the two

most similar clusters. And in every search run we merge the pair of clusters that share a minimal

similarity.

Assigning Vertices: Obviously, merging two clusters Ci and Cj to form a new cluster Cnew

is able to remove redundancy. However, such merging may not eliminate all redundancies.

Depending on how accurately the removing of the redundancy works, we need to modify the

cluster further in a second refinement step which is shown in Algorithm 6.3. For all ver-

tices {v1, v2, ..., vNCnew
} in Cnew, we try to split a vertex v1 from Cnew and consider it as a

new cluster Csplit = {v1}. Then we find the subspace of Csplit and refine the subspace of

Cnew = {v2, ..., vNCnew
}. If such process reduces the coding cost, we keep the modification

and try to move the next vertex v2 from Cnew to Csplit. If the coding cost is not reduced, we move

the vertex v1 back to Cnew. The refinement of cluster Cnew ends when the coding cost achieves

its local minimum. If cluster Csplit is not empty, we treat Csplit as a new candidate and add it to

128 6. Detection of Overlapping Communities in Attributed Graphs

the clusters.

Algorithm 6.3 Assigning Vertices
Input: Cluster Cnew
Output: Cluster Cnew and Cluster Csplit

1: Creat a cluster Csplit, Csplit ← ∅;
2: Calculate coding cost of all the clusters CC;
3: for All nodes in Cnew do
4: v ∈ Cnew, remove v from Cnew, add v to Csplit;
5: Finding Subspace of Csplit and Cnew;
6: Calculate coding cost of all the clusters CCnew
7: if CCnew > CC then
8: Restore v to Cnew;
9: end if

10: end for
11: return Cnew and Csplit.

6.3.3 Overall procedure

The overall procedure of IROC is shown in Algorithm 6.4. First, we automatically select Ks

rough clusters and search their attribute subspace as described in the initialization phase. Then

we calculate the similarity of every pair of clusters, and merge the two cluster with a minimum

similarity. After that a new cluster Cnew is formed and we find the subspace of it. Then we try to

assign vertices from Cnew to Csplit under the control of MDL. And we consider Csplit as a new

cluster and recalculate the similarity of every pair of clusters. The merging process continues

iteratively and is ended when the coding cost of all clusters achieve its local minimum. Finally,

K clusters with coherent attribute subspaces without redundancy are output.

Suppose we have an attributed graph G with |V | vertices, |E| edges and T attributes for

each vertex. We first analyze the complexity of the coding when we have K clusters. For each

clusters we need to count the edges of the cluster and go through its vertices and attributes to get

the probability distributions. The complexity of these processes for all clusters are O((K + 1) ·

(AvE+AvN ·AvT)), whereAvE < |E| is the average number of edges, AvN < |V | is the average

number of vertices and AvT < T is the average number of subspace attributes. The multiplier

6.4 Experiments 129

Algorithm 6.4 IROC
Input: Attributed Graph G
Output: K Clusters with Subspace C = C1, C2, ..., CK

1: Creating Subgraphs C = C1, C2, ..., CKs ;
2: for i from 1 to Ks do
3: Finding Subspace of Ci
4: end for
5: while Not Converge do
6: Calculate similarity of every pair of clusters;
7: Merge two most similar clusters as Cnew;
8: Finding Subspace of Cnew;
9: Assigning Vertices of Cnew;

10: end while
11: return C = C1, C2, ..., CK .

factor is K + 1 considering the no-cluster area. Since the number of cluster is K � |V |, the

complexity of the proposed coding scheme is O(|E|+ |V | · T).

In initialization phase of IROC, we greedily choose the initial clusters, the complexity is

O(|V | · |E|), where Ks is the number of initial clusters. Then we need to find the subspace for

each cluster. Its complexity is O(Ks · |V | · T 2). The reason is that for each cluster we need to

calculate the coding cost T times. Finally, the complexity of the full initialization phase (both

parts combined) is O(Ks · |V |(|E|+ T 2)).

In the full refinement step, we need to process K2
s pairs of clusters. In each merging and

splitting process, we need to move vertices to other clusters and then calculate the subspace of

the new clusters. Therefore, we need O(|V |2 · T 2) time to do so. Finally, the complexity in this

step is O(K2
s · |V |2 · T 2).

6.4 Experiments

In this section, we evaluate our proposed algorithm IROC on both synthetic and real data sets

and compare it with 3 relevant algorithms. The code of the comparison methods are obtained

from the authors. Experiments have been performed on a workstation with 2.9GHz Intel Core

i7 and 8G memory.

130 6. Detection of Overlapping Communities in Attributed Graphs

6.4.1 Synthetic Data sets

Data sets. The sketches of three synthetic data sets are shown in Table 6.1. Each circle represents

a densely connected cluster and the shadow part denotes the overlapping part in which vertices

are assigned to multiple clusters. The synthetic attributed graphs are generated with the following

parameters: Each cluster contains 200 vertices (nc = 200); no is the number of vertices in

the overlapping part; the density of edges in and between clusters are 0.8 and 0.1 respectively

(dc = 0.8, db = 0.1), here the density of edges is the ratio of edges to all possible edges. The

subspace of attributes of the three synthetic data sets are also shown in Table 6.1. The number of

dimensionality of the subspace of each cluster is denoted as nd and 2 dimensions are overlapping

(nod = 2). Each cluster contains nearly the same categories in its subspace attributes and only

r = 0.05 of them are randomly generated with different other categories. The categories which

do not belong to the subspace are randomly generated.

Table 6.1: Parameter Settings for Generating Synthetic Data Set

Datasets Syn1 Syn2 Syn3
Sketch

Structure Setting
nc = 200;no = 10;
dc = 0.8; db = 0.1

nc = 200;no = 10;
dc = 0.8; db = 0.1

nc = 200;no = 10;
dc = 0.8; db = 0.1

Attribute Setting nd = 5;nod = 2; r = 0.05 nd = 8;nod = 2; r = 0.05 nd = 10;nod = 2; r = 0.05

Subspace Setting
C1 : {1, 2, ..., 5}
C2 : {3, 4, ..., 8}

C1 : {1, 2, ..., 8}
C2 : {7, 8, ..., 14}
C3 : {13, 14, ..., 20}

C1 : {1, 2, ..., 10}
C2 : {9, 10, ..., 18}
C3 : {17, 18, ..., 26}
C4 : {25, 26, ..., 34}
C5 : {33, 34, ..., 42}

Evaluation of Clustering. In this section, we evaluate IROC on three synthetic data sets and

compare it to three relevant algorithms. PICS [3] is a compression based algorithm that clusters

both vertices and binary attributes. BAGC [119] is a probability model based attributed graph

partition method. DB-CSC [42] is a density based algorithm which aims at detecting dense clus-

ters with a coherent subspace of attributes. It is designed for graphs with numerical attributes,

6.4 Experiments 131

which chooses the attribute neighborhood if the distance of the attributes of two vertices is small-

er than a threshold ε. The distance is defined as the maximum difference of all the attributes like

dist(x, y) = maxi∈{1,...,T} |x[i]−y[i]|. We transfer the categorical attributes of our synthetic data

to integers for DB-CSC and set ε < 1, which means the attribute neighbors with exactly the same

category will be chosen. Due to the multiple clustering assignments, we adopt F-Measure to e-

valuate these algorithms on clustering vertices. F-Measure is computed as the harmonic mean

of Precision and Recall. Precision measures the accuracy of the detected clusters and Recall

measures whether all clusters are detected.

