3,303 research outputs found

    Simulating Noisy Channel Interaction

    Full text link
    We show that TT rounds of interaction over the binary symmetric channel BSC1/2āˆ’ĻµBSC_{1/2-\epsilon} with feedback can be simulated with O(Ļµ2T)O(\epsilon^2 T) rounds of interaction over a noiseless channel. We also introduce a more general "energy cost" model of interaction over a noisy channel. We show energy cost to be equivalent to external information complexity, which implies that our simulation results are unlikely to carry over to energy complexity. Our main technical innovation is a self-reduction from simulating a noisy channel to simulating a slightly-less-noisy channel, which may have other applications in the area of interactive compression

    Exponential Separation of Quantum Communication and Classical Information

    Full text link
    We exhibit a Boolean function for which the quantum communication complexity is exponentially larger than the classical information complexity. An exponential separation in the other direction was already known from the work of Kerenidis et. al. [SICOMP 44, pp. 1550-1572], hence our work implies that these two complexity measures are incomparable. As classical information complexity is an upper bound on quantum information complexity, which in turn is equal to amortized quantum communication complexity, our work implies that a tight direct sum result for distributional quantum communication complexity cannot hold. The function we use to present such a separation is the Symmetric k-ary Pointer Jumping function introduced by Rao and Sinha [ECCC TR15-057], whose classical communication complexity is exponentially larger than its classical information complexity. In this paper, we show that the quantum communication complexity of this function is polynomially equivalent to its classical communication complexity. The high-level idea behind our proof is arguably the simplest so far for such an exponential separation between information and communication, driven by a sequence of round-elimination arguments, allowing us to simplify further the approach of Rao and Sinha. As another application of the techniques that we develop, we give a simple proof for an optimal trade-off between Alice's and Bob's communication while computing the related Greater-Than function on n bits: say Bob communicates at most b bits, then Alice must send n/exp(O(b)) bits to Bob. This holds even when allowing pre-shared entanglement. We also present a classical protocol achieving this bound.Comment: v1, 36 pages, 3 figure

    Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks

    Full text link
    Quantized Neural Networks (QNNs), which use low bitwidth numbers for representing parameters and performing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs, parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by bitwise operations. However, distributions of parameters in Neural Networks are often imbalanced, such that the uniform quantization determined from extremal values may under utilize available bitwidth. In this paper, we propose a novel quantization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training speed, and is applicable to both Convolutional Neural Networks and Recurrent Neural Networks. Experiments on standard datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is 12.7\%, which is superior to the state-of-the-arts of QNNs

    Privacy-Preserving Shortest Path Computation

    Full text link
    Navigation is one of the most popular cloud computing services. But in virtually all cloud-based navigation systems, the client must reveal her location and destination to the cloud service provider in order to learn the fastest route. In this work, we present a cryptographic protocol for navigation on city streets that provides privacy for both the client's location and the service provider's routing data. Our key ingredient is a novel method for compressing the next-hop routing matrices in networks such as city street maps. Applying our compression method to the map of Los Angeles, for example, we achieve over tenfold reduction in the representation size. In conjunction with other cryptographic techniques, this compressed representation results in an efficient protocol suitable for fully-private real-time navigation on city streets. We demonstrate the practicality of our protocol by benchmarking it on real street map data for major cities such as San Francisco and Washington, D.C.Comment: Extended version of NDSS 2016 pape

    Interactive Compression for Multi-Party Protocol

    Get PDF
    The field of compression studies the question of how many bits of communication are necessary to convey a given piece of data. For one-way communication between a sender and a receiver, the seminal work of Shannon and Huffman showed that the communication required is characterized by the entropy of the data; in recent years, there has been a great amount of interest in extending this line of research to interactive communication, where instead of a sender and a receiver we have two parties communication back-and-forth. In this paper we initiate the study of interactive compression for distributed multi-player protocols. We consider the classical shared blackboard model, where players take turns speaking, and each player\u27s message is immediately seen by all the other players. We show that in the shared blackboard model with k players, one can compress protocols down to ~O(Ik), where I is the information content of the protocol and k is the number of players. We complement this result with an almost matching lower bound of ~Omega(Ik), which shows that a nearly-linear dependence on the number of players cannot be avoided

    Construction and Verification of Performance and Reliability Models

    Get PDF
    Over the last two decades formal methods have been extended towards performance and reliability evaluation. This paper tries to provide a rather intuitive explanation of the basic concepts and features in this area. Instead of striving for mathematical rigour, the intention is to give an illustrative introduction to the basics of stochastic models, to stochastic modelling using process algebra, and to model checking as a technique to analyse stochastic models

    A Candidate for a Strong Separation of Information and Communication

    Get PDF
    The weak interactive compression conjecture asserts that any two-party communication protocol with communication complexity C and information complexity I can be compressed to a protocol with communication complexity poly(I)polylog(C). We describe a communication problem that is a candidate for refuting that conjecture. Specifically, while we show that the problem can be solved by a protocol with communication complexity C and information complexity I=polylog(C), the problem seems to be hard for protocols with communication complexity poly(I)polylog(C)=polylog(C)
    • ā€¦
    corecore