Table 6.2: Evaluation Overlapping Clusters of Synthetic Data Sets

Algorithms
Syn1 Syn2 Syn3

Pre. Rec. F-Measure Pre. Rec. F-Measure Pre. Rec. F-Measure
IROC 1 1 1 1 0.973 0.986 1 0.963 0.981
PICS 1 0.322 0.487 1 0.732 0.846 0.563 0.670 0.612

DB-CSC 0.895 0.826 0.859 − − − − − −
BAGC 1 0.947 0.973 0.955 0.607 0.742 0.490 0.722 0.584

From Table 6.2, it is obvious that our proposed algorithm IROC outperforms the other algo-

rithms. Generally, PICS and BAGC are not able to detect the overlapping parts of the graphs.

DB-CSC outputs many small clusters with several overlapping vertices. However 6 parameters

have to be set. Specifically, in Syn1 IROC achieves perfect 2 clusters without any parameters,

as shown in Figure 6.4(a). From Figure 6.4(b) the parameter-free algorithm PICS outputs 8 clus-

ters, which splits two big cluster to several small ones. BAGC achieves 2 clusters, but it cannot

detect their overlapping parts. DB-CSC outputs 19 clusters and some clusters contain less than

ten vertices. We run DB-CSC with ε = 0.5, kmin = 4, minpts = 5,robj = 0.1,rdim = 0.1 and

smin = 1. For the next synthetic data set Syn2, the overlap exists among all three clusters and

dimensionality of each cluster is increased to 8. IROC achieves 3 perfect clusters. It also suc-

cessfully detects the vertices which are assigned to all three clusters. PICS outputs 6 structural

graph clusters without overlapping. BAGC produces 3 cluster, but again cannot find any overlap.

DB-CSC achieves no result after adjusting 6 parameters several times and running the algorithm

several days. The reason might be that DB-CSC is not applicable for dense graphs with higher

132 6. Detection of Overlapping Communities in Attributed Graphs

dimensional attributes. The last synthetic data set, Syn3, is more complex than the other two

synthetic data sets before with 5 clusters and 4 of them overlapping. Similarly as before, IROC

performs the best finding 5 good clusters and their respecting overlap. PICS partitions the ver-

tices to 7 clusters. BAGC partitions the vertices to 5 clusters with no overlap. DB-CSC still

cannot output any results after increasing the number of dimension of each cluster to 10.

Evaluation of Subspace. BAGC is not able to detect the subspaces of attributes. PICS is an al-

gorithm which aims at clustering the binary attributes and not at finding the attributed subspaces

of certain clusters. For example, Figure 6.4 shows the attributed matrix of Syn1 after running

IROC and PICS. Specifically, the size of the attributed matrix of IROC is 380 × 8, where black

points mean that the attribute is included in a subspace of a cluster. Two black blocks represent

the clustering results of our IROC, which clearly shows the subspace of attributes and both over-

laps on vertices and attributes. While the size of the attribute matrix of PICS is 380× 35. Black

points mean that the vertices have corresponding categories and red lines demonstrate there are 5

attributes in the clusters. It is difficult to judge which attributed clusters are part of the subspace

to represent the meaning of the cluster. In addition, subspaces of various clusters may contain

overlap, while the clustering of the attributes is not able to achieve overlaps. Besides, it is hard

to obtain the binary image of DB-CSC due to the fact that too many clusters with subspace are

produced. Therefore, we compare IROC with DB-CSC by evaluating the F1-Measure of the

subspaces. Obviously, IROC achieves perfect results on every synthetic data set. The F-Measure

of DB-CSC on Syn1 is 0.13, as there are many small clusters and the clustering results on the

structural part does not lead to detect accurate subspaces. Besides, PICS obtains 10 attribute

clusters on Syn2 and 9 attribute clusters on Syn3. Similarly, they provide no information of

which attribute clusters are part of the subspace to represent the meaning of the vertex clusters.

Efficiency. In the section, we test the runtime of IROC and its comparison algorithms on syn-

thetic data set when varying both the number of vertices and the number of attributes, which are

shown in Figure 6.5 and Figure 6.6 separately.

In Figure 6.5, the synthetic data sets contain two clusters with 10 overlapping vertices, and

each subspace contains 5 attributes with 2 of them overlapped. We increase the number of nodes

6.4 Experiments 133

V
er

ti
ce

s

Attributes
2 4 6 8

50

100

150

200

250

300

350

(a) IROC.
V

er
ti

ce
s

Categories of Attributes
5 10 15 20 25

50

100

150

200

250

300

350

(b) PICS.

Figure 6.4: Clustering Results of Syn1 in Attributed Matrix.

0

5000

10000

15000

20000

25000

30000

35000

40000

200 400 600 800 1000

Ti
m
e
(s
)

Number of Nodes in Each Cluster
(Two Clusters)

IROC DBCSC PICS BAGC

(a) Larger Data Size

0
50
100
150
200
250
300
350
400
450
500

40 80 120 160 200

Ti
m
e
(s
)

Number of Nodes in Each Cluster
(Two Clusters)

IROC DBCSC

(b) Smaller Data Size

Figure 6.5: Run Time of Varying Vertices.

134 6. Detection of Overlapping Communities in Attributed Graphs

of each cluster from 200 to 1000. As shown in Figure 6.5 (a), IROC is slower than BAGC and

PICS, but it is much faster and more stable than DB-CSC. In Figure 6.5 (a), DBCSC do not show

the complete results due to a too long runtime. Thus we compare it with IROC in the smaller

data sets, as shown in Figure 6.5 (b), which also shows that IROC is faster and more stable than

DB-CSC.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10 20 30 40 50

Ti
m
e
(s
)

Dimensionality of Each Subspace
(Two Subspaces)

IROC DBCSC

PICS BAGC

(a) Higher Dimensionality

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2 4 6 8 10

Ti
m
e
(s
)

Dimensionality of Each Subspace
(Two Subspaces)

IROC DBCSC

(b) Lower Dimensionality

Figure 6.6: Run Time of Varying Dimensionality.

In Figure 6.6, the synthetic data sets contain two clusters with 10 overlapping vertics, and

each cluster contains 200 nodes. We increase the number of attributes of each subspace from 10

to 50, and the two subspaces have 2 overlapping attributes. As shown in Figure 6.6 (a), IROC is

slower than BAGC and PICS, but it is much faster and more stable than DB-CSC which is not

able to show the complete results due to a too long run time. Similarly, we compare DB-CSC

with IROC in a smaller dimensionality, as shown in Figure 6.6 (b), which also shows that IROC

is faster and more stable than DBCSC.

6.4.2 Real Data sets

Facebook Data. Facebook data sets are obtained from SNAP data sets [74]. Specifically, each

Facebook data set is an ego-network of a selected node. For example, a network named “1912”

6.4 Experiments 135

is generated by a node with id 1912 and all its neighbors. Characters of vertices include birthday,

education information, language, hometown, work information .etc. Each kind of property con-

tains several anonymity items. The original node attributes are in binary form, and every single

item is considered as an attribute. The value “1” stands for the node that contains this item infor-

mation and value “0” vice versa. In this section, we consider each type of property as attribute

and the items in each property are defined as categories. In this section, we test two data sets:

Ego-network “1912” and Ego-network “107”. However, for the same reason with Syn3, we are

not able to get the results from DB-CSC after running the experiments for several days. Each

data set is separated into several “circles”, but not all the vertices are included. That means only

parts of the vertices’ label are available, thus we still use F-Measure to compare the algorithms.

There are 755 vertices in the ego-network “1912”, and each vertex has 22 attributes. Each

attribute contains several categories, for example, there are 22 categories in attribute “birthday”

and 19 categories in “education classes”. The data set has already been labeled as 46 circles.

Obviously, Table 6.3 demonstrates that our proposed method achieves the best F-Measure value

by generating 12 clusters. PICS generates 8 clusters. The result of BAGC is acquired by setting

the number of clusters to 46, which is equals to the given number of clusters. Ego-network “107”

contains 1045 vertices, 23 attributes and 9 circles. Table 6.3 demonstrates that our proposed

method IROC achieves the best F-Measure value by generating 17 clusters. PICS partitions the

vertices into 15 clusters, and the result of BAGC is acquired by setting the number of clusters as

9. Therefore, Table 6.3 demonstrates that IROC has a big advantage in detecting vertex clusters.

Table 6.3: F-Measure of Facebook Data Sets

Data sets IROC PICS BAGC
Ego− network”1912” 0.231 0.224 0.229
Ego− network”107” 0.141 0.101 0.118

In addition, IROC discovers overlapping vertices between pairs of clusters. Take the Ego-

network “1912” data as an example, the analysis of overlapping is shown in Table 6.4. Specif-

ically, Figure 6.7 shows a diagram of the overlapping part between cluster C2 and cluster C11.

There are four overlapping vertices “1941”, “2347”, “2468” and “2543” forming a clique. Other

136 6. Detection of Overlapping Communities in Attributed Graphs

vertices in C2 and C11 are both closely connected to the clique. Therefore, the two clusters C2

and C11 share the information of the overlapping part and it is reasonable to assign overlapping

vertices to both clusters.

Table 6.4: Overlapping of Ego-network “1912”

Cluster ID Overlapping Clusters ID(No.Vertices)
C1 C5(1)

C2
C3(1), C4(4), C5(23), C6(11), C7(1),
C8(3), C9(2), C10(6) ,C11(4), C12(9)

C3 C6(1),C11(15), C12(4)
C4 C5(1), C6(1), C11(11), C12(12)
C5 C6(1), C7(1), C9(1), C12(3)
C6 C10(1), C12(3)
C10 C11(1)

“1941”

C2 C11

“1920”

“2047”

“1917

“1994”

“2058

“1959”

. “2468”

“2543”

“2347”

Figure 6.7: Overlapping Between Cluster 2 and Cluster 11 of Ego-network “1912”.

Betweenness centrality of a vertex is the ratio of the number of the shortest paths from vm

to vn through vertex v to the number of all shortest paths from vm to vn which is shown in

Eq. (2.3). Where betweenness centrality measures the ability of a human communicating with

other humans in a social network [34], the vertex with high betweenness plays the role of bridge

in graphs. We calculate betweenness centrality of all the vertices, and rank them in descending

6.4 Experiments 137

order. Take the overlapping part of C2 and C11 as an example, the rank of the betweenness values

of “1941”, “2347”, “2468” and “2543” is 5, 4, 20 and 3 separately, which possesses really high

betweenness centrality values. Most likely these four persons are very outgoing and sociable

which is shown by this value. They communicate with various communities, so that they are

assigned to multiple clusters. Besides, the betweenness values of all overlapping vertices are

large, which implies that these vertices possess higher ability to communicate with other vertices

thus should be assigned to multiple clusters.

Regarding the attributes, BAGC is not able to detect any subspace of clusters. PICS detects

8 attributes clusters in Ego-network “1912” and 11 attributes clusters in Ego-network “107”.

Our IROC detects a subspace of attributes for each cluster. Table 6.5 shows the subspaces of

the attributes of Ego-network “1912”. The table shows that overlaps also exist between these

subspaces. For example, C5 and C6 have one vertex overlapping, and meanwhile their subspaces

also overlap on attribute ”middle name”.

Table 6.5: Subspace detected by IROC of Ego-network “1912”

Cluster ID Subspace
C1 all 22 attributes
C2 “middle name”
C3 “middle name”,“work projects”
C4 all 22 attributes
C5 “middle name”,“work projects”
C6 “middle name”
C7 all 22 attributes
C8 all 22 attributes
C9 all 22 attributes
C10 “work projects”
C11 “work projects”
C12 “middle name”

Google+ Data. Google+ data sets are obtained from the SNAP data sets [74] as well. Specifi-

cally, each Google+ data set is also an ego-network of a selected node. Similarly, we transfer the

given binary features to categorical features which contain 6 attributes: gender, institution, job

title, last name, place and university. Similarly, part of the labels are given as circles, thus we

compare the F-Measure of the algorithms: IROC, PICS, BAGC and DBCSC.

138 6. Detection of Overlapping Communities in Attributed Graphs

Table 6.6: F-Measure of Google+ Data Sets

Data sets IROC PICS BAGC DBCSC
gp7 0.248 0.205 0.236 0.106
gp53 0.289 0.125 0.130 0.074

The data set “gp7” contains 1206 vertices and 6 attributes and the data set “gp53” contains

1084 vertices and 6 attributes. Table 6.6 shows that IROC achieves the best clustering result

among all the algorithms on these two data sets. Specifically, take the data set “gp53” as an

example, our proposed algorithm IROC detects 17 clusters with overlapping and without redun-

dancy. Each cluster is provided with an attribute subspace which represents the meaning of the

clusters. For example, people in one cluster are connected densely and all of them are from the

same university, or people in one cluster are densely connected and all of them are from the same

institution. Moreover, PICS outputs 12 vertices clusters and 6 attributes clusters. We set the

number of cluster of BAGC to 4, which is equals to the given number of circles. DBCSC outputs

15 clusters parametrized with ε = 0.5, kmin = 2, minpts = 3,robj = 0.3,rdim = 0.3, smin = 3.

All the 15 detected clusters are provided with a subspace. However, there are three clusters with

exactly same vertices which contain redundant information.

6.5 Related Work and Discussion

Our proposed algorithm IROC is designed for clustering the attributed graph under the permis-

sion of overlapping in both vertices and the subspace of attributes. The related work therefore

comprises two parts: attributed graph clustering and overlapping community detection methods.

6.5.1 Attributed Graph Clustering

Attributed graph is an extension of general graph by involving the attributes of the vertices. The

key point of mining such complex data is to combine structural connections and characteristics

of the vertices. Paper [127] augments graphs by considering each attribute as vertex. A Random

walk is utilized on the augmented graph so as to create a unified similarity measure which com-

6.5 Related Work and Discussion 139

bines structural and attribute information. However, the algorithm is carried out in a K-Medoids

framework and partitions the attributed graph. It also needs to input the number of clusters

and parameters for the random walk, such as number of steps and the probability to go back.

Moreover, paper [128] proposes an incremental algorithm to improve efficiency of [127]. Paper

[119] proposes an algorithm named BAGC based on Bayesian probabilistic model to partition

attributed graphs. Structural and attributed information are fused by the probabilistic model and

clustering problem is transferred to a probabilistic inference problem. Similarly, the algorith-

m needs to input the number of clusters, and many other parameters to construct the necessary

probability distribution. Obviously, these partition based methods can not detect any overlapping

of clusters. And they do not find coherent attributed subspace of cluster. For these partitioning

approaches, we choose BAGC as a comparison method.

Guennemann et al. proposes an algorithm named DB-CSC (Density-Based Combined Sub-

space Clustering) [42] which is based on the classical density-based clustering algorithm DB-

SCAN [29]. The new proposed DB-CSC inherits the advantages of DBSCAN which can de-

tect clusters of arbitrary shapes and sizes. It defines a combined local neighborhood by finding

vertices, which belong to the intersects of k-neighborhood of vertices and ε-neighborhood of

subspace of the attributes. Based on the new defined neighborhood, some density related proper-

ties like high local density, local connected and maximality is defined, thus the fulfilled clusters

can be detected. Instead of giving the number of clusters, DB-CSC needs parameters like ε-

neighborhood, k-neighborhood and a minimum number Minpts. In order to remove redundant

clusters of the above two algorithms, the authors proposed a definition which is used to calcu-

late redundancy between clusters. After adopting the strategy of removing redundancy clusters,

the combined new algorithms need more parameters, robj and rdim which measure how much

overlap between clusters is allowed without redundancy. Therefore, DB-CSC needs an isolate

process and set several parameters to remove redundancy. If the parameters is set unproper-

tied, redundancy still exists. In comparison, IROC obtains the non-redundant results without

setting any parameters. Moreover, as mentioned in experiments part, judging from the distance

defined in the chapter, DB-CSC is defined to deal with the attributed graphs with numerical at-

tributes. But categorical attributes like gender, hobby .etc are common in social network data

140 6. Detection of Overlapping Communities in Attributed Graphs

set. Therefore, IROC is able to detect overlapping clusters of the categorical attributed graph and

meanwhile find the coherent attribute subspace of each cluster.

PICS [3] is also a parameter free algorithm based on MDL principle. It is able to mine

cohesive clusters from an attributed graph with similar connectivity patterns and homogeneous

attributes. However, it can not detect any overlapping and it cluster the vertices and attributes sep-

arately. Thus it is hard to find out which subspace belongs to which clusters. Additionally, Sun

et al. [105] proposes a model-based method to clustering heterogeneous information networks

which are containing incomplete attributes and multiple link relations. Also marginally related

to our method are the approaches [100, 79, 111] achieving numerous small cohesive subgraphs,

which aim to discover a correlation between node attributes and small subgraphs. Paper [110]

summarizes multi-relational attributed graphs by aggregating nodes by using selected attributes

and relations.

6.5.2 Detecting Overlapping Communities

The key point of acquiring overlapping clusters is how to assign a vertex to multiple labels. In

first instance, [86] reveals overlapping phenomena of complex networks in nature, and achieves

overlapping communities by seeking k-cliques which contains overlapping vertices. Paper [125]

proposes an algorithm based on matrix factorization which gives the soft clustering results. The

assignment of each vertices is stored as probability in a matrix with a number of dimensions equal

to the number of the community. By fuzzy allocation, overlap between communities is achieved.

CONGA[37] proposed by Gregory is an algorithm which aims to detect overlapping commu-

nities by iteratively calculating two betweenness centrality based concepts “edge betweenness”

and “split betweenness” of all edges and vertices respectively and removing the edge or splitting

the vertex with the highest value until no edges remain. As betweenness centrality is a global

measure of vertices in a graph, the calculation of the two concepts depends on counting the num-

ber of shortest paths of all pairs of vertices, which is really time consuming. In order to speed

up the algorithm CONGA, the author proposes an algorithm named CONGO [38] by calculating

local betweenness instead of global betweenness. In the new algorithm, a parameter h is added,

6.6 Chapter Conclusion 141

which is a threshold that the shortest path which is more than h is ignored. Thus the concepts

only need to recalculate locally to save time complexity. Both CONGA and CONGO need user

to predetermined the number of clusters k.

6.6 Chapter Conclusion

Summarizing this work, we introduced the first solution that is explicitly able to find meaningful

overlapping in the graph structure as well as in its respective attribute subspace. We outlined

the importance of these overlapping communities especially for attributed graphs and the infor-

mation gain that can be received by it. Our method IROC applied the concept of information

theoretic measures like entropy and an Minimum Description length (MDL) formula designed

for this challenge to elegantly avoid a) redundancy in the attribute space as well as in the net-

work itself and b) the need to set in an unsupervised setting typically unknown input parameters

to achieve good results. Our experiments clearly showed that IROC is able to outperform all

relevant comparison methods on synthetic data and on real world data of social networks.

142 6. Detection of Overlapping Communities in Attributed Graphs

Chapter 7

Conclusions and Future Research

In this thesis, we focus on adopting information theory to mine knowledge from various graph

data: simple graph, bipartite graph and attributed graph. Four novel algorithms are proposed

to fulfill different graph mining tasks, such as detecting interesting nodes, distinguishing graph

structures, finding graph clusters, detecting hidden structures, predicting missing links. As some

of the graph mining tasks are interrelated with each other, our proposed algorithms aim to achieve

multiple tasks simultaneously. Moreover, Minimum Description Length (MDL) principle is the

core technique of proposed algorithms, which leads the algorithms achieving parameter-free. The

algorithms are implemented on both synthetic and real data sets and outperform the comparison

methods.

Chapter 1 introduces many types of graph. In this thesis, we only discuss some of them. In

the future, adopting information theory we are able to mine other types of graph, such as the

weighted graph, the multi-relational graph or even more complex graph. And we can also apply

the proposed algorithms to many real life field. For example, the brain network can be modeled

as a simple graph, the relation between genes and proteins can be modeled as a bipartite graph. In

the following, we summarize each proposed algorithm and point out the future work respectively.

144 7. Conclusions and Future Research

7.1 Spotting Information-rich Nodes in Graphs

In real life, extracting interesting nodes from large graph is a significant task. And the task can be

easily achieved by obtaining the background knowledge. However, the background knowledge

is not always available. Info-spot is an algorithm which is proposed to detect the most inter-

esting nodes in a large graph from the perspective of information theory. First of all, Info-spot

gives a definition of the interesting node based on compressing link pattern of each node. An

interesting node is defined as the node with a special or unique link pattern which can not be

compressed. Furthermore, Info-spot is achieved by iteratively greedy merging pairs of nodes

having the most similar link patterns. And the novel information theoretic based similarity is

proposed to measure the difference between the link patterns of nodes in bits. Lastly, Info-spot

is able to detect the interesting nodes without requiring any input parameters, assumptions or

thresholds. A preliminary version of this work has been published in [47].

Info-spot is a greedy merging algorithm which is controlled by the Minimum Description

Length principle. In ongoing and future work, one possible way to extend Info-spot is to adopt

the information-theoretic framework for graph summarization which aims to detect summary

graph and simplifies the larger graph. The other possible direction is to guide the nodes to merge

as clusters and the graph clustering can be achieved.

7.2 Compression-based Graph Mining Exploiting Structure

Primitives

Graph is a structural data, it is intuitive to mining graph from the perspective of structure. CX-

prime is proposed for mining graphs based on compressing three-node primitives which are the

smallest substructures containing both star structure and triangular structure. Therefore, two

types of coding schemes aiming to compress the graphs with frequent star structure and frequent

triangular structure are generated respectively. Based on these two coding schemes of CXprime,

the structure type of a graph as star-like or clique-like are able to be detected. Furthermore,

guided by Minimum Description Length principle, CXprime is able to partition the graph into

7.3 Summarization-based Mining Bipartite Graphs 145

clusters with star or triangular structures without setting the number of clusters. Additionally,

unsupervised link prediction score of CXprime is generated based on the star structure and tri-

angular structure, which is able to accurately predict missing link. To sum up, CXprime is a

muti-functional algorithm and is able to achieve the tasks without setting input parameters. A

preliminary version of this work has been published in [30].

In the future, one possible way to extend CXprime is to speed up the algorithm to man-

age very large network data. As CXprime need to count the number all three-node primitives

which is time consuming. It is possible to adopt some fast counting algorithm as proposed in

[95][61] to improve the efficiency. Besides, the other time consuming process is coding each en-

try of adjacency matrix, because it need to count the existing situations constantly. And parallel

framework may be a possible way to solve the problem. Moreover, besides star structure and

triangular structure, the other typical substructures such as tree-structure and line-structure also

can be considered to included into the algorithm to detect more type of clusters.

7.3 Summarization-based Mining Bipartite Graphs

By modeling the two relational data as bipartite graph, we analyze such data from the perspective

of structures. SCMiner is a compression based multi-functional algorithm for mining bipartite

graph. Firstly, SCMiner transforms the large bipartite graph into a compact summary graph by

merging the nodes with same link patterns. Secondly, adopting Minimum Description Length

(MDL) principle to control the merging process, SCMiner is able to detect the truly relevant

clusters of both node types simultaneously. Moreover, the detected compact summary graph

also contains the essential relationships between both types of clusters thus revealing the hidden

structure of the bipartite graph. Lastly, suspicious edges which are probably erroneous or missing

can be also revealed in the algorithm. To sum up, all the tasks can be achieved by SCMiner

simultaneously and automatically. A preliminary version of this work has been published in

[32].

In ongoing and future work the intuitive way to extend SCMiner is to adopt the algorithm to

mine knowlege from more complex graph like K-partite graphs and graphs with different edge

146 7. Conclusions and Future Research

types. SCMiner focus on detecting clusters of each type of vertex which is the local clusters

of the graph. It is more interesting to make SCMiner be able to meanwhile detect the globe

communities of the graph. Moreover, we also consider to extend the basic idea of SCMine to the

weighted graph so as to detect clusters, find hidden structures and the most important is to realize

link prediction on weighted graph which not only predicts the missing edges but also the weights.

However, it is a challenge to summarize the weighted graph as the weighted graph contains both

structure information and weights information. It is hard to find the right distribution of the

weights, thus the compression do not gain much. And lossy compression method may be a

possible way to solve the problem.

7.4 Finding Overlapping Communities in Attributed Graphs

The key point of clustering an attributed graph is to combine and balance the structural infor-

mation and attribute information. IROC is an attributed graph clustering algorithm based on

information theory. Starting from generating many small subgraphs, IROC adopts a bottom up

way to greedily merge the most similar small subgraphs. The novel information theoretic simi-

larity is defined by considering both structure and attribute aspects. And guided by the Minimum

Description Length (MDL) principle, IROC is able to find overlapping clusters as well as co-

herent attribute subspaces automatically. Meanwhile, comparing with many other overlapping

clusters detection algorithms, IROC avoids the oversize overlapping and handle the redundancy.

Parts of the material presented in this work have been submitted in [31].

IROC is confined to process the graph with the categorical attributes. In the ongoing future,

one possible way to extend IROC is to make the algorithm be able to process all kinds of attributes

like numerical or categorical. Comparing with the general graph, attributed graph is added with

attribute information. We are also able to adopt information theory to mine knowledge from

other complex graph, such as multi-relational graph, weighted graph or heterogeneous graph.

Bibliography

[1] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social Networks, 25(3):211–

230, 2003.

[2] L. Akoglu, M. McGlohon, and C. Faloutsos. oddball: Spotting anomalies in weighted

graphs. In PAKDD (2), pages 410–421, 2010.

[3] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos. Pics: Parameter-free identification of

cohesive subgroups in large attributed graphs. In SDM, pages 439–450, 2012.

[4] R. Albert and A. lászló Barabási. Statistical mechanics of complex networks. Reviews of

Modern Physics, 74(1):47–97, 2002.

[5] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. A generalized max-

imum entropy approach to bregman co-clustering and matrix approximation. In KDD,

pages 509–514, 2004.

[6] S. T. Barnard and H. D. Simon. Fast multilevel implementation of recursive spectral

bisection for partitioning unstructured problems. Concurrency - Practice and Experience,

6(2):101–117, 1994.

[7] C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. Robust information-theoretic clustering.

In KDD, pages 65–75, 2006.

[8] C. Böhm, C. Faloutsos, and C. Plant. Outlier-robust clustering using independent compo-

nents. In SIGMOD, pages 185–198, 2008.

148 BIBLIOGRAPHY

[9] C. Böhm, K. Haegler, N. S. Müller, and C. Plant. Coco: coding cost for parameter-free

outlier detection. In KDD, pages 149–158, 2009.

[10] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In WWW,

pages 595–602, 2004.

[11] I. Borg and P. J. Groenen. Modern multidimensional scaling: Theory and applications

(2nd ed.). New York: Springer-Verlag, pages 207–212, 2005.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: Identifying density-based

local outliers. In SIGMOD, pages 93–104, 2000.

[13] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Com-

puter Networks, 30(1-7):107–117, 1998.

[14] T. N. Bui and C. Jones. A heuristic for reducing fill-in in sparse matrix factorization. In

PPSC, pages 445–452, 1993.

[15] D. Chakrabarti. Autopart: Parameter-free graph partitioning and outlier detection. In

PKDD, pages 112–124, 2004.

[16] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM

Comput. Surv., 38(1), 2006.

[17] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-

associations. In KDD, pages 79–88, 2004.

[18] C.-K. Cheng and Y.-C. A. Wei. An improved two-way partitioning algorithm with stable

performance [vlsi]. IEEE Trans. on CAD of Integrated Circuits and Systems, 10(12):1502–

1511, 1991.

[19] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi, and P. Raghavan.

On compressing social networks. In KDD, pages 219–228, 2009.

BIBLIOGRAPHY 149

[20] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-clustering

of gene expression data. In SDM, pages 114–125, 2004.

[21] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi. Demon: a local-first discovery

method for overlapping communities. In KDD, pages 615–623, 2012.

[22] S. de Lin and H. Chalupsky. Unsupervised link discovery in multi-relational data via rarity

analysis. In ICDM, pages 171–178, 2003.

[23] I. S. Dhillon. Co-clustering documents and words using bipartite spectral graph partition-

ing. In KDD, pages 269–274, 2001.

[24] I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral cluster-

ing and graph cuts. Technical Report TR-04-25, University of Texas Dept. of Computer

Science, 2005.

[25] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD,

pages 89–98, 2003.

[26] C. H. Q. Ding, X. He, H. Zhab, M. Gu, and H. D. Simon. A Min-max Cut Algorithm for

Graph Partitioning and Data Clustering. In ICDM, pages 107–114, 2001.

[27] W. Eberle and L. B. Holder. Discovering structural anomalies in graph-based data. In

ICDM Workshops, pages 393–398, 2007.

[28] P. Erdös and A. Rényi. On the evolution of random graphs. In Publication of the math-

matical institute of the hungarian acadmy of sciences, pages 17–61, 1960.

[29] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

[30] J. Feng, X. He, N. Hubig, C. Böhm, and C. Plant. Compression-based graph mining

exploiting structure primitives. In ICDM, pages 181–190, 2013.

150 BIBLIOGRAPHY

[31] J. Feng, X. He, N. Hubig, and C. Plant. Detection of overlapping communities in attributed

graphs. In Submitted for Publication.

[32] J. Feng, X. He, B. Konte, C. Böhm, and C. Plant. Summarization-based mining bipartite

graphs. In KDD, pages 1249–1257, 2012.

[33] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network

partitions. In DAC, pages 175–181, 1982.

[34] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry,

40(1):35–41, 1977.

[35] A. George and J. W. Liu. Computer Solution of Large Sparse Positive Definite. Prentice

Hall Professional Technical Reference, 1981.

[36] T. George and S. Merugu. A scalable collaborative filtering framework based on co-

clustering. In ICDM, pages 625–628, 2005.

[37] S. Gregory. An algorithm to find overlapping community structure in networks. In PKDD,

pages 91–102, 2007.

[38] S. Gregory. A fast algorithm to find overlapping communities in networks. In ECM-

L/PKDD (1), pages 408–423, 2008.

[39] S. Gregory. Finding overlapping communities in networks by label propagation. New

Journal of Physics, 12(10):103018, 2010.

[40] S. Gregory. Fuzzy overlapping communities in networks. Journal of Statistical Mechan-

ics: Theory and Experiment, 2011, P02017.

[41] P. Grünwald. A tutorial introduction to the minimum description length principle. In in

Advances in Minimum Description Length: Theory and Applications. 2005. MIT Press,

2005.

BIBLIOGRAPHY 151

[42] S. Günnemann, B. Boden, and T. Seidl. Db-csc: A density-based approach for subspace

clustering in graphs with feature vectors. In ECML/PKDD (1), pages 565–580, 2011.

[43] N. Guttmann-Beck and R. Hassin. Approximation algorithms for minimum k-cut. Algo-

rithmica, 27(2):198–207, 2000.

[44] J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. In

SODA, pages 165–174, 1992.

[45] M. A. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using supervised learning.

In SDM Workshop on Link Analysis,Counterterrorism and Security, 2006.

[46] D. Hawkins. Identification of Outliers. Chapman and Hall, London, 1980.

[47] X. He, J. Feng, and C. Plant. Automatically spotting information-rich nodes in graphs. In

ICDM Workshops, pages 941–948, 2011.

[48] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra,

C. Faloutsos, and L. Li. Rolx: structural role extraction and mining in large graphs. In

KDD, pages 1231–1239, 2012.

[49] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In

ACM/IEEE Conference on Supercomputing, 1995.

[50] L. B. Holder, D. J. Cook, and S. Djoko. Substructure discovery in the subdue system. In

KDD Workshop on AAAI, pages 169–180, 1994.

[51] S. Ihara. Information theory for continuous systems. World Scientific, 1993.

[52] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent

substructures from graph data. In PKDD, pages 13–23, 2000.

[53] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity. In KDD, pages

538–543, 2002.

152 BIBLIOGRAPHY

[54] U. Kang and C. Faloutsos. Beyond ’caveman communities’: Hubs and spokes for graph

compression and mining. In ICDM, pages 300–309, 2011.

[55] G. Karypis and V. Kumar. Multilevel graph partitioning schemes. In ICPP (3), pages

113–122, 1995.

[56] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In DAC, pages

343–348, 1999.

[57] H. Kashima and N. Abe. A parameterized probabilistic model of network evolution for

supervised link prediction. In ICDM, pages 340–349, 2006.

[58] L. Katz. A new status index derived from sociometric analysis. PSYCHOMETRIKA,

18(1):39–43, 1953.

[59] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large datasets.

In VLDB, pages 392–403, 1998.

[60] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.

Addison-Wesley, Reading, MA, 1993.

[61] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. Efficient triangle count-

ing in large graphs via degree-based vertex partitioning. Internet Mathematics, 8(1):161–

185, 2011.

[62] J. Kunegis and A. Lommatzsch. Learning spectral graph transformations for link predic-

tion. In ICML, page 71, 2009.

[63] J. Kunegis, E. W. D. Luca, and S. Albayrak. The link prediction problem in bipartite

networks. In IPMU, pages 380–389, 2010.

[64] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313–320,

2001.

BIBLIOGRAPHY 153

[65] M. D. Lee. Determining the dimensionality of multidimensional scaling representations

for cognitive modeling. Journal of Mathematical Psychology, 45:149–166, 2001.

[66] D. Liben-Nowell and J. M. Kleinberg. The link prediction problem for social networks.

In CIKM, pages 556–559, 2003.

[67] R. Lichtenwalter, J. T. Lussier, and N. V. Chawla. New perspectives and methods in link

prediction. In KDD, pages 243–252, 2010.

[68] Y.-R. Lin, J. Sun, P. Castro, R. Konuru, H. Sundaram, and A. Kelliher. Metafac: Commu-

nity discovery via relational hypergraph factorization. In KDD, pages 527–536, 2009.

[69] J. Liu and T. Liu. Detecting community structure in complex networks using simulated

annealing with k-means algorithms. Physica A: Statistical Mechanics and its Applications,

389(11):2300–2309, 2010.

[70] B. Long, X. Wu, Z. M. Zhang, P. S. Yu, and P. S. Yu. Unsupervised learning on k-partite

graphs. In KDD, pages 317–326, 2006.

[71] B. Long, Z. M. Zhang, P. S. Yu, and P. S. Yu. Co-clustering by block value decomposition.

In KDD, pages 635–640, 2005.

[72] L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A,

390(6):11501170, 2011.

[73] J. B. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In In Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and

Probability, volume 1, pages 281–297, 1967.

[74] J. J. McAuley and J. Leskovec. Learning to discover social circles in ego networks. In

NIPS, pages 548–556, 2012.

[75] M.E.J.Newman. Clustering and preferential attachment in growing networks. Physical

Review E, 64(2):025102, 2001.

154 BIBLIOGRAPHY

[76] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric approach to graph sepa-

rators. In FOCS, pages 538–547, 1991.

[77] M. Mitzenmacher. A brief history of generative models for power law and lognormal

distributions. Internet Maths, 1(2):226–251, 2003.

[78] H. D. K. Moonesinghe and P.-N. Tan. Outrank: a graph-based outlier detection framework

using random walk. International Journal on Artificial Intelligence Tools, 17(1):19–36,

2008.

[79] F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining cohesive patterns from graphs with

feature vectors. In SDM, pages 593–604, 2009.

[80] N. Mueller, K. Haegler, J. Shao, C. Plant, and C. Böhm. Weighted graph compression for

parameter-free clustering with pacco. In SDM, pages 932–943, 2011.

[81] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with bounded error.

In SIGMOD, pages 419–432, 2008.

[82] M. E. Newman. Modularity and community structure in networks. Proc Natl Acad Sci U

S A, 103(23):8577–8582, 2006.

[83] M. E. J. Newman. Finding community structure in networks using the eigenvectors of

matrices. Physical review E, 74(3):036104, 2006.

[84] C. C. Noble and D. J. Cook. Graph-based anomaly detection. In KDD, pages 631–636,

2003.

[85] G. K. Orman, V. Labatut, and H. Cherifi. An empirical study of the relation between

community structure and transitivity. Studies in Computational Intelligence, 424:99–110,

2013.

[86] G. Palla, I. Dernyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community

structure of complex networks in nature and society. Nature, 435(7043):814–818, 2005.

BIBLIOGRAPHY 155

[87] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detec-

tion using the local correlation integral. In ICDE, pages 315–326, 2003.

[88] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of

graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430–452, 1990.

[89] D. M. W. Powers. Evaluation: From Precision, Recall and F-Factor to ROC, Informed-

ness, Markedness & Correlation. Technical Report SIE-07-001, School of Informatics and

Engineering, Flinders University, 2007.

[90] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[91] J. Rissanen. An introduction to the mdl principle. Technical report, Helsinkin Institute for

Information Technology, 2005.

[92] J. Rissanen. Information and Complexity in Statistical Modeling. Springer, 2007.

[93] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,

Inc., 1986.

[94] T. Schank and D. Wagner. Approximating clustering coefficient and transitivity. Journal

of Graph Algorithms and Applications, 9(2):265–275, 2005.

[95] T. Schank and D. Wagner. Finding, counting and listing all triangles in large graphs, an

experimental study. In WEA, pages 606–609, 2005.

[96] H. Shan and A. Banerjee. Bayesian co-clustering. In ICDM, pages 530–539, 2008.

[97] C. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27(3):379–423, 1948.

[98] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. M. Borgwardt.

Efficient graphlet kernels for large graph comparison. In AISTATS, pages 488–495, 2009.

[99] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8):888–905, 1997.

156 BIBLIOGRAPHY

[100] A. Silva, W. M. Jr., and M. J. Zaki. Mining attribute-structure correlated patterns in large

attributed graphs. PVLDB, 5(5):466–477, 2012.

[101] A. Stolcke and S. M. Omohundro. Hidden markov model induction by bayesian model

merging. In NIPS, pages 11–18, 1992.

[102] A. Stolcke and S. M. Omohundro. Inducing probabilistic grammars by bayesian model

merging. In ICGI, pages 106–118, 1994.

[103] A. Strehl, J. Ghosh, and C. Cardie. Cluster ensembles - a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research, 3:583–617, 2002.

[104] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood formation and anomaly

detection in bipartite graphs. In ICDM, pages 418–425, 2005.

[105] Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-aware clustering of heterogeneous

information networks with incomplete attributes. PVLDB, 5(5):394–405, 2012.

[106] Y. Sun and J. Han. Mining heterogeneous information networks: a structural analysis

approach. SIGKDD Explorations, 14(2):20–28, 2012.

[107] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. Rankclus: integrating clustering

with ranking for heterogeneous information network analysis. In EDBT, pages 565–576,

2009.

[108] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous information net-

works with star network schema. In KDD, pages 797–806, 2009.

[109] W. Tang, Z. Lu, and I. S. Dhillon. Clustering with multiple graphs. In ICDM, pages

1016–1021, 2009.

[110] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph summarization.

In SIGMOD, pages 567–580, 2008.

BIBLIOGRAPHY 157

[111] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-effort pattern matching

in large attributed graphs. In KDD, pages 737–746, 2007.

[112] S. van Dongen. Graph Clustering by Flow Simulation. Dissertation, University of Utrecht,

2000.

[113] M. van Leeuwen, J. Vreeken, and A. Siebes. Compression picks item sets that matter. In

PKDD, pages 585–592, 2006.

[114] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings compar-

ison: is a correction for chance necessary? In ICML, pages 1073–1080, 2009.

[115] C. Wang, V. Satuluri, and S. Parthasarathy. Local probabilistic models for link prediction.

In ICDM, pages 322–331, 2007.

[116] X. F. Wang and G. Chen. Complex networks: small-world, scale-free and beyond. Circuits

and Systems Magazine, 3(1):6–20, 2003.

[117] D. Watts and S. Strogatz. Collective dynamics of ’small-world’ networks. Nature,

393(6684):440–442, 1998.

[118] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping community detection in networks:

The state-of-the-art and comparative study. ACM Computing Surveys, 45(4):43:1–43:35,

2013.

[119] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed

graph clustering. In SIGMOD, pages 505–516, 2012.

[120] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM, pages

721–724, 2002.

[121] J. Yang and J. Leskovec. Overlapping community detection at scale: a nonnegative matrix

factorization approach. In WSDM, pages 587–596, 2013.

[122] R. W. Yeung. A First Course in Information Theory. Springer, 2002.

158 BIBLIOGRAPHY

[123] W. W. Zachary. An information flow model for conflict and fission in small groups. Jour-

nal of Anthropological Research, 33:452–473, 1977.

[124] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven graph summarization. In ICDE,

pages 880–891, 2010.

[125] Y. Zhang and D.-Y. Yeung. Overlapping community detection via bounded nonnegative

matrix tri-factorization. In KDD, pages 606–614, 2012.

[126] Y. Zhao and G. Karypis. Criterion functions for document clustering: Experiments and

analysis. Technical report, 2002.

[127] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similari-

ties. PVLDB, 2(1):718–729, 2009.

[128] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs: An efficient incre-

mental approach. In ICDM, pages 689–698, 2010.

Acknowledgments

Time flies, four years of PhD study in general, such as a flash gone. There are sweetness and

bitterness during this period. Here, I would like to express my gratitude to all those who helped

me during this special time in Germany.

My deepest gratitude goes first and foremost to Prof. Dr. Christian Böhm, my supervisor, for

all the support and encouragement he gave me during my research. Without his guidance and

constant feedback this PhD would not have been achievable. Second, I would like to express

my heartfelt gratitude to Dr. Claudia Plant for her scientific advice and knowledge and many

insightful discussions and suggestions. She remains my best role model for a scientist. I am also

greatly thankful to Prof. Anthony K. H. Tung, who takes time out of his busy schedule to review

my thesis.

I thank my current and past colleagues at the data mining group of LMU: Xiao He, Son Mai Thai,

Bettina Konte, Sebastian Goebl, Dr. Junming Shao, Qinli Yang, Dr. Bianca Wackersreuther, Dr.

Annahita Oswald, Wei Ye, Linfei Zhou, Can Altinigneli, Frank Fiedler, Peter Wackersreuther

and Andrew Zherdinand. And I also thank the colleagues at iKDD group of Helmholtz Zentrum

München: Nina Hubig, Sam Maurus, Annika Tonch, Dr. Wolfgang zu Castell, Dr. David Endes-

felder. Working with all of these people is a great learning experience for me. I want to express

my deep appreciation for the help and support they have offered me during my PhD study. Fur-

thermore, I want to thank Susanne Grienberger, Sandra Mayer and Franz Krojer for their kindly

supports and help.

160

I gratefully acknowledge the China Scholarship Council and The University of Munich (CSC-

LMU joint Scholarship) for providing me the financial support for my four years PhD work. And

thanks also go to the people who are working for the program.

It is an honor for me to join the LMU-Mentoring program. I want to thank Prof. Dr. Francesca

Biagini who offers me a lot of support. I also give thanks to the people who work for this pro-

gram.

I would like to thank my friends in the Munich for all the great times that we have shared. I am

deeply thankful to my beloved family for their loving considerations and great confidence in me

all through these years. Especially, thanks to my coming child who has been with me during the

thesis writing.

Jing Feng

Munich, Germany

November, 2014

Formular 3.2

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Munich, 11.06.2015
Ort, Datum Unterschrift Doktorand/in

Name, Vorname
Feng, Jing

Feng, Jing

	diss
	Abstract
	Introduction
	Knowledge Discovery in Graph Data
	Graph data
	Graph Mining Tasks

	Mining Knowledge from Multiple Types of Graphs
	Simple Graph
	Weighted Graph
	Multi-relational Graph
	Attributed Graph
	Bipartite Graph

	Information Theory for Graph Mining
	Thesis Contributions
	Thesis Organization

	Theoretical Background
	Basic Knowledge of Graph Theory
	Graph Representation
	Graph Topological Properties
	Graph Clustering
	Graph Structure Mining
	Link Prediction
	Graph Compression

	Basic Knowledge of Information Theory
	Information Theoretic Concepts
	Minimum Description Length Principle

	Evaluations in Graph Mining

	Automatically Spotting Information-rich Nodes in Graphs
	Introduction
	Motivation
	Contributions

	The Information Content of A Node
	Naive Coding Scheme
	Information Content of A Node

	Similarity Measure
	Embedding
	Algorithm Info-spot
	MDL-based Coding Scheme
	The Greedy Merging Algorithm Info-spot
	Runtime Complexity

	Experiments
	Coauthor Network of 5 Famous Scientists
	Data Mining Scientists Collaboration
	Email Communication Network of 3 ex-CEO from Enron

	Related Work and Discussion
	Chapter Conclusion

	Compression-based Graph Mining Exploiting Structure Primitives
	Introduction
	Motivation
	Contributions

	Graph Compression using Structure Primitives
	Basic Coding Paradigm
	Extended Coding Paradigm

	Algorithm CXprime
	Graph Partitioning
	Link Prediction

	Experimental Evaluation
	Discovering the Graph Structure
	Graph Partitioning
	Link Prediction

	Related Work and Discussion
	Graph Structure and Pattern Mining
	Compression-based Graph Mining
	Graph Partitioning
	Link prediction

	Chapter Conclusion

	Summarization-based Mining Bipartite Graphs
	Introduction
	Motivation
	Contributions

	Compressing a Bipartite Graph
	Coding Scheme
	Hidden Relations Between Vertices

	Algorithm SCMiner
	Basic Idea
	Finding Super Node Candidates
	Algorithm
	Properties

	Experiments
	Data Sets
	Clustering Quality
	Hidden Structure
	Link Prediction Accuracy

	Related Work and Discussion
	Co-clustering
	Graph Compression and Summarization
	Link Prediction

	Chapter Conclusion

	Detection of Overlapping Communities in Attributed Graphs
	Introduction
	Motivation
	Contributions

	Compressing an Attributed Graph
	Notations
	Coding Scheme

	Algorithm IROC
	Initialization
	Refinement
	Overall procedure

	Experiments
	Synthetic Data sets
	Real Data sets

	Related Work and Discussion
	Attributed Graph Clustering
	Detecting Overlapping Communities

	Chapter Conclusion

	Conclusions and Future Research
	Spotting Information-rich Nodes in Graphs
	Compression-based Graph Mining Exploiting Structure Primitives
	Summarization-based Mining Bipartite Graphs
	Finding Overlapping Communities in Attributed Graphs

	Acknowledgments

	eidesstattlversicherung_3_2_

